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ABSTRACT 
 
We studied the acoustic and shock wave propagation in bubbly fluids using direct 
numerical simulations (DNS), and estimated the efficiency of the cavitation mitigation 
using bubbly fluids. Our method is based on the front tracking technique developed for 
free surface flows. In the simulations, the movement and oscillation of multiple 
compressible bubbles were tracked simultaneously. Our simulations of the propagation of 
acoustic and shock waves in bubbly fluids achieved good agreement with theoretical 
predictions and experiments. 
 
The DNS method for bubbly flows has been applied to the study of cavitation mitigation 
by bubbly fluids. The pressure wave propagation in the bubbly fluid was simulated, and 
the collapse pressure of cavitation bubbles was calculated by solving the Keller equation 
with the liquid pressure obtained from the bubbly flows. The efficiency of the cavitation 
mitigation by bubble injection has been quantified. The use of layers of nondissolvable 
gas bubbles as a pressure mitigation technique to reduce the cavitation erosion has been 
confirmed. 
 
INTRODUCTION 
 
Wave propagation in bubbly fluids has attracted investigators for many decades because 
of its special properties. Bubbly fluids have the unique feature that even a minute bubble 
concentration (volume fraction less than one percent) significantly increases the 
compressibility of the system. The system transports energy at a speed considerably 
lower than the sound speeds in both phases as a result of the energy exchange between 
the liquid and the bubbles. When additional effects such as vaporization and condensation 
play a role, e.g., in cavitating flows, further phenomena, still little understood, are 
superimposed upon the basic behavior of bubbly flows. The rich internal structure of 
bubbly flows endows the medium strikingly complex behavior. 
 
One of the reasons for the study of bubbly flows is their wide applications ranging from 
hydraulic engineering to high energy physics experiments. In particular, we are interested 

AcademyPublish.org - Wave Propagation 309



in a recent application of bubbly fluids in the mitigation of cavitation damages in the 
Spallation Neutron Source (SNS) (Riemer et al., 2002). Another important motivation is 
to connect the microscopic behavior of individual bubbles to the macroscopic behavior of 
the mixed medium that one directly observes. Since the microstructure in this case is 
made up of a complex substructure, the task is much more complicated than that of 
classical kinetic theory. 
 
The wave propagation in bubbly fluids has been studied using a variety of mathematical 
models. Significant progress has been achieved in the study of systems consisting of non-
condensable gas bubbles (Wijngaarden, 1972; Caflisch et al., 1985; Beylich and Gülhan, 
1990; Watanabe and Prosperetti, 1994) and of vapor bubbles (Finch and Neppirassee, 
1973; Hao and Prosperetti, 1999). The treatment of the kinetic and thermal properties of 
the medium, e.g., the compressibility of the liquid and the thermal conduction, by 
different authors varies. But they shared a common feature that the two phases were not 
separated explicitly, i.e., the bubble radius and concentration were considered as 
functions of time and space. The Rayleigh-Plesset equation or the Keller equation 
governing the evolution of spherical bubbles has been used as the kinetic connection 
between the bubbles and fluid. These models include many important physical effects in 
bubbly systems such as the viscosity, the surface tension and thermal conduction. 
Numerical simulations of such systems requires relatively simple algorithms and are 
computational inexpensive. 
 
Nevertheless, homogenized models treat the system as a pseudo-fluid and cannot capture 
all features of the rich internal structure of the bubbles. They exhibit sometimes large 
discrepancies with experiments (Watanabe and Prosperetti, 1994) even for systems of 
non-condensable gas bubbles. Their range of validity is limited to small void fraction and 
small amplitude waves. These models are also not suitable if the bubbles are distorted 
severely by the flow or even fission into smaller bubbles, as it may happen in cavitating 
and boiling flows (Ceccio and Brennen, 1991; Kuhn de Chizelle et al., 1995). The direct 
numerical simulation (DNS) method, which solves the full nonlinear system of 
compressible fluid dynamics equations in every component of the multiphase domain, is 
potentially free of these deficiencies. 
 
DNS is based on techniques developed for free surface flows. Welch (1995) investigated 
numerically the evolution of a single vapor bubble using interface tracking method. Juric 
and Tryggvason (1998) simulated the boiling flows using the incompressible flow 
approximation for both liquid and vapor and a simplified version of interface tracking. Lu 
et al. (2008) developed an algorithm for the simulation of dynamic phase transitions in 
compressible fluids, in which the transition was modeled as a tracked jump discontinuity 
and coupled to acoustic waves. In this paper, we perform DNS simulations of small void 
fraction bubbly fluids using front tracking for compressible fluid equations. Our FronTier 
code is capable of tracking and resolving topological changes of a large number of 
interfaces in two- and three-dimensional spaces. A homogeneous approach to multiphase 
flows has also been developed in the FronTier code and compared to the DNS approach 
by Samulyak et al. (2004; 2006). In this paper, both the bubbles and the fluid are 
compressible because we are interested in the speed of wave propagations. We simulated 
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the propagation of acoustic and shock waves in bubbly fluids with small void fraction and 
compared them with the theory and experiments. After the validation of the FronTier 
based DNS method for bubbly flows, it was applied to the engineering problem of 
cavitation mitigation in the Spallation Neutron Source, which involves bubbly flows of 
relatively large void fraction. 
 
In the following sections, we first go over the governing system of equations and main 
features of the homogenized model of bubbly flows, then describe the numerical method 
that we used. After that we present the results of the DNS on linear and shock wave 
propagation in bubbly fluids along with the comparison to the theory and the 
experiments. In the subsequent section, after the description of the SNS and the bubble 
injection technique for the cavitation mitigation, the cavitation is estimated in two steps. 
First the pressure wave propagation in the mercury target of the SNS is simulated using 
the front tracking method, and then the collapse pressure of cavitation bubbles is 
calculated by solving the Keller equation under the ambient pressure whose profile has 
been obtained in the first step. The efficiency of the cavitation mitigation is estimated by 
comparing the average collapse pressure with and without injected bubbles. Finally we 
conclude the paper with a summary of our results. 
 
