Stat 776	Exam 3
----------	--------

April 11, 2024

Name:

1. By EVD of sample covariance matrix, for factor model, SAS produced the following output.

Factor Pattern							
		Factor 1					
x1		0.96169					
x2		-0.61893					
x3		0.82126					
Variance explained by each factor							
Factor	Weighted	Unweighted					
Factor 1	8.72172	1.98239					
C	Communality estimates						
Variable	Communality	Weight					
x1	0.92485	6.000					
x2	0.38307	3.000					
x3	0.67447	3.000					

(1) Write SAS proc code without data step that produced the above output. (10 points)

```
proc factor nfactor=1 cov;
var x1 x2 x3;
run;
```

(2) Find the five missing values in the output and fill them in the blanks. (25 points) Keep 5 digits after decimal point

$$\begin{split} \widehat{h}_{z1}^2 &= (\widehat{l}_{z1})^2 = 0.96169^2 = 0.92485 \\ \widehat{h}_{z2}^2 &= (\widehat{l}_{z2})^2 = 0.61893^2 = 0.38307 \\ \widehat{h}_{z3}^2 &= (\widehat{l}_{z3})^2 = 0.82126^2 = 0.67447. \\ \widehat{f}_{1z}^2 &= \sum_{i=1}^3 \widehat{h}_{zi}^2 = 0.92485 + 0.38307 + 0.67447 = 1.98239. \\ \widehat{f}_1^2 &= \sum_{i=1}^3 \widehat{h}_{zi}^2 \widehat{s}_i^2 = 0.92485 \times 6 + 0.38307 \times 3 + 0.67447 \times 3 = 8.72172. \end{split}$$

(3) Find the largest eigenvalue of S, the estimated $var(\epsilon_{z1})$ and the estimated $var(\epsilon_2)$. (15 points) Keep 5 digits after decimal point

$$\begin{split} \lambda_1 &= \hat{f}_1^2 = 8.72172 \\ \hat{\psi}_{z1} &= 1 - \hat{h}_{x1}^2 = 1 - 0.92485 = 0.07515 \\ \hat{\psi}_2 &= s_2^2 - \hat{h}_2^2 = 3 \times (1 - 0.38307) = 1.85079. \end{split}$$

2. A sample from $N(\mu_x, \Sigma)$ with id= 10 and a sample from $N(\mu_y, \Sigma)$ with id = 20 are stored in file exam3.txt by four variables x1, x2, x3 and id. We need to test

$$H_0: L(\mu_x - \mu_y) = \delta_0 \text{ vs } H_a: L(\mu_x - \mu_y) \neq \delta_0 \text{ where } L = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -2 \end{pmatrix} \text{ and } \delta_0 = \begin{pmatrix} 3 \\ -3 \end{pmatrix}.$$

(1) Write SAS code including data step for the test.

data a;	
<pre>infile "D:\exam3.txt";</pre>	
input x1 x2 x3 id @@;	proc anova;
y1=x1+x2;	class id;
y2=x1-2*x3;	<pre>model y1 y2=id/nouni;</pre>
if id=20 then do;	manova h=id;
y1=y1+3;	run;
y2=y2-3;	
end:	

(2) Find the five missing values in SAS output and fill them in blanks. (20 points)Keep 5 digits after decimal point.

Statistic	Value	F-value	Num-DF	Den-DF	Pr > F
Wilks Lambda	0.90378	2.60837	_2	49	0.0839
Pillai's trace	0.09622				
Hotelling-Lawley trace	0.10646				
Roy Greatest root	0.10646				

 $\begin{array}{l} 49 = \text{Den-DF} = (n-2) - q + 1 = n - 2 - 2 + 1 = n - 3 \Longrightarrow n = 52. \\ T^2 = \left(\frac{1}{\Lambda} - 1\right)(n-2) = \left(\frac{1}{0.90378} - 1\right) \times 50 = 5.32320 \\ T^2(2, n-2) = \frac{2(n-2)}{n-3}F(2, n-3) \Longrightarrow F = \frac{n-3}{2(n-2)}T^2 = \frac{49}{2\times 50} \times 5.32320 = 2.60837. \\ \text{Pillai's trace} = 1 - \Lambda = 1 - 0.90378 = 0.09622. \\ \Lambda = \frac{1}{1+r_1} \Longrightarrow r_1 = \frac{1}{\Lambda} - 1 = \frac{1}{0.90378} - 1 = 0.10646 \\ \text{Hotelling-Lawley trace=Roy Greatest root} = r_1 = 0.10646. \end{array}$

(3) Write a report on the test

_

(15 points)

$$H_{0}: L(\mu_{x} - \mu_{y}) = \delta_{0} \text{ vs } H_{a}: L(\mu_{x} - \mu_{y}) \neq \delta_{0} \text{ where } L = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -2 \end{pmatrix} \text{ and } \delta_{0} = \begin{pmatrix} 3 \\ -3 \end{pmatrix}$$

Test statistic: $T^{2} = [L(\overline{X} - \overline{Y}) - \delta_{0}]' \left(\frac{n}{n_{1}n_{2}}LS_{p}L'\right)^{-1} [L(\overline{X} - \overline{Y}) - \delta_{0}].$
p-value: $P(T^{2}(2, n-2) > T_{ob}^{2}).$
 $T_{ob}^{2} = 5.32320$
p-value: $P(T^{2}(2, 50) > 5.32320) = P(F(2, 49) > 2.60877) = 0.0839.$
Fail to reject H_{0} at the level $\alpha = 0.08.$

(15 points)