Math 243: Calculus II Exam 6: Ends of Chs 9 and 10

Due date: Wed, 5 Dec 2012

Name:

\qquad

Instructions: Complete all problems, showing all work. Simplify as necessary. Leave any answers involving π or irreducible square roots in terms of such (no rounded off decimals).

1. Write a polar equation for an ellipse with one focus at the pole (origin), vertx at $(1, \pi / 2)$, and eccentricity of 0.8 .
2. Find the eccentricity, identify the conic, and give an equation of the directrix.

$$
r=\frac{5}{2-2 \sin \theta}
$$

3. Find the area of the ellipse in problem 1. [You can use the Euclidean geometry formula $A=\pi a b$, or you can integrate.]
4. Find vector, parametric, and symmetric equations for the line through the origin and parallel to the line $x=2 t, y=1-t$, and $z=4+3 t$.
5. Find parametric equations for the line segment connecting $(10,3,1)$ to $(5,6,-3)$ in this direction.
6. Determine whether the lines are parallel, skew, or intersecting. If intersecting, find the angle between them (in radians, to two decimal places).

$$
\begin{aligned}
& \ell_{1}: \quad \frac{x-1}{2}=\frac{y-3}{2}=\frac{z-2}{-1} \\
& \ell_{2}: \quad \frac{x-2}{1}=\frac{y-6}{-1}=\frac{z+2}{3}
\end{aligned}
$$

7. Find an equation of the plane that contains the line $\vec{r}(t)=\langle 3+2 t, t, 8-t\rangle$ and is parallel to the plane $2 x+4 y+8 z=17$.
8. Determine whether the planes are parallel, perpendicular, or neither. If neither, find the angle between them (in radians, to two decimal places).

$$
2 x-3 y+4 z=5, \quad \text { and } \quad x+6 y+4 z=3
$$

9. Find the distance between the point $P(1,0,-1)$ and the line

$$
\vec{r}(t)=\langle 5-t, 3 t, 1+2 t\rangle .
$$

10. (a) Find the point where the given lines intersect, and (b) find an equation of the plane that contains them.

$$
\begin{aligned}
& \vec{r}_{1}(t)=\langle 1,1,0\rangle+t\langle 1,-1,2\rangle, \quad \text { and } \\
& \vec{r}_{2}(t)=\langle 2,0,2\rangle+s\langle-1,1,0\rangle .
\end{aligned}
$$

11. Show that the distance between parallel planes $a x+b y+c z+d_{1}=0$ and $a x+b y+$ $c z+d_{2}=0$ is given by

$$
D=\frac{\left|d_{1}-d_{2}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

12. Find the distance between the planes $3 x+6 y-9 z=4$ and $x+2 y-3 z=1$.
13. What does $x^{2}-y^{2}=1$ represent as a curve in \mathbb{R}^{2} ? What does it represent as a surface in \mathbb{R}^{3} ?
14. Find and identify the traces of the quadratic surface

$$
x^{2}+y^{2}+2 y-z^{2}=0 .
$$

What does the graph look like in \mathbb{R}^{3} ? Why?
15. Reduce the equation to one of the standard forms, then classify it.

$$
4 y^{2}+z^{2}-x-16 y-4 z+20=0
$$

16. Reduce the equation to one of the standard forms, then classify it.

$$
x^{2}-y^{2}+z^{2}-2 x+2 y+4 z+2=0
$$