MATHEMATICAL FORMULATION 

 
In the DNS method, we study bubbly fluids as a system of one-phase domains separated 
by explicit interfaces, as illustrated in Fig. 1. 
 
Fig. 1. Schematic of numerical experiments on the wave propagation in bubbly fluids. 

 
 
We solve the system of Euler's equations. 

𝜕𝜌
𝜕𝑡

= −∇ ∙ (𝜌𝐮)  

𝜌( 𝜕
𝜕𝑡

+ 𝐮 ∙ ∇)𝐮 = −∇𝑝  

𝜌( 𝜕
𝜕𝑡

+ 𝐮 ∙ ∇)𝑒 = −𝑝∇ ∙ 𝐮  

𝑝 = 𝑝(𝜌, 𝑒)  
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The equations are solved separately in each gas bubble and in the ambient liquid subject 
to the liquid-gas interface conditions. In the equations, v, ρ, p and e are the velocity, 
density, pressure and specific internal energy of the fluid. The continuity of pressure and 
normal velocity is satisfied at the liquid-gas interface. If the surface tension is important 
as in surface instability problems, we modify the pressure interface condition by adding a 
pressure jump due to the surface tension and local curvature. In simulations presented in 
this paper, the surface tension was neglected as it is important only for bubbles of a sub-
micron size. Gas bubbles in simulated fluids are much larger. Notice that we have also 
neglected the viscosity and heat conduction in fluid equations. These effects are often 
important in the dynamics of bubbly flows, and will be included in future simulations. 
We use the polytropic equation of state (EOS) model for gas bubbles, p = (γ-1)ρe, where 
γ is the ratio of specific heats, and the stiffened polytropic EOS (Lu, 2005) for the 
ambient liquid. 
  
Wave Equations in Homogenized Models 
 
Since some of our results are compared to the homogenized theory of bubbly fluids, we 
present in this section main equations. The theory on bubbly flows is based on the 
homogenized model, in which the fluid and bubbles are treated as a single mixed phase, 
opposed to the two separated phases in the direct numerical simulations. In compressible 
fluids with gas bubbles, the conservation of mass and momentum in one spatial 
dimension give 

1
𝜌𝑓𝑐𝑓

2
𝜕𝑝
𝜕𝑡

+ 𝜕𝑢
𝜕𝑥
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𝜕(𝜌𝑢)
𝜕𝑡

+ 𝜕(𝜌𝑢2+𝑝)
𝜕𝑥

= 0  

where β is the bubble volume fraction, ρ is the averaged density of the mixed phase that 
equals 𝛽𝜌𝑔 + (1 − 𝛽)𝜌𝑓 , and p is the averaged pressure. The bubble oscillation in 
weakly compressible fluids is governed by the Keller equation (Keller and Miksis, 1980), 
which is an extension of Rayleigh-Plesset equation, 
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The p in the equation coincides with the average pressure in the conservation laws to the 
lowest order in β (Commander and Prosperetti, 1989). pB is the liquid pressure at bubble 
surface. The bubble pressure pg is approximately uniform except for sound waves of 
frequency far above the resonance. For air bubbles of diameter 0.1 mm and above, the 
thermal diffusivity ν = κ/(ρcp) « ωR2 except for sound waves of frequency far below 
resonance (κ, ρ and cp are the heat conductivity, density and specific heat with fixed 
pressure for the gas respectively). Therefore the bubbles are almost adiabatic for near-
resonant sound waves. For bubbles consisting of a γ-law gas, pgR3γ is a constant. 
Neglecting the viscosity, the difference between pg and pB is from the surface tension, pg 
= pB + 2σ/R. 
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Linear Waves. The following dispersion relation for linear sound waves in bubbly fluids 
was derived from the wave equations (Wijngaarden, 1972). 

𝑘2

𝜔2 = 1
𝑐𝑓
2 + 1

𝑐2
1

1−𝑖𝛿𝜔𝜔𝐵
−𝜔

2

𝜔𝐵
2

  

where ωB is the resonant frequency of single bubble oscillation, δ is the damping 
coefficient accounting for the various dissipation mechanisms. cf is the sound speed in 
bubble free fluid, and c is the sound speed in the low-frequency limit, which is given by 

1
𝑐2

= (𝛽𝜌𝑔 + (1 − 𝛽)𝜌𝑓)( 𝛽
𝜌𝑔𝑐𝑔2

+ 1−𝛽
𝜌𝑓𝑐𝑓

2)  

where ρg and ρf are the densities of the gas and the fluid, cg and cf are the sound speeds of 
the two phases. For adiabatic bubbles, 
𝑐2 = 𝛾𝑝/(𝛽𝜌𝑓), (𝜔𝐵𝑅)2 = 3𝛾𝑝/𝜌𝑓 . Chapman and Plesset (1971) formulated δ as the 
sum of the acoustic, viscous and thermal contributions. It has been pointed out by 
Prosperetti et al. (1988) and Commander and Prosperetti (1989) that δ depends on the 
frequency of the sound wave. Nevertheless, Eq. (8) has been widely used for the 
dispersion relation. The dispersion relation for near-resonant sound waves measured in 
different experiments (Fox, et al., 1955; Macpherson, 1957; Silberman 1957) agreed with 
the theoretical predictions. 
 
