L01: Multivariate distributions

- 1. Multivariate distributions
 - (1) Probability density function

$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_p \end{pmatrix}$$
 is a continuous random vector if it assumes values $x = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in D \subset R^p$ with

probability density $f(x_1, ..., x_p)$. This $f(\cdot)$ is called the joint probability density function (pdf) for X. D, the domain of $f(\cdot)$, is called the support of X. For $A \subset D$,

$$P(X \in A) = \iint_A f(x_1, ..., x_p) dx_1, ..., dx_p$$

One can extend the domain of $f(\cdot)$ from D to \mathbb{R}^p by defining $f(x_1, ..., x_p) \equiv 0$ on D^c .

(2) Conditions for $f(x_1, ..., x_p)$ to be a pdf Function $f(x_1, ..., x_p)$ could be used as a pdf to define a random vector if

$$f(x_1, ..., x_p) \ge 0$$
 and $\iint_{R^p} f(x_1, ..., x_p) dx_1, ..., dx_p = 1$

(3) pdf of Y = y(X)

 $X \in \mathbb{R}^p$ is a random vector with pdf $f(x_1, ..., x_p)$. Suppose $y = y(x) \in \mathbb{R}^p \iff x = x(y) \in \mathbb{R}^p$ with Jacobian $J = \frac{\partial (x_1, ..., x_p)}{\partial (y_1, ..., y_p)} \in \mathbb{R}^{p \times p}$. Then the pdf for Y = y(X) is

$$g(y) = f(x(y)) \cdot \operatorname{abs} |J|$$

Proof. First $g(y) = f(x(y)) \operatorname{abs} |J| \ge 0$. Suppose $x \in A \iff y \in B$. Then By the substitution of x = x(y) in integral,

$$P(Y \in B) = P(X \in A) = \iint_{x \in A} f(x) dx_1, ..., dx_p = \iint_{y \in B} f(x(y)) abs|J| dy_1, ..., dy_p$$

=
$$\iint_{y \in B} g(y) dy_1, ... dy_p.$$

Hence q(y) is the pdf for Y.

- 2. Multivariate normal distributions
 - (1) Definition of $X \sim N(\mu, \Sigma)$. Consider $f(x; \mu, \Sigma) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right]$, a function of $x \in \mathbb{R}^p$ with parameter vector $\mu \in \mathbb{R}^p$ and a positive definite matrix $\Sigma \in \mathbb{R}^{p \times p}$. Clearly f(x) > 0. By the substitution $z = \Sigma^{-1/2}(x-\mu) \iff x = \Sigma^{1/2}z + \mu$ with $J = \frac{\partial(x_1, \dots, x_p)}{\partial(z_1, \dots, z_p)} = \Sigma^{1/2}$.

$$\iint_{R^p} f(x) dx_1, \dots, dx_p = \iint_{R^p} \frac{1}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}z'z\right) dz_1, \dots dz_p = \prod_{i=1}^p \int_R \frac{1}{\sqrt{2\pi}} e^{-\frac{z_i^2}{2}} dz_i = 1$$

So f(x) is a pdf. X with this pdf is called a normal vector denoted by $X \sim N(\mu, \Sigma)$.

- (2) Transformation
 - $X \sim N(\mu, \Sigma)$. If $A \in \mathbb{R}^{p \times p}$ is non-singular, then $Y = AX + b \sim N(A\mu + b, A\Sigma A')$ **Prof.** Transformation $y = Ax + b \iff x = A^{-1}(y - b)$ has $J = \frac{\partial(x_1, \dots, x_p)}{\partial(y_1, \dots, y_p)} = A^{-1}$. So the pdf for Y is

$$\begin{array}{lcl} g(y) & = & f(A^{-1}(y-b))|A^{-1}| \\ & = & \frac{1}{(2\pi)^{p/2}|A\Sigma A'|^{1/2}}\exp\left[-\frac{1}{2}(y-A\mu-b)'(A\Sigma A')^{-1}(y-A\mu-b)\right] \end{array}$$

Thus $Y \sim N(A\mu + b, A\Sigma A')$.

Ex1: $X \sim N(\mu, \Sigma)$.

For full row rank A there exists B such that $\begin{pmatrix} A \\ B \end{pmatrix} \in R^{p \times p}$ is non-singular and $A\Sigma B' = 0$. Define $\begin{pmatrix} Y \\ Y_a \end{pmatrix} = \begin{pmatrix} AX + b \\ BX + c \end{pmatrix} = \begin{pmatrix} A \\ B \end{pmatrix} X + \begin{pmatrix} b \\ c \end{pmatrix}$. By the transformation in (2), $\begin{pmatrix} Y \\ Y_a \end{pmatrix} \sim N\left(\begin{pmatrix} A\mu + b \\ B\mu + c \end{pmatrix}, \begin{pmatrix} A\Sigma A' & 0 \\ 0 & B\Sigma B' \end{pmatrix}\right)$

By the pdf in (1), $f_{Y,Y_a}(y, y_a) = f(y) \cdot g(y_a)$ where f(y) is pdf for $N(A\mu + b, A\Sigma A')$ and $g(y_a)$ is the pdf for $N(B\mu + c, B\Sigma B')$.

