1. p201 4.3 (c) (d) (e)
$\Sigma=\left(\begin{array}{ccc}1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2\end{array}\right)$
(c) $\operatorname{Cov}\left[\binom{X_{1}}{X_{2}}, X_{3}\right]=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{ccc}1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\binom{0}{0}$.

Thus $\binom{X_{1}}{X_{2}}$ and X_{3} are independent.
(d) $\operatorname{cov}\left(\frac{X_{1}+X_{2}}{2}, X_{3}\right)=\left(\begin{array}{lll}\frac{1}{2} & \frac{1}{2} & 0\end{array}\right)\left(\begin{array}{ccc}1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=0$.

Thus $\frac{X_{1}+X_{2}}{2}$ and X_{3} are independent.
(e) $\operatorname{cov}\left(X_{2}, X_{2}-\frac{5}{2} X_{1}-X_{3}\right)=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)\left(\begin{array}{ccc}1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2\end{array}\right)\left(\begin{array}{c}-\frac{5}{2} \\ 1 \\ -1\end{array}\right)=10$.

Thus X_{2} and $X_{2}-\frac{5}{2} X_{1}-X_{3}$ are not independent.
2. p201 4.4 (b)
(b) Find a such that X_{2} and $X_{2}-a^{\prime}\binom{X_{1}}{X_{3}}$ are independent.
$0=\operatorname{Cov}\left[X_{2}, X_{2}-a^{\prime}\binom{X_{1}}{X_{3}}\right]=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2\end{array}\right)\left(\begin{array}{c}-a_{1} \\ 1 \\ -a_{3}\end{array}\right)=-a_{1}+3-2 a_{3}$
$\Rightarrow a_{1}=3-2 a_{3} \Rightarrow a=\binom{3-2 a_{3}}{a_{3}}$. For example with $a=\binom{3}{0} X_{2}$ and $X_{2}-a^{\prime}\binom{X_{1}}{X_{3}}$ are independent.
3. p470 8.1

$$
\begin{aligned}
& 0=|\Sigma-\lambda I| \Rightarrow \lambda_{1}=6, \lambda_{2}=1 \\
& \left(\Sigma-\lambda_{1} I\right) x=0 \Leftrightarrow x_{1}=2 x_{2} \Leftrightarrow x=\binom{2}{1} x_{2} \Rightarrow P_{1}=\binom{\frac{2}{\sqrt{5}}}{\frac{1}{\sqrt{5}}} \\
& \left(\Sigma-\lambda_{2} I\right) x=0 \Leftrightarrow x_{2}=-2 x_{\Leftrightarrow} x=\binom{1}{-2} x_{1} \Rightarrow P_{2}=\binom{\frac{1}{\sqrt{5}}}{-\frac{2}{\sqrt{5}}}
\end{aligned}
$$

$Y_{1}=\frac{2}{\sqrt{5}} X_{1}+\frac{1}{\sqrt{5}} X_{2}$ and $Y_{2}=\frac{1}{\sqrt{5}} X_{1}-\frac{2}{\sqrt{5}} X_{2}$.
$\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}=\frac{6}{7}=85.71 \%$ of total variances are explained by Y_{1}.
4. p470 8.2 (a) Do not calculate the principal components Y_{1} and Y_{2}, but calculate the proportion of total variance in ρ explained by Y_{1}.
$\Sigma=\left(\begin{array}{ll}5 & 2 \\ 2 & 2\end{array}\right), V=\left(\begin{array}{ll}5 & 9 \\ 0 & 2\end{array}\right), \rho=V^{-1 / 2} \Sigma V^{-1 / 2}=\left(\begin{array}{cc}1 & \frac{2}{\sqrt{10}} \\ \frac{2}{\sqrt{10}} & 1\end{array}\right)$.
$|\rho-\lambda I|=\left|\begin{array}{cc}1-\lambda & \frac{2}{\sqrt{10}} \\ \frac{2}{\sqrt{10}} & 1-\lambda\end{array}\right|=(\lambda-1)^{2}-\left(\frac{2}{\sqrt{10}}\right)^{2}=\left(\lambda-1-\frac{2}{\sqrt{10}}\right)\left(\lambda-1+\frac{2}{\sqrt{10}}\right)$.
Thus $\lambda_{1}=1+\frac{2}{\sqrt{10}}$ and $\lambda_{2}=1-\frac{2}{\sqrt{10}}$.
The proportion of total variance in ρ explained by Y_{1} is $\frac{\lambda_{1}}{2}=\frac{1+\frac{2}{\sqrt{10}}}{2}=0.8162$.

