Stat778 HW03

1. $\Sigma=\left(\begin{array}{cccc}19 & 30 & 2 & 12 \\ 30 & 57 & 5 & 23 \\ 2 & 5 & 38 & 47 \\ 12 & 23 & 47 & 68\end{array}\right)$ is given in Example 9.1 on page 484 . Answer the followings by quoting results from SAS output. Do not submit the SAS output.
(1) What is the first principal component for X ?

The first principal component for X is

$$
Y_{1}=0.235376 X_{1}+0.440974 X_{2}+0.470476 X_{3}+0.727006 X_{4}
$$

(2) Which percentage of total variances in X is explained by the second principal component?
33.75% of total variances in X is explained by the second principal component of X.
(3) To have at least 85% of total variances explained, how many principal components should we use? Use two principal components such that $97.63 \%>85 \%$ of total variances would be explained.
(4) What is the first principal component for Z, the standardized X ?

The first principal component for Z is

$$
0.495405 Z_{1}+0.510276 Z_{2}+0.436817 Z_{3}+0.550802 Z_{4}
$$

2. In 5.1 (a) on page 261 a sample of size 4 is given by $X=\left(\begin{array}{cccc}2 & 8 & 6 & 8 \\ 12 & 9 & 9 & 10\end{array}\right)$ (caution: book uses X^{\prime} for sample). Answer the followings by quoting results from SAS output. Do not submit the SAS output.
(1) Sample mean \bar{X}

$$
\begin{aligned}
& \bar{X}=\binom{6}{10} \\
& \mathrm{SSCP}=\left(\begin{array}{ll}
168 & 230 \\
230 & 406
\end{array}\right) \\
& \mathrm{CSSCP}=\left(\begin{array}{cc}
24 & -10 \\
-10 & 6
\end{array}\right) \\
& S=\left(\begin{array}{cc}
8 & -3.3333 \\
-3.3333 & 2
\end{array}\right) \\
& R=\left(\begin{array}{cc}
1 & -0.8333 \\
-0.8333 & 1
\end{array}\right)
\end{aligned}
$$

(2) SSCP matrix
(3) CSSCP matrix
(4) Sample covariance matrix S
(5) Sample correlation matrix R
3. $X \in R^{p \times n}$ is a random sample with $X \sim\left(\mu 1_{n}^{\prime}, \Sigma, I_{n}\right)$. Find $E(\mathrm{SSCP})$.

$$
E(\mathrm{SSCP})=E\left(X X^{\prime}\right)=\left(\mu 1_{n}^{\prime}\right)\left(\mu 1_{n}^{\prime}\right)^{\prime}+\operatorname{tr}\left(I_{n}\right) \Sigma=n \mu \mu^{\prime}+n \Sigma
$$