- 3. Marginal distributions and conditional distributions
 - (1) Definitions

X is a random vector. X_I contains some of the components of X, and X_{II} contains the rest components.

The distribution of X_I , disregarding X_{II} at all, is a marginal distribution of X. Distribution of X_I , knowing that X_{II} is fixed at x_{II} , is the conditional distribution of X_I given $X_{II} = x_{II}$. For simplicity assume $X = \begin{pmatrix} X_I \\ X_{II} \end{pmatrix}$ where $X_I \in \mathbb{R}^k$.

(2) Marginal pdf

 $g(x_I) = \iint_{R^{p-k}} f(x_1, ..., x_p) dx_{k+1}, ..., dx_p$ is the marginal pdf of X_I . **Pf:** First $g(x_1, ..., x_k) \ge 0$. Secondly, for $X_I \in A$,

$$\begin{aligned} P(X_I \in A) &= P(X_I \in A, X_{II} \in R^{p-k}) = \iint_{x_I \in A} x_{II} \in R^{p-k} f(x_1, ..., x_p) \, dx_1, ..., dx_p \\ &= \iint_{x_I \in A} \left[\iint_{x_{II} \in R^{p-k}} f(x_1, ..., x_p) \, dx_{k+1}, ..., dx_p \right] \, dx_1, ..., dx_k \\ &= \iint_{x_I \in A} g(x_1, ..., x_k) \, dx_1, ..., dx_k. \end{aligned}$$

So $g(x_I)$ is the pdf for X_I .

(3) Conditional pdf

The conditional pdf of X_I given $X_{II} = x_{II}$ is $f_{X_I|X_{II}=x_2}(x_I) = \frac{f(x_I, x_{II})}{f_{X_{II}}(x_{II})}$.

Explanation: At fixed $X_I = x_I$, to get the value for the pdf of X_I , we collected pdf values at all points of X_{II} . But if X_{II} is fixed at $X_{II} = x_{II}$, the only value available is $f(x_I, x_{II})$. Therefore initially $f(x_I, x_I I)$ treated as a function of x_I can be regarded as the pdf of X_I while X_{II} is fixed at x_{II} . But it is not a pdf since $\iint_{R^k} f(x_I, x_{II}) dx_1, ..dx_k \neq 1$. $\frac{f(x_I, x_{II})}{f_{x_{II}}(x_{II})}$ is proportional to $f(x_I, x_{II})$, and it is a pdf.

Ex2: Improvement to transformation in (2)of 2.

 $X \sim N(\mu, \Sigma)$. If A has full row rank, then $Y = AX + b \sim N(A\mu + b, A\Sigma A'.$

Proof. In Ex1, we obtained the pdf for $\begin{pmatrix} Y \\ Y_a \end{pmatrix}$. The pdf for Y is

$$\iint_{y_a \in R^{p-k}} f_{Y,Y_a}(y, y_a) dy_a = \iint_{y_a \in R^{p-k}} f_1(y) f_2(y_a) dy_a = f_1(y)$$

But $f_1(y)$ is the pdf for $N(A\mu + b, A\Sigma A')$. So $Y = AX + B \sim N(A\mu + b, A\Sigma A')$.

Ex3: Marginal distributions for $N(\mu, \Sigma)$ can be obtained by the transformations in Ex2. For $\begin{pmatrix} X_1 \end{pmatrix} \begin{pmatrix} \mu_1 \end{pmatrix} \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \end{pmatrix}$

example with
$$\begin{pmatrix} X_2 \\ X_3 \end{pmatrix} \sim N \begin{pmatrix} \mu_2 \\ \mu_2 \\ \mu_3 \end{pmatrix}, \begin{pmatrix} \sigma_{21} & \sigma_2^2 & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_3^2 \end{pmatrix}$$
, $X_2 = (0, 1, 0)X \sim N(\mu_2, \sigma_2^2)$ and $\begin{pmatrix} X_1 \\ X_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} X \sim N \begin{pmatrix} \mu_1 \\ \mu_3 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \sigma_{13} \\ \sigma_{31} & \sigma_3^2 \end{pmatrix}$.