Shock Waves. The shock profile in the bubbly fluid evolves into a smooth steady form in 
contrast to the sharp discontinuity in the pure fluid. The steady state shock speed was 
obtained from the Rankine-Hugoniot relation (Watanabe and Prosperetti, 1994), 

1
𝑈2

= 1
𝑐𝑓
2 + 𝜌𝑓

𝛽𝑏−𝛽𝑎
𝑃𝑎−𝑃𝑏

  

where subscripts a and b stand for ahead and behind the shock front. Since heat 
conduction and surface tension is neglected, 𝑃𝑎𝛽𝑎

𝛾 = 𝑃𝑏𝛽𝑏
𝛾. The evolution into a steady 

wave can take very long time and distance, and the unsteady waves move at higher 
velocities. The shock profiles were measured for various gas bubbles by Beylich and 
Gülhan (1990), to which our simulation results will be compared. 
 
NUMERICAL METHOD 
 
In this paper, we study bubbly fluids as a system of one-phase domains separated by free 
interfaces using FronTier, a front tracking compressible hydrodynamics code. Front 
tracking is an adaptive computational method in which a lower dimensional moving grid 
is fit to and follows distinguished waves in a flow. The front propagates according to the 
dynamics around it (i.e., Lagrangian) while the regular spatial grid is fixed in time (i.e., 
Eulerian). The discontinuities across the interfaces are kept sharp so as to eliminate the 
interfacial numerical diffusion which plagues traditional finite difference schemes. 
 
The implementation of the front tracking method in the FronTier code is described in 
details by Glimm et al. (2002). Here we formulate the main ideas. In each time step, the 
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front is propagated first, and then the interior states are updated. For the front 
propagation, each point of the interface is propagated in the normal direction, and the 
states on either side of the interface are evolved according to the solution of the non-local 
Riemann problem. The hyperbolic solver has three steps: slope reconstruction, prediction 
using local Riemann solver, and correction by nonlocal solver. Then the states on the 
propagated fronts are updated in the tangential direction while the fronts are fixed. After 
that the fronts are tested for intersection and then untangled or redistributed if necessary 
to resolve the topological change or the clustering/sparsity of grid points on the interfaces 
due to front contract/expand. 
 
For the subsequent interior state update, FronTier uses high resolution shock-capturing 
hyperbolic schemes on a spatial grid. Among the various shock capturing methods 
currently implemented in FronTier, a second order monotone upwind scheme for 
conservation laws (MUSCL) scheme developed by Van Leer and adapted for FronTier by 
I-L. Chern was used for the simulation here. Detailed descriptions of the MUSCL scheme 
can be found in Collela (1985) and the references therein. The two-pass implementation 
is used in FronTier, namely, first regular cells then irregular cells update. Different 
equation-of-state models are used for gas/vapor bubbles and the ambient fluid. 
 
FronTier can handle multidimensional wave interactions in both two- (Glimm et al., 
1988) and three- (Glimm et al., 2000) dimensional spaces. Although computationally 
intensive, front tracking is potentially very accurate in treating many physical effects in 
bubbly flows, such as the compressibility of the fluid, surface tension and viscosity. Since 
the FronTier code is capable of tracking simultaneously a large number of interfaces and 
resolving their topological changes, many effects that are difficult to handle in 
mathematical models for bubbly flows are now naturally included in the simulations, e.g., 
the bubbles' deviation from sphericity, bubble-fluid relative motion, bubble 
merge/fissure, and bubble size/spatial distribution. This approach has numerous potential 
advantages for modeling the phase transitions in boiling and cavitation flows. We have 
implemented a model for the phase transitions induced mass transfer across free 
interfaces (Lu et al., 2008). FronTier is implemented for distributed memory parallel 
computers. 
 
For the application of FronTier to the simulation of bubbly flows, the region around a 
long column of bubbles (tens to hundreds) has been chosen as the computational domain, 
as shown in Fig. 1. Two approximations were used in the simulations. The flow inside the 
column was assumed to be axisymmetric and the influence from the neighboring bubbles 
was included by treating the domain boundary as a reflecting wall, which is called the 
Neumann boundary in FronTier. Thus the wave propagation in bubbly flows was reduced 
to an axisymmetric two-dimensional problem. An extensive introduction to the FronTier 
code for axisymmetric flows can be found in Glimm et al. (2002). 
 
We have shown that the assumption of axial symmetry is adequate for the study of main 
features of the wave propagation in bubbly fluids. This conclusion is based on the 
comparison of our numerical results with theoretical and experimental data presented in 
the next section. The axisymmetric assumption is exact for the scattering of the planar 
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wave by an isolated column of bubbles that are initially spherical. The Neumann 
boundary condition for the modeling of the presence of other bubbly layers is strong 
because scattered pressure waves are only partially reflected. As a contrast, the scattering 
theory, on which the Keller equation is based, completely neglects the reflection between 
bubbles and the secondary scattering. Therefore the scattering theory only holds for the 
case of small void fraction such that bubble interaction is negligible. For moderate void 
fraction, the secondary scattering cannot be neglected, and the Neumann boundary 
condition between adjacent bubbles is a better approximation. 
 
SIMULATION RESULTS ON BUBBLY FLOWS 
 
In this section, we present the results of the DNS of the linear and shock wave 
propagations in bubbly fluids. Since the void fraction is small (0.02% for linear waves, 
0.25% for shock waves), the homogenized model is expected to be valid. The dispersion 
relation measured from simulations is compared with theoretical predictions in the 
subsection on linear waves. Shock speed values measured from simulations are compared 
to steady-state values, and shock profiles for various gas bubbles are compared to 
experimental data (Beylich and Gülhan, 1990) in the subsection on shock waves. 
 
