L01: Multivariate distributions

1. Multivariate distributions
(1) Probability density function
$X=\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{p}\end{array}\right)$ is a continuous random vector if it assumes values $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{p}\end{array}\right) \in D \subset R^{p}$ with
probability density $f\left(x_{1}, \ldots, x_{p}\right)$. This $f(\cdot)$ is called the joint probability density function (pdf) for $X . D$, the domain of $f(\cdot)$, is called the support of X. For $A \subset D$,

$$
P(X \in A)=\iint_{A} f\left(x_{1}, . ., x_{p}\right) d x_{1}, . ., d x_{p}
$$

One can extend the domain of $f(\cdot)$ from D to R^{p} by defining $f\left(x_{1}, . ., x_{p}\right) \equiv 0$ on D^{c}.
(2) Conditions for $f\left(x_{1}, \ldots, x_{p}\right)$ to be a pdf

Function $f\left(x_{1}, \ldots, x_{p}\right)$ could be used as a pdf to define a random vector if

$$
f\left(x_{1}, \ldots, x_{p}\right) \geq 0 \text { and } \iint_{R^{p}} f\left(x_{1}, . ., x_{p}\right) d x_{1}, . ., d x_{p}=1
$$

(3) pdf of $Y=y(X)$
$X \in R^{p}$ is a random vector with pdf $f\left(x_{1}, . ., x_{p}\right)$. Suppose $y=y(x) \in R^{p} \Longleftrightarrow x=x(y) \in R^{p}$ with Jacobian $J=\frac{\partial\left(x_{1}, . ., x_{p}\right)}{\partial\left(y_{1}, \ldots, y_{p}\right)} \in R^{p \times p}$. Then the pdf for $Y=y(X)$ is

$$
g(y)=f(x(y)) \cdot \operatorname{abs}|J|
$$

Proof. First $g(y)=f(x(y))$ abs $|J| \geq 0$. Suppose $x \in A \Longleftrightarrow y \in B$. Then By the substitution of $x=x(y)$ in integral,

$$
\begin{aligned}
P(Y \in B) & =P(X \in A)=\iint_{x \in A} f(x) d x_{1}, . ., d x_{p}=\iint_{y \in B} f(x(y)) \operatorname{abs}|J| d y_{1}, . ., d y_{p} \\
& =\iint_{y \in B} g(y) d y_{1}, . . d y_{p}
\end{aligned}
$$

Hence $g(y)$ is the pdf for Y.
2. Multivariate normal distributions
(1) Definition of $X \sim N(\mu, \Sigma)$.

Consider $f(x ; \mu, \Sigma)=\frac{1}{(2 \pi)^{p / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}(x-\mu)^{\prime} \Sigma^{-1}(x-\mu)\right]$, a function of $x \in R^{p}$ with parameter vector $\mu \in R^{p}$ and a positive definite matrix $\Sigma \in R^{p \times p}$. Clearly $f(x)>0$.
By the substitution $z=\Sigma^{-1 / 2}(x-\mu) \Longleftrightarrow x=\Sigma^{1 / 2} z+\mu$ with $J=\frac{\partial\left(x_{1}, \ldots, x_{p}\right)}{\partial\left(z_{1}, \ldots, z_{p}\right)}=\Sigma^{1 / 2}$.

$$
\iint_{R^{p}} f(x) d x_{1}, . ., d x_{p}=\iint_{R^{p}} \frac{1}{(2 \pi)^{p / 2}} \exp \left(-\frac{1}{2} z^{\prime} z\right) d z_{1}, . . d z_{p}=\prod_{i=1}^{p} \int_{R} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z_{i}^{2}}{2}} d z_{i}=1
$$

So $f(x)$ is a pdf. X with this pdf is called a normal vector denoted by $X \sim N(\mu, \Sigma)$.
(2) Transformation
$X \sim N(\mu, \Sigma)$. If $A \in R^{p \times p}$ is non-singular, then $Y=A X+b \sim N\left(A \mu+b, A \Sigma A^{\prime}\right)$
Prof. Transformation $y=A x+b \Longleftrightarrow x=A^{-1}(y-b)$ has $J=\frac{\partial\left(x_{1}, \ldots, x_{p}\right)}{\partial\left(y_{1}, \ldots, y_{p}\right)}=A^{-1}$. So the pdf for Y is

$$
\begin{aligned}
g(y) & =f\left(A^{-1}(y-b)\right)\left|A^{-1}\right| \\
& =\frac{1}{(2 \pi)^{p / 2}\left|A \Sigma A^{\prime}\right|^{1 / 2}} \exp \left[-\frac{1}{2}(y-A \mu-b)^{\prime}\left(A \Sigma A^{\prime}\right)^{-1}(y-A \mu-b)\right] .
\end{aligned}
$$

Thus $Y \sim N\left(A \mu+b, A \Sigma A^{\prime}\right)$.

