Stat776

1. Suppose X_{1}, \ldots, X_{m} is a random sample from $N\left(\mu_{x}, \Sigma\right)$ and Y_{1}, \ldots, Y_{n} is a random sample from $N\left(\mu_{y}, \Sigma\right)$. Let $Z=\left(X_{1}, \ldots, X_{m}, Y_{1}, . ., Y_{n}\right) \in R^{p \times(m+n)}$. Express the distribution of Z.
2. Find the following probabilities.
(1) For $X \sim W_{1 \times 1}(5)$, find $P(X>12)$.
(2) For $X \sim W_{1 \times 1}(5,4)$, find $P(X>30)$.
(3) $P\left(T^{2}(5,14)>3\right)$.
3. Let $\bar{X} \in R^{4}$ and $S \in R^{4 \times 4}$ be from a sample of size 20 from $N(\mu, \Sigma)$. Define $Y=(\bar{X}-\mu)^{\prime}\left(\frac{S}{20}\right)^{-1}(\bar{X}-\mu)$. Find $P(Y>4)$.
4. Suppose $X \sim N_{4}(\mu, 4 \Sigma)$ is independent to $W \sim W_{4 \times 4}(16, \Sigma)$. In the following expression find a, b and c.

$$
(X-\mu)^{\prime}\left(\frac{W}{a}\right)^{-1}(X-\mu) \sim T^{2}(b, c)
$$

