Name:

1. By EVD of sample covariance matrix, for factor model, SAS produced the following output.

Factor Pattern		
		Factor 1
x1		0.96169
x2		-0.61893
x3		0.82126
Variance explained by each factor		
Factor	Weighted	Unweighted
Factor 1	8.72172	1.98239
Communality estimates		
Variable	Communality	Weight
x1	0.92485	6.000
x2	0.38307	3.000
x3	0.67447	3.000

(1) Write SAS proc code without data step that produced the above output.
(10 points)

```
proc factor nfactor=1 cov;
    var x1 x2 x3;
    run;
```

(2) Find the five missing values in the output and fill them in the blanks.
(25 points)
Keep 5 digits after decimal point
$\widehat{h}_{z 1}^{2}=\left(\widehat{l}_{z 1}\right)^{2}=0.96169^{2}=0.92485$
$\widehat{h}_{z 2}^{2}=\left(\widehat{l}_{z 2}\right)^{2}=0.61893^{2}=0.38307$
$\widehat{h}_{z 3}^{2}=\left(\widehat{l}_{z 3}\right)^{2}=0.82126^{2}=0.67447$.
$\widehat{f}_{1 z}^{2}=\sum_{i=1}^{3} \widehat{h}_{z i}^{2}=0.92485+0.38307+0.67447=1.98239$.
$\widehat{f}_{1}^{2}=\sum_{i=1}^{3} \widehat{h}_{z i}^{2} s_{i}^{2}=0.92485 \times 6+0.38307 \times 3+0.67447 \times 3=8.72172$.
(3) Find the largest eigenvalue of S, the estimated $\operatorname{var}\left(\epsilon_{z 1}\right)$ and the estimated $\operatorname{var}\left(\epsilon_{2}\right)$.
(15 points)
Keep 5 digits after decimal point
$\lambda_{1}=\widehat{f}_{1}^{2}=8.72172$
$\widehat{\psi}_{z 1}=1-\widehat{h}_{x 1}^{2}=1-0.92485=0.07515$
$\widehat{\psi}_{2}=s_{2}^{2}-\widehat{h}_{2}^{2}=3 \times(1-0.38307)=1.85079$.
2. A sample from $N\left(\mu_{x}, \Sigma\right)$ with $\mathrm{id}=10$ and a sample from $N\left(\mu_{y}, \Sigma\right)$ with $i d=20$ are stored in file exam3.txt by four variables $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$ and id. We need to test

$$
H_{0}: L\left(\mu_{x}-\mu_{y}\right)=\delta_{0} \text { vs } H_{a}: L\left(\mu_{x}-\mu_{y}\right) \neq \delta_{0} \text { where } L=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & -2
\end{array}\right) \text { and } \delta_{0}=\binom{3}{-3}
$$

(1) Write SAS code including data step for the test.
(15 points)

```
data a;
    infile "D:\exam3.txt";
    input x1 x2 x3 id @@;
    y1=x1+x2;
    y2=x1-2*x3;
    if id=20 then do;
    y1=y1+3;
    y2=y2-3;
    end;
```

(2) Find the five missing values in SAS output and fill them in blanks.
(20 points)
Keep 5 digits after decimal point.

Statistic	Value	F-value	Num-DF	Den-DF	$\operatorname{Pr}>F$	
Wilks Lambda	0.90378	$\underline{2.60837}$			2	49
Pillai's trace	0.09622			0.0839		
Hotelling-Lawley trace	$\underline{0.10646}$					
Roy Greatest root	$\underline{0.10646}$					

$49=$ Den-DF $=(n-2)-q+1=n-2-2+1=n-3 \Longrightarrow n=52$.
$T^{2}=\left(\frac{1}{\Lambda}-1\right)(n-2)=\left(\frac{1}{0.90378}-1\right) \times 50=5.32320$
$T^{2}(2, n-2)=\frac{2(n-2)}{n-3} F(2, n-3) \Longrightarrow F=\frac{n-3}{2(n-2)} T^{2}=\frac{49}{2 \times 50} \times 5.32320=2.60837$.
Pillai's trace $=1-\Lambda=1-0.90378=0.09622$.
$\Lambda=\frac{1}{1+r_{1}} \Longrightarrow r_{1}=\frac{1}{\Lambda}-1=\frac{1}{0.90378}-1=0.10646$
Hotelling-Lawley trace $=$ Roy Greatest root $=r_{1}=0.10646$.
(3) Write a report on the test
(15 points)
$H_{0}: L\left(\mu_{x}-\mu_{y}\right)=\delta_{0}$ vs $H_{a}: L\left(\mu_{x}-\mu_{y}\right) \neq \delta_{0}$ where $L=\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & -2\end{array}\right)$ and $\delta_{0}=\binom{3}{-3}$
Test statistic: $T^{2}=\left[L(\bar{X}-\bar{Y})-\delta_{0}\right]^{\prime}\left(\frac{n}{n_{1} n_{2}} L S_{p} L^{\prime}\right)^{-1}\left[L(\bar{X}-\bar{Y})-\delta_{0}\right]$.
p-value: $P\left(T^{2}(2, n-2)>T_{o b}^{2}\right)$.
$T_{o b}^{2}=5.32320$
p-value: $P\left(T^{2}(2,50)>5.32320\right)=P(F(2,49)>2.60877)=0.0839$.
Fail to reject H_{0} at the level $\alpha=0.08$.