Ex1: $X \sim N(\mu, \Sigma)$.
For full row rank A there exists B such that $\binom{A}{B} \in R^{p \times p}$ is non-singular and $A \Sigma B^{\prime}=0$.
Define $\binom{Y}{Y_{a}}=\binom{A X+b}{B X+c}=\binom{A}{B} X+\binom{b}{c}$. By the transformation in (2),

$$
\binom{Y}{Y_{a}} \sim N\left(\binom{A \mu+b}{B \mu+c},\left(\begin{array}{cc}
A \Sigma A^{\prime} & 0 \\
0 & B \Sigma B^{\prime}
\end{array}\right)\right)
$$

By the pdf in (1), $f_{Y, Y_{a}}\left(y, y_{a}\right)=f(y) \cdot g\left(y_{a}\right)$ where $f(y)$ is pdf for $N\left(A \mu+b, A \Sigma A^{\prime}\right)$ and $g\left(y_{a}\right)$ is the pdf for $N\left(B \mu+c, B \Sigma B^{\prime}\right)$.
3. Marginal distributions and conditional distributions
(1) Definitions
X is a random vector. X_{I} contains some of the components of X, and $X_{I I}$ contains the rest components.
The distribution of X_{I}, disregarding $X_{I I}$ at all, is a marginal distribution of X. Distribution of X_{I}, knowing that $X_{I I}$ is fixed at $x_{I I}$, is the conditional distribution of X_{I} given $X_{I I}=x_{I I}$.
For simplicity assume $X=\binom{X_{I}}{X_{I I}}$ where $X_{I} \in R^{k}$.
(2) Marginal pdf
$g\left(x_{I}\right)=\iint_{R^{p-k}} f\left(x_{1}, . ., x_{p}\right) d x_{k+1}, \ldots, d x_{p}$ is the marginal pdf of X_{I}.
Pf: First $g\left(x_{1}, \ldots, x_{k}\right) \geq 0$. Secondly, for $X_{I} \in A$,

$$
\begin{aligned}
P\left(X_{I} \in A\right) & =P\left(X_{I} \in A, X_{I I} \in R^{p-k}\right)=\iint_{x_{I} \in A x_{I I} \in R^{p-k}} f\left(x_{1}, . ., x_{p}\right) d x_{1}, . ., d x_{p} \\
& =\iint_{x_{I} \in A}\left[\iint_{x_{I I} \in R^{p-k}} f\left(x_{1}, . ., x_{p}\right) d x_{k+1}, . ., d x_{p}\right] d x_{1}, . ., d x_{k} \\
& =\iint_{x_{I} \in A} g\left(x_{1}, \ldots, x_{k}\right) d x_{1}, \ldots, d x_{k}
\end{aligned}
$$

So $g\left(x_{I}\right)$ is the pdf for X_{I}.
(3) Conditional pdf

The conditional pdf of X_{I} given $X_{I I}=x_{I I}$ is $f_{X_{I} \mid X_{I I}=x_{2}}\left(x_{I}\right)=\frac{f\left(x_{I}, x_{I I}\right)}{f_{X_{I I}}\left(x_{I I}\right)}$.
Explanation: At fixed $X_{I}=x_{I}$, to get the value for the pdf of X_{I}, we collected pdf values at all points of $X_{I I}$. But if $X_{I I}$ is fixed at $X_{I I}=x_{I I}$, the only value available is $f\left(x_{I}, x_{I I}\right)$. Therefore initially $f\left(x_{I}, x_{I} I\right)$ treated as a function of x_{I} can be regarded as the pdf of X_{I} while $X_{I I}$ is fixed at $x_{I I}$. But it is not a pdf since $\iint_{R^{k}} f\left(x_{I}, x_{I I}\right) d x_{1}, . . d x_{k} \neq 1$. $\frac{f\left(x_{I}, x_{I I}\right)}{f_{X_{I I}}\left(x_{I I}\right)}$ is proportional to $f\left(x_{I}, x_{I I}\right)$, and it is a pdf.
Ex2: Improvement to transformation in (2) of 2.
$X \sim N(\mu, \Sigma)$. If A has full row rank, then $Y=A X+b \sim N\left(A \mu+b, A \Sigma A^{\prime}\right.$.
Proof. In Ex1, we obtained the pdf for $\binom{Y}{Y_{a}}$. The pdf for Y is

$$
\iint_{y_{a} \in R^{p-k}} f_{Y, Y_{a}}\left(y, y_{a}\right) d y_{a}=\iint_{y_{a} \in R^{p-k}} f_{1}(y) f_{2}\left(y_{a}\right) d y_{a}=f_{1}(y)
$$