Linear Waves 
 
To compare the simulation results with the theory, we measured the dispersion relation. 
Writing down the complex wave number k in Eq. (8) as 𝑘 = 𝑘1 + 𝑖𝑘2, we have 

𝑒𝑖(𝑘𝑥−𝜔𝑡) = 𝑒−𝑘2𝑥𝑒𝑖(𝑘1𝑥−𝜔𝑡)  

from which the phase velocity of the sound wave is defined as 𝑉 = 𝜔/𝑘1 , and the 
attenuation coefficient α in dB per unit length is defined as 𝛼 = 20 log10 𝑒 ⋅ 𝑘2 . The 
bubble radius in the simulation was R = 0.06 mm. The resonant frequency is 

𝑓𝐵 = 1
2𝜋𝑅 �

3𝛾𝑝
𝜌𝑓

= 54.4 KHz  

We simulated the sound waves of frequencies ranging from 30 to 300 KHz. The volume 
fraction was β = 0.02%. The amplitude of the pressure wave was chosen to be 0.1 bar, 
one tenth of the ambient pressure. The linearity was ensured by performing numerical 
simulations with sound waves of half amplitude which gave virtually the same dispersion 
relation. 
 
For each frequency, the sound wave of up to 8 wavelengths was propagated from the pure 
fluid into the bubbly region. The cross sectional averaged pressure in the bubbly region 
was recorded at selected times and positions, from which the phase velocity and the 
attenuation coefficient were measured. The phase velocity was obtained by measuring the 
propagation speed of the first pressure node in the bubbly region. The envelope of the 
oscillating pressure wave was plotted and the attenuation coefficient was measured in the 
1cm-long bubbly fluid region next to the incident plane by fitting the envelope to an 
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exponential curve. A shorter region was used for the frequency with the strongest 
attenuation (λ = 2cm). 
 
Table 1. Phase velocities (V) and attenuation coefficients (α) from simulation and theory. 
λ is the wavelength in pure water. V and α are the simulation results, Vth and αth are the 
theoretical predictions from Eq. (8) with δ = 0.7, R = 0.06 mm, β = 0.02%. 

λ 
(cm) 

f 
(KHz) 

V 
(cm/ms) 

Vth 
(cm/ms) 

α 
(dB/cm) 

αth 
(dB/cm) 

0.5 290 155 153 2.2 0.9 
1.0 145 183 194 5.7 5.0 
1.5 96.7 220 274 18.4 20.7 
2.0 72.5 160 173 28.5 30.9 
2.5 58.0 100 100 21.8 29.4 

2.75 52.7 75 84 18.9 25.2 
3.0 48.3 68 75 17.8 20.4 
4.0 36.3 62 68 10.7 8.5 
5.0 29.0 66 69 3.9 4.4 

The phase velocities and attenuation coefficients measured from the simulations are listed 
in Table 1 along with theoretically predicted values. Theoretical values were calculated 
using the damping coefficient δ = 0.7 in Eq. (8). There are various theoretical and 
empirical formulas for the damping coefficient (Wijngaarden, 1972), several of them 
giving value under 0.1. The parameters in our simulations is closest to those in 
experiment of Fox et al. (1955), who used the empirical value of 0.5 for the damping 
coefficient. The measured dispersion relation was compared to the theoretical curve in 
Fig. 2(a). It can be seen that the simulation agrees well with the theory. However, the 
point in Fig. 2(a) with frequency about 100 KHz has large deviation from the theoretical 
value. Most likely the deviation is due to the dependence of δ on the frequency, 
especially near the resonance as pointed out in by Prosperetti et al. (1988). 

 
Fig. 2. Comparison of the dispersion relation between the simulation and the theory. R = 
0.06 mm, β = 0.02%. The crosses are the simulation data and the solid line is the 
theoretical prediction from Eq. (8) with δ = 0.7. The horizontal line in figure (a) is the 
sound speed in pure water. 
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(a) Phase velocity (b) Attenuation coefficient 

 
The grid resolution for most of our simulations on linear wave propagations was 100 
grids per millimeter. To ensure the accuracy of the simulation results, a mesh refinement 
check has been carried out. Fig. 3 shows a typical result. It can be seen that the results 
were reasonably accurate at the default grid resolution (100 grids/mm). The one 
dimensional grid on the bubble surface, which is the explicitly tracked fluid interface, 
was more refined, the circumference of a bubble in the simulation was discretized into 50 
points. The approximation of cylindrical domain has been justified by varying the aspect 
ratio of the cylinder containing a bubble, which confirms that the dispersion relation only 
depends on the void fraction, i.e., the ratio of the bubble volume over the cylinder 
volume, but not on the aspect ratio. 
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Fig. 3. The pressure profile in bubbly water 23 microseconds after the incidence of the 
sound wave with wavelength 1 cm in pure water. The default resolution used in the 
simulations was 100 grids/mm, under which the bubble radius R = 0.06 mm corresponds 
to 6 grids. Solid line is the default resolution 100 grids/mm, dash-dotted line is 50 
grids/mm, and dashed line is 200 grids/mm. 

 
 
Shock Waves 
 
Beylich and Gülhan (1990) studied the propagation of shock waves in glycerol filled with 
bubbles of various gases. We carried out numerical simulations using their experimental 
settings. We have also varied the sound speed in the pure fluid to measure the 
corresponding shock speeds and compared them to the steady-state values given by Eq. 
(10). In the simulations, the pressure behind the shock was either fixed at the boundary or 
set as the initial pressure in an air layer next to the bubbly fluid. The results from the two 
methods have been compared and found to be very close. 
 
