Name:

1. $X \sim N(2 \mu, 3 \Sigma)$ is independent to $W \sim W_{4 \times 4}(7,5 \Sigma)$. Find a, b, c, k_{1} and k_{2} in

$$
(X-a \mu)^{\prime}\left(\frac{b W}{c}\right)^{-1}(X-a \mu) \sim T^{2}\left(k_{1}, k_{2}\right)
$$

(20 points)
$X \sim N(2 \mu, 3 \Sigma) \Longrightarrow \frac{1}{\sqrt{3}}(X-2 \mu) \sim N(0, \Sigma) . \quad W \sim W_{4 \times 4}(7,5 \Sigma) \Longrightarrow \frac{1}{5} W \sim W_{4 \times 4}(7, \Sigma)$.
X and W are independent $\Longrightarrow \frac{1}{\sqrt{3}}(X-2 \mu)$ and $\frac{1}{5} W$ are independent.
So $\left[\frac{1}{\sqrt{3}}(X-2 \mu)\right]^{\prime}\left(\frac{W}{5 \times 7}\right)^{-1}\left[\frac{1}{\sqrt{3}}(X-2 \mu)\right]=(X-2 \mu)^{\prime}\left(\frac{3 W}{35}\right)^{-1}(X-2 \mu) \sim T^{2}(4,7)$.
Thus $a=2, b=3$ and $c=35, k_{1}=4$ and $k_{2}=7$.
2. Are the following equations valid?
(20 points)
(1) $W_{2 \times 2}\left(5, I_{2}\right)=W_{2 \times 2}(5)$
(2) $W_{1 \times 1}(5)=\chi^{2}(5)$
YES \checkmark
NO
(3) $T^{2}(1,5)=T^{2}(5)$
YES \checkmark
NO
YES NO
(4) $T^{2}(5)=[t(5)]^{2}$
YES NO \checkmark
(5) $T^{2}(1,5)=F(1,5) \quad$ YES $\checkmark \quad$ NO
3. In order to test $\mu=\left(\begin{array}{c}-5 \\ 10 \\ 6\end{array}\right)$ for μ in $N(\mu, \Sigma)$. Write SAS code assuming data are stored in a file with name test2.txt.
(10 points)

```
data a;
    infile "D:\test2.tex";
    input x1 x2 x3 @ @;
    y1=x1+5;
    y2=x2-10;
    y3=x3-6;
proc reg;
    model y1 y2 y3=/noprint;
    mtext intercept;
    run;
```

4. SAS in 3 produced the output based which one wrote a report on the test.

Stat.	Value	F-value	N-DF	D-DF	Pr>F
Wilks' Lambda	0.7997	$\underline{0.4174}$	-3	5	0.7484
Pillai's trace	$\underline{0.2003}$				
Hotelling-Layley trace	$\underline{\underline{0.2504}}$				
Roy's G-root	$\underline{0.2504}$				

$H_{0}: \mu=\mu_{0}$ vs $H_{a}: \mu \neq \mu_{0}$ where $\mu_{0}=\left(\begin{array}{c}5 \\ 10 \\ -6\end{array}\right)$
Test Statistic: $T^{2}=\left(\bar{X}-\mu_{0}\right)^{\prime}\left(\frac{S}{n}\right)^{-1}\left(\bar{X}-\mu_{0}\right)$
Reject H_{0} if $T^{2}>22.72$ for $\alpha=0.05$

$$
T_{o b}^{2}=1.753
$$

Conclusion: Fail to reject the null hypothesis
(1) Work out the missing values and complete the report.
(1) $p=3$
(2) $n-p=5 \Longrightarrow n=8 . T^{2}=\left(\frac{1}{\Lambda}-1\right)(n-1)=1.753$
(3) $T^{2}=\frac{(n-1) p}{n-p} F \Longrightarrow F=\frac{n-p}{(n-1) p} T^{2}=0.4174$
(4) Pillai's trace $=1-\Lambda=0.2003$
(5) Hotelling-Lawley trace $=$ Roy's greatest root $=\frac{T^{2}}{n-1}=0.2504$
(2) Is $\left(\begin{array}{c}-6 \\ 10 \\ 5\end{array}\right)$ in the 10% confidence region for μ ?
(5 points)
$1-(p-$ value $)=1-0.7484=0.2516>0.10$. No.
(3) Suppose $S=\left(\begin{array}{ccc}2 & 1.5 & -1 \\ 1.5 & 4 & -0.5 \\ -1 & -0.5 & 6\end{array}\right)$. Among all Scheffe's intervals with overal confidence coefficient 95% find the width of the one for $\mu_{3}-\mu_{1}$.
(15 points)

$$
\begin{aligned}
& \text { With } l=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right), \text { the width of the Scheffe's interval for } l^{\prime} \mu \text { is } \\
& \begin{aligned}
W & =2 \sqrt{T_{\alpha}^{2}(p, n-1) S_{l^{\prime} \bar{X}}^{2}}=2 \sqrt{T_{\alpha}^{2}(p, n-1) l^{\prime} \frac{S}{n} l} \\
& =2 \sqrt{22.72 \times \frac{2+6-2 \times(-1)}{8}}=2 \sqrt{22.72 \times \frac{10}{8}}=2 \sqrt{28.4}=10.66
\end{aligned}
\end{aligned}
$$