But $f_{1}(y)$ is the pdf for $N\left(A \mu+b, A \Sigma A^{\prime}\right)$. So $Y=A X+B \sim N\left(A \mu+b, A \Sigma A^{\prime}\right)$.
Ex3: Marginal distributions for $N(\mu, \Sigma)$ can be obtained by the transformations in Ex2. For example with $\left(\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right) \sim N\left(\left(\begin{array}{l}\mu_{1} \\ \mu_{2} \\ \mu_{3}\end{array}\right),\left(\begin{array}{ccc}\sigma_{1}^{2} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{2}^{2} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{3}^{2}\end{array}\right)\right), X_{2}=(0,1,0) X \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$ and $\binom{X_{1}}{X_{3}}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) X \sim N\left(\binom{\mu_{1}}{\mu_{3}},\left(\begin{array}{cc}\sigma_{1}^{2} & \sigma_{13} \\ \sigma_{31} & \sigma_{3}^{2}\end{array}\right)\right)$.

L02: Parameters of multivariate distributions

1. Conditional distribution for normal vectors
(1) Recall
(i) For $\binom{X}{Y}$ with pdf $f(x, y)$, the conditional pdf of X given $Y=y$ is $f_{X \mid y}(x)=\frac{f(x, y)}{f_{Y}(y)}$ where $f_{Y}(y)$ is the marginal pdf for y.
(ii) For $X \sim N(\mu, \Sigma), A X+b \sim N\left(A \mu+b, A \Sigma A^{\prime}\right)$ for full row rank A
(2) For $\binom{X}{Y} \sim N\left(\binom{\mu_{1}}{\mu_{2}},\left(\begin{array}{ll}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right)\right)$, let $\Sigma_{11.2}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$.

Then $X \mid(Y=y) \sim N\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(y-\mu_{2}\right), \Sigma_{11.2}\right)$
Proof. $\binom{Z}{Y}=\binom{X-\Sigma_{12} \Sigma_{22}^{-1} Y}{Y}=\left(\begin{array}{cc}I & -\Sigma_{12} \Sigma_{22}^{-1} \\ 0 & I\end{array}\right)\binom{X}{Y} \sim N\left(\binom{\mu_{1}-\Sigma_{11} \Sigma_{22}^{-1} \mu_{2}}{\mu_{2}},\left(\begin{array}{cc}\Sigma_{11.2} & 0 \\ 0 & \Sigma_{22}\end{array}\right)\right)$ and $Y=(0, I)\binom{X}{Y} \sim N\left(\mu_{2}, \Sigma_{22}\right)$.
By examining the pdfs we see $f_{Z, Y}(z, y)=f_{1}(z) f_{2}(y)$ where $f_{1}(z)$ is the pdf for $N\left(\mu_{1}-\Sigma_{11} \Sigma_{22}^{-1} \mu_{2}, \Sigma_{11.2}\right)$ and $f_{2}(y)$ is the pdf for $N\left(\mu_{2}, \Sigma_{22}\right)$.
So $f_{Z \mid Y=y}(z)=\frac{f_{Z, Y}(z)}{f_{Y}(y)}=\frac{f_{1}(z) f_{2}(y)}{f_{2}(y)}=f_{1}(z)$. Thus $Z \mid y \sim N\left(\mu_{1}-\Sigma_{12} \Sigma_{22}^{-1} \mu_{2}, \Sigma_{11.2}\right)$.
Hence $Z+\Sigma_{11} \Sigma_{22}^{-1} y \mid Y=y \sim N\left(\mu_{1}+\Sigma_{11} \Sigma_{22}^{-1}\left(y-\mu_{2}\right), \Sigma_{11.2}\right)$ Therefore

$$
X \mid y \sim N\left(\mu_{1}+\Sigma_{11} \Sigma_{22}^{-1}\left(y-\mu_{2}\right), \Sigma_{11.2}\right)
$$