The measured shock speeds are listed in Table 2. The speeds were measured about 10 cm 
away from the shock incident plane. It is seen from the table that the measured shock 
speeds differ from the steady state values by less than 15%. The reason for the deviation 
is that the shock waves in simulations had not reached the steady state. 
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Table 2. Shock speeds measured from the simulations are compared to the steady state 
values. βa is the bubble volume fraction ahead of the shock, Pb is the pressure behind the 
shock, U is the measured shock speed, and Uth is the corresponding steady-state value 
given by Eq. (10). Pa = 1.11 bar, ρf = 1.22g/cm3, Ra = 1.15 mm. 

gas(γ) cf 
(m/s) 

βa 
(%) 

Pb 
(bar) 

U 
(m/s) 

Uth 
(m/s) 

SF6 
(1.09) 

1450 0.25 1.9 26.20 25.40 

SF6 
(1.09) 

458 0.25 1.9 22.52 22.48 

SF6 
(1.09) 

145 0.25 1.9 13.47 12.64 

N2 (1.4) 1450 0.25 1.7 25.56 26.68 
N2 (1.4) 458 0.25 1.7 22.21 23.35 
N2 (1.4) 145 0.25 1.7 12.29 12.79 

He 
(1.67) 

1450 0.25 1.9 25.68 30.01 

He 
(1.67) 

458 0.25 1.9 22.69 25.49 

He 
(1.67) 

145 0.25 1.9 13.52 13.11 

SF6 
(1.09) 

1450 2.17 1.8 8.72 8.52 

SF6 
(1.09) 

458 2.17 1.8 8.04 8.39 

SF6 
(1.09) 

145 2.17 1.8 7.10 7.35 

N2 (1.4) 1312 2.17 1.8 8.60 9.42 
N2 (1.4) 458 2.17 1.8 9.09 9.25 
N2 (1.4) 145 2.17 1.8 7.80 7.92 

He 
(1.67) 

1450 1.04 1.9 13.92 14.96 

He 
(1.67) 

458 1.04 1.9 12.70 14.29 

He 
(1.67) 

145 1.04 1.9 9.70 10.44 
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Fig. 4. The shock profiles in glycerol filled with SF6 bubbles. The parameters in the 
simulations were from the experiments. Pa = 1.11 bar, Pb = 1.80 bar, ρf = 1.22 g/cm3, Ra = 
1.15 mm, γ = 1.09 and β = 0.25%. The curve in the experimental figure is the original 
fitting with artificial turbulent viscosity by Beylich and Gülhan (1990).  

 
(a) Simulation (b) Experiment 

 
The shock profiles were measured at 1.0 m away from the shock incident plane as in the 
experiments of Beylich and Gülhan (1990). The shock profiles for SF6 bubbles of volume 
fraction 0.25% are plotted in Fig. 4. These figures show that the pressure in the bubbly 
fluid oscillated after the passage of the shock front. The oscillation amplitude from the 
simulation was close to the experimental value. However the oscillation period from the 
simulation was 28% shorter than the experimental value. 
 
There were several sources of error that could be responsible for the deviation. The main 
source of error was numerical dissipation at the bubble surface. The default grid 
resolution for the simulations on shock wave propagation was 100 grids per centimeter, 
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and the bubble circumference contains about 100 points. It has been found that increasing 
resolution only slightly changed the oscillation amplitude and period. Other sources of 
error include the axisymmetric approximation and the Neumann boundary condition on 
the domain wall. It is worth mentioning that the oscillation period calculated by 
Watanabe and Prosperetti (1994) based on the homogenized model was also about 1/4 
shorter than the experimental value. 
 
The shock profiles with various gas bubbles and different volume fractions were 
measured and they agreed with the experiments as well. The oscillation amplitude was 
found to be smaller for gas with larger polytropic index γ, and the oscillation period was 
longer for larger bubble volume fraction β, both of which agreed with the experiments. 
As a summary, the shock velocity measurement agreed well with the theory, while the 
shock profiles agreed with the experiment qualitatively and partly quantitatively. 
 
According to Noordzij and van Wijngaarden (1974), waveforms observed during the 
propagation of shocks in bubbly liquids can be classified into three types, referred to as 
A-, B-, and C-type waves. The highly oscillatory A-type waveform is usually found near 
the boundary at which the shock is introduced. The other two represent later stages in the 
evolution of the wave. As pointed out by Watanabe and Prosperetti (1994), the heat 
exchange between bubbles and liquid plays an important role in the formation of B- and 
C-type shocks. Due to the negligence of heat diffusion in our simulations, we only 
observed A-type shocks. Our simulations agreed with Beylich and Gülhan's experiments 
(1990), in which they only published data on A-type shocks. We have already 
implemented a heat diffusion algorithm in FronTier (Lu, 2005), and will explore all types 
of shock profiles in the future. 
 
APPLICATION TO CAVITATION MITIGATION 
 
The comparison of simulation results with theory and experiments in the previous section 
validated the FronTier based DNS method for bubbly flows. The DNS method is used in 
this section to study the cavitation reduction problem in the Spallation Neutron Source 
target container. The DNS method is well suited for the description of bubbly flows in the 
SNS target since large void fraction fluids and very strong pressure waves make the 
applicability of the homogenized theory questionable. 
 
First we introduce the design of the SNS target and the associated fluid dynamical issue, 
followed by a description of our method of approach. Then we analyze the simulation 
results on the pressure wave propagation in the pure and bubbly mercury, and calculate 
the collapse pressure of cavitation bubbles. We conclude by an estimation of the 
cavitation mitigation efficiency via bubbly injection. 
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Spallation Neutron Source 
 
The Spallation Neutron Source (SNS) is an accelerator-based neutron source being built 
at Oak Ridge National Lab. The SNS will provide the most intense pulsed neutron beam 
in the world for scientific research and industrial development. In SNS, 800 MeV proton 
beams bombarding the mercury target in a steel container deposit totally 2.1 kJ of energy 
per pulse in less than 300 ns which results in the rapid pressure increase in the mercury 
(see Fig. 5). The peak deposited energy density is 19 J/cc, corresponding to 500 bar in 
mercury. The subsequent pressure waves induce severe cavitation on the container, so 
much so that the lifetime of the container was only two weeks with 1MW proton pulses at 
the frequency of 60 Hz (Riemer et al., 2002). In order to mitigate the cavitation erosion, 
research is being done on the evaluation of cavitation-resistant materials and coatings. It 
has also been suggested that the injection of non-dissolvable gas bubbles into the 
container could absorb the energy of the pressure wave. Our goal is to estimate the 
efficiency of the cavitation mitigation by the bubble injection method. 
 
