Review for Final Exam

Exam date: 25 Jul`12

Instructions. Here is a list of *some* of the things that you should know for the exam. Some are example problems that you should be able to work out. Others are terms or ideas that you should know. I won't ask you to write down any definitions or theorems word-for-word, but you should know what they say, what they mean, and how to use them.

1. Find the limits.

•
$$\lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$$

•
$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - x - 6}$$

•
$$\lim_{x \to -\infty} \frac{3x^3 - 4x^4 + 5x}{2x + 3x^2 + 9x^4}$$

•
$$\lim_{h \to 1} \frac{1 - h}{\ln(h)}$$

2. Find dy/dx. Simplify when necessary.

•
$$y = 12x^2 + 5x - \ln(x)$$

•
$$y = e^{\ln(x^2 + 1)}$$

•
$$y = \frac{x}{x^2+1}$$

• $xy + y^2 = x^2 - \ln(y)$

•
$$y = x^2 e^y$$

3. Use the limit definition of derivative to find $\frac{d}{dx} \left[\sqrt{x} \right]$.

4. What is the intuitive definition of continuous? What is the limit definition of continuous? Determine whether this function is continuous at x = 0.

$$f(x) = \begin{cases} x^3 - 4x^2 + 5x, & x < 0\\ \sqrt{x}, & x \ge 0 \end{cases}$$

5. Find an equation for the tangent line to the graph $x^2 - y^2 = 25$ at the point (13, -12).

6. A clown is blowing up a spherical balloon. The volume is increasing at a rate of $0.5 \text{ cm}^3/\text{sec}$ when the volume of the balloon is $36\pi \text{ cm}^3$. At what rate is the radius of the balloon increasing?

7. Find the integrals.

•
$$\int_{1}^{2} x^{2} dx$$

•
$$\int \frac{3x}{2x^{2} + 1} dx$$

•
$$\int_{0}^{\pi} e^{t} dt$$

•
$$\int_{1}^{e} \frac{1}{x} - \frac{\ln(x)}{x} dx$$

•
$$\int x^{9} e^{x^{10}} dx$$

•
$$\int 4x^{2} \sqrt{x^{3} + 5} dx$$

•
$$\int \frac{1}{x \ln x} dx$$

•
$$\int_{6}^{7} \frac{(t - 5)}{t - 5} dt$$

8. What is the geometric interpretation of a definite integral? Use this geometric interpretation to evaluate the following definite integrals.

•
$$\int_{0}^{3} \sqrt{9 - x^{2}} dx$$

• $\int_{-2}^{0} (-3x) dx$

9. Given a demand (price) function $p = \frac{1000}{x}$, find the average price (in dollars) over the interval [400, 600].

10. A company produces x HDTVs per month. The monthly marginal profit from producing x TVs is given by P'(x) = 300 - 0.2x. If monthly production is increased from 1,400 to 1,500 TVs, find the increase in profit that will be generated.