Ex1: $Y \mid(X=x) \sim N\left(\mu_{2}-\Sigma_{21} \Sigma_{11}^{-1}\left(x-\mu_{1}\right), \Sigma_{22.1}\right)$ where $\Sigma_{22.1}=\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$
2. Expectation matrices
(1) Definition
$X \in R^{p}$ is a random vector with joint pdf $f\left(x_{1}, . ., x_{p}\right)$, and $G(X)=\left(g_{i j}(X)\right)_{m \times n}$ is a matrix valued function of X. Define the expectation of $G(X)$ by $E[G(X)]=\left(E\left[g_{i j}(X)\right]\right)_{m \times n}$ where $E\left[g_{i j}(X)\right]=\iint_{R^{p}} g\left(x_{1}, \ldots, x_{p}\right) f\left(x_{1}, \ldots, x_{p}\right) d x_{1}, \ldots, d x_{p}$.
(2) Property of the operator $E(\cdot)$
$E(\cdot)$ is a linear operator, i.e., $E[A G(X) B+C H(X) D+K]=A E[G(X)] B+C E[H(X)] D+K$
(3) Computation for $E\left[g_{i j}\left(X_{k+1}, \ldots, X_{p}\right)\right]$

$$
\begin{aligned}
E\left[g_{i j}\left(X_{k+1}, . ., X_{p}\right)\right] & =\iint_{R^{p}} g\left(x_{k+1}, \ldots, x_{p}\right) f\left(x_{1}, \ldots, x_{p}\right) d x_{1}, . . d x_{p} \\
& =\iint_{R^{p-k}} g\left(x_{k+1}, \ldots, x_{p}\right)\left[\iint_{R^{k}} f\left(x_{1}, \ldots, x_{p}\right) d x_{1}, \ldots, d x_{k}\right] d x_{k+1}, \ldots, d x_{p} \\
& =\iint_{R^{p-k}} g\left(x_{k+1}, . ., x_{p}\right) f_{\left(X_{k+1}, . ., X_{p}\right)}\left(x_{k+1}, \ldots, x_{p}\right) d x_{k+1}, \ldots, d x_{p}
\end{aligned}
$$

Ex2: $X X^{\prime}=\left(X_{i} X_{j}\right)_{p \times p}$ is a random matrix. $E\left(X X^{\prime}\right)=\left(E\left(X_{i} X_{j}\right)\right)_{p \times p}$ where

$$
E\left(X_{i} X_{j}\right)=\iint_{R^{p}} x_{i} x_{j} f\left(x_{1}, . ., x_{p}\right) d x_{1}, \ldots, d x_{p}=\iint_{R^{2}} x_{i} x_{j} f_{\left(X_{i}, X_{j}\right)}\left(x_{i}, x_{j}\right) d x_{i} d x_{j}
$$

3. Mean, variance, covariance and correlation coefficient
(1) Mean for $X \in R^{p}$

The mean of random vector $X \in R^{p}$ is $\mu=E(X) \in R^{p}$.
The mean of X is regarded as the center of the values of X since $E(X-\mu)=0$
(2) Covariance matrix

The covariance matrix for random vectors $X \in R^{p}$ and $Y \in R^{q}$ with joint distributions is

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E\left\{[X-E(X)]\left[Y-E(Y)^{\prime}\right]\right. \\
& =E\left\{X Y^{\prime}-X[E(Y)]^{\prime}-[E(X)] Y^{\prime}+[E(X)][E(Y)]^{\prime}\right\} \\
& =E\left(X Y^{\prime}\right)-E(X)[E(Y)]^{\prime}
\end{aligned}
$$

Let $\mu_{x}=E(X) \in R^{p}$ and $\mu_{y}=E(Y) \in R^{q}$. Then $\operatorname{Cov}(X, Y)$ is a $p \times q$ matrix. The element on the i th row and j th column is

$$
E\left[\left(X_{i}-\mu_{x_{i}}\right)\left(Y_{j}-\mu_{y_{j}}\right)\right]=E\left(X_{i} Y_{j}\right)-E\left(X_{i}\right) E\left(Y_{j}\right)=\operatorname{cov}\left(X_{i}, Y_{j}\right)
$$

Thus $\operatorname{Cov}(X, Y)=\left(\operatorname{cov}\left(X_{i}, Y_{j}\right)\right)_{p \times q}$.
(3) Variance-covariance for $X \in R^{p}$

For random vector $X \in R^{p}$ with $E(X)=\mu$,

$$
\operatorname{Cov}(X, X)=E\left[(X-\mu)(X-\mu)^{\prime}\right]=E\left(X X^{\prime}\right)-\mu \mu^{\prime}=\left(\operatorname{cov}\left(X_{i}, X_{j}\right)\right)_{p \times p}
$$