L02: Parameters of multivariate distributions

- 1. Conditional distribution for normal vectors
 - (1) Recall (i) For $\binom{X}{Y}$ with pdf f(x, y), the conditional pdf of X given Y = y is $f_{X|y}(x) = \frac{f(x, y)}{f_Y(y)}$ where $f_Y(y)$ is the marginal pdf for y. (ii) For $X \sim N(\mu, \Sigma)$, $AX + b \sim N(A\mu + b, A\Sigma A')$ for full row rank A (2) For $\binom{X}{Y} \sim N\left(\binom{\mu_1}{\mu_2}, \binom{\Sigma_{11} \quad \Sigma_{12}}{\Sigma_{21} \quad \Sigma_{22}}\right)$, let $\Sigma_{11.2} = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$. Then $X|(Y = y) \sim N\left(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(y - \mu_2), \Sigma_{11.2}\right)$ **Proof.** $\binom{Z}{Y} = \binom{X - \Sigma_{12}\Sigma_{22}^{-1}Y}{Y} = \binom{I \quad -\Sigma_{12}\Sigma_{22}^{-1}}{(N-Y)}\binom{X}{Y} \sim N\left(\binom{\mu_1 - \Sigma_{11}\Sigma_{22}^{-1}\mu_2}{\mu_2}, \binom{\Sigma_{11.2} \quad 0}{(N-Y)}\right)$ and $Y = (0, I)\binom{X}{Y} \sim N(\mu_2, \Sigma_{22})$. By examining the pdfs we see $f_{Z,Y}(z, y) = f_1(z)f_2(y)$ where $f_1(z)$ is the pdf for $N\left(\mu_1 - \Sigma_{11}\Sigma_{22}^{-1}\mu_2, \Sigma_{11.2}\right)$ and $f_2(y)$ is the pdf for $N(\mu_2, \Sigma_{22})$. So $f_{Z|Y=y}(z) = \frac{f_{Z,Y}(z)}{f_Y(y)} = \frac{f_1(z)f_2(y)}{f_2(y)} = f_1(z)$. Thus $Z|y \sim N\left(\mu_1 - \Sigma_{12}\Sigma_{22}^{-1}\mu_2, \Sigma_{11.2}\right)$. Hence $Z + \Sigma_{11}\Sigma_{22}^{-1}y|Y = y \sim N\left(\mu_1 + \Sigma_{11}\Sigma_{22}^{-1}(y - \mu_2), \Sigma_{11.2}\right)$ Therefore $X|y \sim N\left(\mu_1 + \Sigma_{11}\Sigma_{22}^{-1}(y - \mu_2), \Sigma_{11.2}\right)$
- 2. Expectation matrices
 - (1) Definition

 $X \in \mathbb{R}^p$ is a random vector with joint pdf $f(x_1, ..., x_p)$, and $G(X) = (g_{ij}(X))_{m \times n}$ is a matrix valued function of X. Define the expectation of G(X) by $E[G(X)] = (E[g_{ij}(X)])_{m \times n}$ where $E[g_{ij}(X)] = \iint_{\mathbb{R}^p} g(x_1, ..., x_p) f(x_1, ..., x_p) dx_1, ..., dx_p$.

- (2) Property of the operator $E(\cdot)$ $E(\cdot)$ is a linear operator, i.e., E[AG(X)B + CH(X)D + K] = AE[G(X)]B + CE[H(X)]D + K
- (3) Computation for $E[g_{ij}(X_{k+1},...,X_p)]$

$$\begin{split} E[g_{ij}(X_{k+1},..,X_p)] &= \iint_{R^p} g(x_{k+1},...,x_p) f(x_1,...,x_p) dx_1,..dx_p \\ &= \iint_{R^{p-k}} g(x_{k+1},...,x_p) \left[\iint_{R^k} f(x_1,...,x_p) dx_1,...,dx_k\right] dx_{k+1},...,dx_p \\ &= \iint_{R^{p-k}} g(x_{k+1},...,x_p) f_{(X_{k+1},...,X_p)}(x_{k+1},...,x_p) dx_{k+1},...,dx_p \end{split}$$

Ex2: $XX' = (X_iX_j)_{p \times p}$ is a random matrix. $E(XX') = (E(X_iX_j))_{p \times p}$ where $E(X_iX_j) = \iint_{R^p} x_ix_jf(x_1,...,x_p) dx_1,..., dx_p = \iint_{R^2} x_ix_jf_{(X_i, X_j)}(x_i, x_j) dx_i dx_j.$

- 3. Mean, variance, covariance and correlation coefficient
 - (1) Mean for $X \in \mathbb{R}^p$ The mean of random vector $X \in \mathbb{R}^p$ is $\mu = E(X) \in \mathbb{R}^p$. The mean of X is regarded as the center of the values of X since $E(X - \mu) = 0$
 - (2) Covariance matrix

The covariance matrix for random vectors $X \in \mathbb{R}^p$ and $Y \in \mathbb{R}^q$ with joint distributions is

$$Cov(X, Y) = E\{[X - E(X)][Y - E(Y)'] \\ = E\{XY' - X[E(Y)]' - [E(X)]Y' + [E(X)][E(Y)]'\} \\ = E(XY') - E(X)[E(Y)]'.$$

Let $\mu_x = E(X) \in \mathbb{R}^p$ and $\mu_y = E(Y) \in \mathbb{R}^q$. Then Cov(X, Y) is a $p \times q$ matrix. The element on the *i*th row and *j*th column is

$$E[(X_i - \mu_{x_i})(Y_j - \mu_{y_j})] = E(X_i Y_j) - E(X_i)E(Y_j) = cov(X_i, Y_j)$$

Thus $\operatorname{Cov}(X, Y) = (\operatorname{cov}(X_i, Y_j))_{p \times q}$.

