Stat776

1. Suppose X_{1}, \ldots, X_{m} is a random sample from $N\left(\mu_{x}, \Sigma\right)$ and Y_{1}, \ldots, Y_{n} is a random sample from $N\left(\mu_{y}, \Sigma\right)$. Let $Z=\left(X_{1}, \ldots, X_{m}, Y_{1}, . ., Y_{n}\right) \in R^{p \times(m+n)}$. Express the distribution of Z.
$Z \sim N_{p \times(m+n)}\left(\left(\mu_{x} 1_{m}^{\prime}, \mu_{y} 1_{n}^{\prime}\right), \Sigma, I_{m+n}\right)=N_{p \times(m+n)}\left(\left(\mu_{x}, \mu_{y}\right)\left(\begin{array}{cc}1_{m}^{\prime} & 0 \\ 0 & 1_{n}^{\prime}\end{array}\right), \Sigma, I_{m+n}\right)$.
2. Find the following probabilities.
(1) For $X \sim W_{1 \times 1}(5)$, find $P(X>12)$.

$$
\begin{aligned}
& X \sim W_{1 \times 1}(5) \Longrightarrow X \sim \chi^{2}(5) \\
& \text { So } P(X>12)=P\left(\chi^{2}(5)>12\right)=0.03479
\end{aligned}
$$

(2) For $X \sim W_{1 \times 1}(5,4)$, find $P(X>30)$.

$$
\begin{aligned}
& X \sim W_{1 \times 1}(5,4) \Longrightarrow \frac{X}{4}=\frac{1}{2} X \frac{1}{2} \sim \frac{1}{2} W_{1 \times 1}(5,4) \frac{1}{2}=W_{1 \times 1}(5,1)=W_{1 \times 1}(5)=\chi^{2}(5) . \\
& \text { So } P(X>30)=P\left(\frac{X}{4}>\frac{30}{4}\right)=P\left(\chi^{2}(5)>7.5\right)=0.186
\end{aligned}
$$

(3) $P\left(T^{2}(5,14)>3\right)$.
$T^{2}(5,14)=\frac{5 \times 14}{14-5+1} F(5,14-5+1)=7 F(5,10)$
So $P\left(T^{2}(5,14)>3\right)=P(7 F(5,10)>3)=P(F(5,10)>0.4286)=0.8189$
3. Let $\bar{X} \in R^{4}$ and $S \in R^{4 \times 4}$ be from a sample of size 20 from $N(\mu, \Sigma)$.

Define $Y=(\bar{X}-\mu)^{\prime}\left(\frac{S}{20}\right)^{-1}(\bar{X}-\mu)$. Find $P(Y>4)$.
$Y=(\bar{X}-\mu)^{\prime}\left(\frac{S}{20}\right)^{-1}(\bar{X}-\mu) \sim T^{2}(4,19)=\frac{4 \times 19}{19-4+1} F(4,19-4+1)=\frac{19}{4} F(4,16)$.
$P(Y>4)=P\left(T^{2}(4,19)>4\right)=P\left(\frac{19}{4} F(4,16)>4\right)=P(F(4,16)>0.8421)=0.5186$
4. Suppose $X \sim N_{4}(\mu, 4 \Sigma)$ is independent to $W \sim W_{4 \times 4}(16, \Sigma)$. In the following expression find a, b and c.

$$
(X-\mu)^{\prime}\left(\frac{W}{a}\right)^{-1}(X-\mu) \sim T^{2}(b, c)
$$

$X \sim N_{4}(\mu, 4 \Sigma) \Longrightarrow \frac{X-\mu}{2} \sim N(0, \Sigma)$. So $\frac{X-\mu}{2} \sim N(0, \Sigma)$ is independent to $W \sim W_{4 \times 4}(16, \Sigma)$.
Thus $\left(\frac{X-\mu}{2}\right)^{\prime}\left(\frac{W}{16}\right)^{-1}\left(\frac{X-\mu}{2}\right) \sim T^{2}(4,16)$, i.e., $(\bar{X}-\mu)^{\prime}\left(\frac{W}{4}\right)^{-1}(\bar{X}-\mu) \sim T^{2}(4,16)$.
Thus $a=4, b=4$ and $c=16$.