With $i=j, \operatorname{cov}\left(X_{i}, X_{i}\right)=\operatorname{var}\left(X_{i}\right)$. Thus the matrix is called the variance-covariance matrix or covariance matrix for X, and is often denoted by $\operatorname{Cov}(X)=\Sigma$.
$E(X)=\mu$ and $\operatorname{Cov}(X)=\Sigma$ are two important parameter vector and matrix for X and is often given using the form $X \sim(\mu, \Sigma)$.
The variance matrix for X is $V_{x}=\operatorname{diag}\left(\operatorname{var}\left(X_{1}\right), \ldots \operatorname{var}\left(X_{p}\right)\right)$. With $\Sigma=\operatorname{Cov}(X), V_{x}$ is often denoted as $\operatorname{diag}(\Sigma)$.
(4) Correlation matrix

For random vectors $X \in R^{p}$ and $Y \in R^{q}$ with joint distributions, the correlation matrix

$$
\rho(X, Y)=V_{x}^{-1 / 2} \operatorname{Cov}(X, Y) V_{y}^{-1 / 2}=\left(\frac{\operatorname{cov}\left(X_{i}, Y_{j}\right)}{\sqrt{\operatorname{var}\left(X_{i}\right), \operatorname{var}\left(Y_{j}\right)}}\right)_{p \times q}=\left(\rho\left(X_{i}, Y_{j}\right)\right)_{p \times q}
$$

where $\rho\left(X_{i}, Y_{j}\right)$ is the correlation of X_{i} and Y_{j}.
$\rho(X)=\rho(X, X)=\left(\rho\left(X_{i}, X_{j}\right)\right)_{p \times p}$.
$\rho\left(X_{i}, X_{i}\right)=1$.
(5) Operator $\operatorname{Cov}(\cdot, \cdot)$.

$$
\begin{aligned}
& \operatorname{Cov}\left(A X_{I}+B X_{I I}+\alpha, C Y_{I}+D Y_{I I}+\beta\right) \\
= & \left.A \operatorname{Cov}\left(X_{I}, Y_{I}\right) C^{\prime}+A \operatorname{Cov}\left(X_{I}, Y_{I I}\right) D^{\prime}+B \operatorname{Cov}\left(X_{I I}, Y_{I}\right) C^{\prime}+B \operatorname{Cov} X_{I I}, Y_{I I}\right) D^{\prime}
\end{aligned}
$$

(6) Parameters for normal distributions
$X \sim N(\mu, \Sigma) \Longrightarrow X \sim(\mu, \Sigma)$.
Ex3: p107 2.30 (j)

$$
X^{(1)}=\binom{X_{1}}{X_{2}}, X^{(2)}=\binom{X_{3}}{X_{4}}, X=\binom{X^{(1)}}{X^{(2)}} \sim(\mu, \Sigma), \mu=\left(\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}\right), \Sigma_{x}=\left(\begin{array}{cccc}
3 & 0 & 2 & 2 \\
0 & 1 & 1 & 0 \\
2 & 1 & 9 & -2 \\
2 & 0 & -2 & 4
\end{array}\right)
$$

With $A=(1,2)$ and $B=\left(\begin{array}{ll}1 & -2 \\ 2 & -1\end{array}\right)$, find $\operatorname{Cov}\left(A X^{(1)}, B X^{(2)}\right)$.
Method I: $\mathrm{A} X^{(1)}=X_{1}+2 X_{2}$ and $B X^{(2)}=\binom{X_{3}-2 X_{4}}{2 X_{3}-X_{4}} X$. So

$$
\left.\begin{array}{rl}
& \operatorname{Cov}\left(A X^{(1)}, B X^{(2)}\right)=\operatorname{Cov}\left(X_{1}+2 X_{2},\binom{X_{3}-2 X_{4}}{2 X_{3}-X_{4}}\right. \\
= & \left(\operatorname{cov}\left(X_{1}+2 X_{2}, X_{3}-2 X_{4}\right)\right. \\
= & (1 \times 2-2 \times 2+2 \times 1-4 \times 0 \quad 2 \times 2-1 \times 2+4 \times 1-2 \times 0
\end{array}\right)
$$

Method II: $A X^{(1)}=(A, 0) X$ and $B X^{(2)}=(0, B) X$. Then

$$
\operatorname{Cov}\left(A X^{(1)}, B X^{(2)}\right)=\operatorname{Cov}((A, 0) X,(0, B) X)=(A, 0) \Sigma\binom{0}{B^{\prime}}=(0,6)
$$