The SNS target prototype tested at the Los Alamos National Laboratory is a cylinder of 
10 cm diameter and 30 cm length. The pressure in the target is about 1 bar in the absence 
of the proton beam. After the proton beam bombards the target, the pressure rises in the 
mercury almost instantaneously compared to acoustic time scales. The pressure 
distribution, as shown in Fig. 5, has a Gaussian profile in the transverse direction with σ = 
1.0 cm and an exponential attenuation along the axis. The pressure profile is 𝑃0(𝑟, 𝑧) =
500exp (−𝑟2 − 0.1𝑧), where r and z are in cm, and the origin of the z-axis is the window 
where proton beams enter. When non-dissolvable gas bubbles are injected into the 
container, the bubble pressure has little change after the proton pulse and it remains about 
1 bar. 
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Fig. 5. The pressure distribution right after a pulse of proton beams in the mercury target 
of the Spallation Neutron Source. Courtesy of SNS experimental facilities, Oak Ridge 
National Lab. 

 
 
Method of Approach 
 
Before we compare the cavitation erosion in pure and bubbly mercury, a brief 
introduction to the mechanism of cavitation damage and the method we used to quantify 
it is given in this section. Cavitation is the process in which bubbles, consisting of vapor 
and non-condensable gas, form, expand, and collapse in the fluid according to the 
surrounding pressure which decreases and increases rapidly. Vapor bubbles are formed 
when the pressure falls below the saturated vapor pressure of the fluid at the ambient 
temperature or some critical pressure smaller than the corresponding saturation pressure 
(Brennen, 1995). They implode when the fluid pressure rises back above the saturated 
vapor pressure or when the bubbles move into a region with higher pressure. If the bubble 
is close to the container wall, the shock wave from the rebound of the collapse erodes the 
wall as in the SNS target container. 
 
The attenuation of the pressure wave during the rebound phase of the cavitation bubbles 
was studied extensively in by Hickling and Plesset (1964). The pressure of the rebounded 
wave that hits the container wall can be used to quantify the cavitation erosion. Since it is 
proportional to the first collapse pressure of cavitation bubbles, we only need to compare 
the average collapse pressure in the pure mercury and the bubbly mercury for the 
estimation of the cavitation mitigation efficiency. In order to calculate the collapse 
pressure, we need to know how the cavitation bubbles grow and collapse under the 
pressure wave in the container. Since the collapsed bubble size (< 0.1 μm) is less than a 
millionth of the container size (10 cm), it is difficult to simulate directly the evolution of 
cavitation bubbles in the entire container. Instead we estimated it in two steps. 
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First, we simulated the propagation of pressure waves in the container caused by the 
initial pressure profile. The simulation was carried out for both the pure mercury and 
mercury containing non-dissolvable gas bubbles. For the simulation of the bubbly 
mercury, the bubble surfaces were tracked explicitly via the front tracking method 
described in the previous sections. The pressure relaxation caused by the cavitation was 
ignored in the simulation of pressure waves in the container. We assumed that the growth 
and collapse of cavitation bubbles is uncorrelated, namely that the far field liquid 
pressure for a cavitation bubble is not significantly perturbed by relaxation waves from 
neighboring cavitation bubbles. Since the distribution of cavitation centers is unknown 
for mercury under such conditions, accounting for pressure relaxation processes would 
contain a large amount of uncertainty. 
 
In the second step, the collapse pressure of cavitation bubbles was calculated by solving 
the Keller equation under the liquid pressure whose profile was obtained in the first step. 
A cavitation bubble consists of vapor and non-condensable gas. Due to the liquid - vapor 
phase transition, the partial vapor pressure in a bubble remains negligible compared to the 
amplitude of pressure waves in the SNS target, while the partial pressure of the gas 
(typically air) changes violently. As a result, it suffices to calculate the growth and 
collapse of cavitation bubbles that consist only of air for the estimation of the collapse 
pressure. 
 
Pressure Wave Propagation in the Container 
 
Inferred from for the initial pressure profile, the strongest pressure oscillation and 
consequently the most severe cavitation might be located at the center of the entrance 
window, which was confirmed by the simulation. Therefore we compared the pressure 
profile at the window center in the pure and bubbly mercury. The pressure profile in the 
pure mercury is shown in Fig. 6(a), while the pressure profile in the mercury filled with 
air bubbles is shown in Fig. 6(b). 
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Fig. 6. The computed pressure profiles at the center of the entrance window. The pressure 
profile in pure mercury is compared against that in the mercury injected with non-
condensable gas bubbles of radius 1.0 mm and volume fraction 2.5%. 

 
 (a) P
 (b) Bubbly mercury 
 
It is readily seen that, as expected, the pressure decayed much faster in the bubbly 
mercury, since bubbles absorbed the energy from pressure waves and spread it away from 
the entrance window. The pressure oscillation in the bubbly mercury was also more rapid 
due to reflections between the window and bubbles. The typical decay time in both cases 
is shorter than the period between two proton pulses at the frequency of 60 Hz. Both 
profiles can be approximately described by the following formula 

𝑃𝑤(𝑡) = 𝑃𝑤0𝑒
−𝑡
𝜏 cos �2𝜋𝑡

𝑇
�  
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where Pw0 is the pressure oscillation amplitude on the window right after the bombard of 
the proton pulse, τ is the inverse of the attenuation rate, and T is the oscillation period. 
Numerical values of the coefficients are Pw0 = 500 bar, τ = 0.94 ms, T = 70 μs for pure 
mercury and Pw0 = 600 bar, τ = 50 μs, T = 12 μs for mercury filled with air bubbles of 
radius 1.0 mm and volume fraction 2.5%. 
 
