A complex differentiable map \(f: \mathbb{C} \to \mathbb{C} \) is also called a \textit{holomorphic} map, or an \textit{analytic} map. If \(f \) is holomorphic at a point \(a \), and if \(f'(a) = 0 \), show that \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \) are both zero. (Recall: We related \(f'(a) \) to partial derivatives of \(f \) with respect to \(x \) and \(y \).) Conclude that if \(f: \mathbb{C} \to \mathbb{C} \) is holomorphic and \(f'(a) = 0 \) for all \(a \) then \(f \) is constant.

Comparing \(\mathbb{R} \)-linear maps of \(\mathbb{C} \) to \(\mathbb{C} \)-linear maps of \(\mathbb{C} \).

1. Let \(L: \mathbb{C} \to \mathbb{C} \) be an arbitrary \(\mathbb{R} \)-linear map. Let \(A: \mathbb{C} \to \mathbb{C} \) and \(B: \mathbb{C} \to \mathbb{C} \) be the linear maps \(A(z) \equiv \frac{1}{2} (L(z) - iL(iz)) \) and \(B(z) \equiv \frac{1}{2} (L(z) + iL(iz)) \). Confirm that \(A(\alpha z) = \alpha A(z) \) and \(B(\alpha z) = \overline{\alpha}B(z) \) for any \(\alpha \in \mathbb{C} \). Conclude that there exist \(a, b \in \mathbb{C} \) such that \(L(z) = az + b\overline{z} \). Thus an arbitrary \(\mathbb{R} \) linear map from \(\mathbb{C} \) to \(\mathbb{C} \) is of this form. Check that the map \(L \) is \(\mathbb{C} \)-linear iff \(b = 0 \).

In general, to say a function is differentiable at a point \(a \) means that if we look close enough around the point \(a \) we can make the function \(f \) look arbitrarily close to being linear.

For a function \(f: \mathbb{C} \to \mathbb{C} \) to be differentiable at \(a \in \mathbb{C} \) in the usual multivariable calculus sense (i.e. as if \(f \) was just a map from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \)) just means that near \(a \), \(f \) looks like an \(\mathbb{R} \)-linear map of \(\mathbb{C} \). For \(f \) to be complex differentiable at \(a \), \(f \) must look like a \(\mathbb{C} \)-linear map close enough to the point \(a \). Hence it is important to have a very precise understanding of \(\mathbb{C} \)-linear maps of \(\mathbb{C} \). Of course, all such maps are just of the form \(z \mapsto bz \), since \(\mathbb{C} \) is one dimensional as a \(\mathbb{C} \) vector space. For an arbitrary value of \(b \in \mathbb{C} \), answer the following questions about the action of the linear map \(L_b(z) = bz \).

2. Show that the circle \(S_r \) of radius \(r \) centered about the origin, is mapped to the circle \(S_{r|b|} \) of radius \(r \cdot |b| \).
3. Show that the entire plane is rotated by an amount \(\arg b \).

4. If we think of \(\mathbb{C} \) as being \(\mathbb{R}^2 \), what is the value of the Jacobian of the linear map \(L_b \)?

Thus the effect of a \(\mathbb{C} \)-linear map \(z \mapsto bz \) on \(\mathbb{C} \) is to rotate the plane by an amount \(\arg b \) and to stretch it uniformly by an amount \(|b| \). Of course, when \(b = 0 \), then \(L_b \) just maps all of \(\mathbb{C} \) to a point.

Based on this, give an argument (not a proof) answering the following question.

5. If a holomorphic map \(f: \mathbb{C} \to \mathbb{C} \) maps all of \(\mathbb{C} \) onto a single smooth curve in the complex plane, must it actually map all of \(\mathbb{C} \) to a single point.

Getting used to \(\frac{\partial}{\partial z} \) and \(\frac{\partial}{\partial \bar{z}} \).

6. If \(f \) is holomorphic, what is \(\frac{\partial f}{\partial \bar{z}} \)? What is the relationship between \(f'(z) \) and \(\frac{\partial f}{\partial \bar{z}} \)?

7. Check by explicit calculation that for any differentiable \(f: \mathbb{C} \to \mathbb{C} \) one has \(df = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \bar{z}} d\bar{z} \). (Hint: Convert it into a statement in terms of \(x \) and \(y \).)

8. Simplify the above expression for \(df \) under the assumption that \(f \) is holomorphic. Use \(f'(z) \) in your answer.

9. Check that \(\frac{\partial f}{\partial \bar{z}} = \frac{\bar{f}}{\partial z} \). (Hint: Convert it into a statement in terms of \(x \) and \(y \) and write \(f = u + iv \).)