The Solution for the Railrod Track Problem


In the figure above $c$ is the chord of the circle, $s$ is the arc length $ADB$, $r$ is the radius, $\theta$ is the central angle determined by the chord $c$, $h$ is the distance from the chord to the circle and $d$ is the distance from the center of the circle to the chord. The following relationships hold: $r = d + h$, $c=2r\sin \frac{\theta}{2}$, $d=r\cos \frac{\theta}{2}$ and $s=r\theta$. From these we get

\end{displaymath} (1)

We can use the approximation
\sin\frac{\theta}{2}\doteq \frac{\theta}{2}-\frac{\theta^3}{48}
\end{displaymath} (2)

to get a very good approximation for $\theta$. Hence substituting (2) into (1), we get
\frac{s}{c} \doteq \frac{\theta}{2\left( \frac{\theta}{2} -\frac{\theta^3}{48}\right) }.
\end{displaymath} (3)

From this we can get
\theta^2\doteq 24\left( 1- \frac{c}{s}\right)
\end{displaymath} (4)

\begin{displaymath}\theta \doteq \sqrt{24\left( 1- \frac{c}{s}\right) }.\end{displaymath}

We can now use this value for $\theta$ to compute $h$. Now
r &=& \frac{s}{\theta}\doteq \frac{s}{\sqrt{24\left( 1- \frac{...
...( 1- \frac{c}{s}\right) }}\left( 1-\cos \frac{\theta}{2}\right)

Thus, for our prolbem, if $c=5280$ and $s=5281$, we have
\begin{displaymath}\theta \doteq \sqrt{24\left( 1- \frac{5280}{5281}\right) }\doteq 0.067413603\end{displaymath}

\begin{displaymath}r \doteq \frac{5281}{0.067413603}=78337.305306171 \mbox{ feet}.\end{displaymath}

h&\doteq& \frac{5281}{\sqrt{24\left( 1- \frac{5280}{5281}\righ...
...71\left( 1-\cos0.033706802\right)\\
&\doteq& 44.5 \mbox{ feet}.

Is that surprising, or not?

About this document ...

This document was generated using the LaTeX2HTML translator Version 2002-2-1 (1.70)

Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

The translation was initiated by Bill Richardson on 2007-04-18

Bill Richardson 2007-04-18