We compared the result of direct numerical simulation with that of the multiple scattering 
theory. The homogenized wave equations (5) and (6) were solved numerically in the 
longitudinal direction of the chamber with the given initial liquid pressure profile. As 
recognized by Caflisch et al. (1985), Eqs. (5) and (6) are valid for small void fractions and 
accurate up to the first order of β. In our simulation for the SNS problem, β = 2.5%, 
which is not very small. Therefore, the simulation results could be different from the 
theoretical predictions based on homogenized wave equations. Indeed we found 
discrepancies, for example, for injected air bubbles of radius 1.0 mm and volume fraction 
2.5%, the simulation showed an oscillation with period T = 12 μs, while the homogenized 
wave equations gave a period of 15.4 μs. The simulated frequency is higher due to the 
nonlinear effect of a finite void fraction. In another example, where β = 0.53% and R = 
0.5 mm, the simulation had an oscillation period T = 16 μs, while the theory gave a 
period of 17.6 μs, which is still different but closer to the simulation result because the 
void fraction is smaller in this case. Another reason for the discrepancy is the high 
frequency of the pressure wave in the liquid. 
 
Eqs. (5) and (6) were derived for sound waves with 𝜆 ≫ 𝑅. In the SNS problem, the 
energy deposition from the proton beam increases the liquid pressure to about 500 bar at 
the entrance window, while the pressure in the injected bubbles remains around 1 bar. At 
finite bubble volume fraction, the induced pressure wave has a wavelength of the same 
order as the bubble radius. These effects make DNS a valuable method in the study of the 
SNS problem and a more general class of bubbly flows. 
  
The accuracy of the results has been guaranteed by mesh refinement check. Thanks to the 
relatively large void fraction, we were able to use higher resolution in simulations of 
bubble layers in SNS than in those of linear and shock waves. Due to the exponential 
decay of proton beams along their path, the energy deposition has longitudinal 
attenuation. In the presence of the attenuated deposition, standing wave does not form in 
the container, which is confirmed by numerical simulations. Furthermore, simulations 
showed that the longitudinal attenuation was strengthened by injected bubbles due to 
energy absorption, such that a 3-cm layer of bubbles near the entrance window is 
effectively the same as a chamber full of bubbles in terms of pressure damping. 
 
Collapse Pressure of Cavitation Bubbles 
 
The second step is the calculation of the collapse pressure of cavitation bubbles. The 
Keller equation for the bubble growth and collapse in the weakly compressible liquid was 
used for that purpose. With the ambient liquid pressure obtained in the first step, the 
closed system of equations is Eq. (7) with pg = pB + 2σ/R and 𝑝𝑔𝑅3 = 𝑝𝑔0𝑅03 . The 

326 AcademyPublish.org - Wave Propagation



pressure p is the difference between the ambient pressure and the vapor pressure of 
mercury in the bubble. However the latter is much smaller in our case and can be 
neglected. The gas pressure in the bubble is associated with the bubble radius by the 
isothermal relation, which is valid for most of the cavitation bubbles in the target, 
especially during their evolution stages after the formation and before the collapse. To 
estimate the range of initial bubble sizes for our numerical studies, recall that the 
cavitation bubble grows from a nucleus whose radius is bounded below by the stability 
condition (Arndt, 1981), 4𝜎/(3𝑅0 ) < −𝑝. For liquid mercury, σ = 0.48 kg/s2, in SNS a 
typical tension of 100 bar gives R0 > 0.065 μm. Therefore it is reasonable to assume that 
the initial radius of most cavitation bubbles in SNS is below 1 μm, which justifies the 
isothermal relation for the bubbles. 
 
The pressure waves in both the pure and bubbly mercury have an attenuating sinusoidal 
form. Since the attenuation is much slower than the period of oscillation, we calculated 
the overall collapse pressure of cavitation bubbles by using a purely sinusoidal pressure 
wave for one period and summing up all periods with the attenuating amplitude. The 
purely sinusoidal time-wise fluctuation of pressure has the following form, 

𝑝(𝑡) = 𝑃 sin (2𝜋𝑡
𝑇

+ 𝜙0)  

where 𝜙0 is the initial phase when a cavitation bubble starts to grow from a nucleus. 𝜙0 
must be between –π and 0 because for the bubbles to grow the initial pressure must be 
below the saturated pressure of mercury, which is almost 0 compared to the pressure 
wave in the SNS target. 
 
Fig. 7. Bubble size evolution with different 𝜙0. R0 = 1.0 μm, pg0 = 0.01 bar, P = 100 bar, 
T = 20 μs. 

 
 
The typical bubble size evolutions with various 𝜙0 are shown in Fig. 7. It's interesting to 
notice that the bubble does not always collapse -- the bubbles beginning to grow at 
𝜙0 < −0.8𝜋 continues to grow after a period. Although they may collapse after two or 
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more periods according to the Keller equation, the associated collapse pressure is smaller 
since the ambient pressure has attenuated. On the other hand, for 𝜙0 between -0.8π and 0 
a bubble collapses within about a period. We are only interested in the first collapse 
because it produces the largest pressure peak and after that the bubble often fissures into a 
cloud of tiny bubbles and the Keller equation no longer applies (Brennen, 1995). Fig. 8 
shows the dependence of the first collapse pressure Pc on 𝜙0. It is seen that the collapse 
pressure is highest for 𝜙0 around -0.63π, and the average collapse pressure 𝑃𝑐 is roughly 
one half of the peak value at 𝜙0 = −0.63𝜋. 
 