(3) Variance-covariance for $X \in \mathbb{R}^p$

For random vector $X \in \mathbb{R}^p$ with $E(X) = \mu$,

$$Cov(X, X) = E[(X - \mu)(X - \mu)'] = E(XX') - \mu\mu' = (cov(X_i, X_j))_{p \times p}$$

With i = j, $cov(X_i, X_i) = var(X_i)$. Thus the matrix is called the variance-covariance matrix or covariance matrix for X, and is often denoted by $Cov(X) = \Sigma$.

 $E(X) = \mu$ and $Cov(X) = \Sigma$ are two important parameter vector and matrix for X and is often given using the form $X \sim (\mu, \Sigma)$.

The variance matrix for X is $V_x = \text{diag}(\text{var}(X_1), \dots, \text{var}(X_p))$. With $\Sigma = \text{Cov}(X)$, V_x is often denoted as $\text{diag}(\Sigma)$.

(4) Correlation matrix

For random vectors $X \in \mathbb{R}^p$ and $Y \in \mathbb{R}^q$ with joint distributions, the correlation matrix

$$\rho(X, Y) = V_x^{-1/2} \text{Cov}(X, Y) V_y^{-1/2} = \left(\frac{\text{cov}(X_i, Y_j)}{\sqrt{\text{var}(X_i), \text{var}(Y_j)}}\right)_{p \times q} = (\rho(X_i, Y_j))_{p \times q}$$

where $\rho(X_i, Y_j)$ is the correlation of X_i and Y_j . $\rho(X) = \rho(X, X) = (\rho(X_i, X_j))_{p \times p}$. $\rho(X_i, X_i) = 1$.

(5) Operator $Cov(\cdot, \cdot)$.

$$Cov(AX_I + BX_{II} + \alpha, CY_I + DY_{II} + \beta)$$

$$ACov(X_I, Y_I)C' + ACov(X_I, Y_{II})D' + BCov(X_{II}, Y_I)C' + BCovX_{II}, Y_{II})D'$$

(6) Parameters for normal distributions $X \sim N(\mu, \Sigma) \Longrightarrow X \sim (\mu, \Sigma).$

Ex3: p107 2.30 (j)

$$X^{(1)} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}, X^{(2)} = \begin{pmatrix} X_3 \\ X_4 \end{pmatrix}, X = \begin{pmatrix} X^{(1)} \\ X^{(2)} \end{pmatrix} \sim (\mu, \Sigma), \mu = \begin{pmatrix} 4 \\ 3 \\ 2 \\ 1 \end{pmatrix}, \Sigma_x = \begin{pmatrix} 3 & 0 & 2 & 2 \\ 0 & 1 & 1 & 0 \\ 2 & 1 & 9 & -2 \\ 2 & 0 & -2 & 4 \end{pmatrix}.$$

With A = (1, 2) and $B = \begin{pmatrix} 1 & -2 \\ 2 & -1 \end{pmatrix}$, find $Cov(AX^{(1)}, BX^{(2)})$.

Method I: $AX^{(1)} = X_1 + 2X_2$ and $BX^{(2)} = \begin{pmatrix} X_3 - 2X_4 \\ 2X_3 - X_4 \end{pmatrix} X$. So

$$Cov(AX^{(1)}, BX^{(2)}) = Cov\left(X_1 + 2X_2, \begin{pmatrix}X_3 - 2X_4\\2X_3 - X_4\end{pmatrix}\right)$$

= $\left(cov(X_1 + 2X_2, X_3 - 2X_4) \quad cov(X_1 + 2X_2, 2X_3 - X_4)\right)$
= $\left(1 \times 2 - 2 \times 2 + 2 \times 1 - 4 \times 0 \quad 2 \times 2 - 1 \times 2 + 4 \times 1 - 2 \times 0\right)$
= $\left(0 \quad 6\right)$

Method II: $AX^{(1)} = (A, 0)X$ and $BX^{(2)} = (0, B)X$. Then $Cov(AX^{(1)}, BX^{(2)}) = Cov((A, 0)X, (0, B)X) = (A, 0)\Sigma \begin{pmatrix} 0 \\ B' \end{pmatrix} = (0, 6)$