Fig. 8. The first collapse pressure Pc vs. 𝜙0 under the sinusoidal pressure waves with 
different amplitude P and period T. The solid line and the dashed line correspond to the 
pure mercury; the dotted line and the dash-dotted line correspond to the mercury filled 
with air bubbles of radii 1.0 mm and volume fraction 2.5%. 

 
 
Neglecting the surface tension and the viscosity, which is justified by the high pressure 
wave in the liquid, the Keller equation becomes a purely acoustic equation so that Pc is a 
function of R0/cfT. In prescribed ambient pressure wave, Pc is a function of R0 and pg0, 
and we observed that Pc depends only on the gas content 𝑝𝑔0𝑅03  as long as 𝑝𝑔0 ≪ 𝑃. 

Combining the two observations, we see that 𝑃𝑐 is a function of P and 𝑝𝑔0�𝑅0/𝑐𝑓𝑇�
3
. In 

fact, in the range of P < 10 Kbar and T < 1 ms, an empirical formula for 𝑃𝑐  with P, T as 
variables and pg0, R0 as parameters was obtained, 

𝑃𝑐(𝑃,𝑇) = 46.5 � 𝑃
𝜌𝑓𝑐𝑓

2�
1.25

� 𝑝𝑔0
𝜌𝑓𝑐𝑓

2 �
𝑅0
𝑐𝑓𝑇
�
3
�
−0.50

Kbar  

with error less than 1%. The result agreed with the fact that the higher rate of stressing 
the fluid is experiencing, the higher tension can be sustained. In the bubble injection 
regime, the period of pressure oscillation T decreases which in turn reduces the cavitation 
bubble collapse pressure. 
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Efficiency of Cavitation Damage Mitigation 
 
Our goal is to evaluate the mitigation of the cavitation damage by the bubble injection, 
i.e., to find the ratio between the overall impact on the container from the collapses of 
cavitation bubbles in the pure mercury and the mercury with non-dissolvable gas bubbles. 
We needed only to compare the average collapse pressure 𝑃𝑐. According to Eq. (15), 𝑃𝑐 
can be factored into two parts, one depending on P and T, and the other on pg0 and R0. 
This implies that the ratio between the two cases (with and without bubble injection) is 
independent of the size of the initial nucleus and amount of gas in it as long as 𝑝𝑔0 ≪ 𝑃. 
 
To estimate quantitatively the efficiency of the cavitation mitigation on the entrance 
window by the bubble injection, we found the average collapse pressure in each period 
and took the sum over all the periods of the attenuating sinusoidal pressure wave given in 
Eq. (14). In other words, we defined 

𝑆 = ∑ 𝑃𝑐(𝑃𝑤(𝑛𝑇),𝑇)∞ 
𝑛=0 = ∑ 𝑃𝑐(𝑃𝑤0𝑒

−𝑛𝑇
𝜏 ,𝑇)∞ 

𝑛=0   

where the summand is the average collapse pressure in the n'th period. The overall 
cavitation damage is proportional to S. The mitigation efficiency is defined to be the ratio 
of S in pure mercury to that in bubbly mercury, i.e., E(β, R) = S(β = 0)/S(β, R), where β 
and R are the volume fraction and mean radius of the injected bubbles. Combining Eqs. 
(15) and (16), we obtain 

𝑆 = 𝐾𝑃𝑤01.25𝑇1.50/(1 − 𝑒−1.25𝑇/𝜏)  

where K is a coefficient depending only on the cavitation nucleus and cancels in E(β, R). 
 
Using the data in the paragraph following Eq. (13), we found that E(β = 2.5%, R =
1.0 mm) = 32.7. Varying β and R in the simulation of pressure wave propagation we can 
easily measure the corresponding efficiency. For example, when β = 0.53% and R = 0.5 
mm, we found Pw0 = 450 bar, τ = 44 μs, T = 16 μs, and E(0.53%, 0.5 mm) = 42.9. 
 
Therefore, we have confirmed the mitigation of cavitation through the injection of non-
dissolvable gas bubbles. The bubbles absorb/disperse the energy and rapidly attenuate the 
pressure on the entrance window of the SNS target so that the cavitation lasts for much 
shorter time. The simulation results will be compared to experimental data from the SNS 
group on bubble injection and cavitation mitigation once they are available. 
 
CONCLUSION 
 
Through the comparison of numerical simulations with experiments and theoretical 
predictions on the propagation of acoustic and shock waves in bubbly fluids, the direct 
approach to the simulation of bubbly flows using the method of front tracking and the 
FronTier code has been validated. The method has a variety of current and prospective 
applications, such as Rayleigh-Taylor instability (Glimm et al., 2001; Jin et al., 2005) and 
boiling or cavitating flows (Lu et al., 2008). In Xu et al. (2006), the dynamics of vapor 
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bubble phase boundaries was resolved in the simulations of atomization of a high speed 
jet, and the tracking of the bubble surfaces was extended to dynamically created bubbles. 
 
The pressure wave relaxation in bubbly mercury in the SNS target has been investigated 
numerically using the FronTier hydro code. The estimation of cavitation bubble collapse 
pressure under periodic ambient pressure has been carried out systematically. The 
efficiency of the mitigation of overall cavitation damage by the injection of bubbles has 
been calculated. The overall cavitation damage has been found to be reduced by more 
than an order of magnitude through the injection of gas bubbles with volume fraction of 
order 1%. Therefore the use of layers of non-dissolvable gas bubbles as a pressure 
mitigation technique to reduce the cavitation erosion has been confirmed. 
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