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Abstract
In this article we analyze the zeta function for the Laplace operator on a
surface of revolution. A variety of boundary conditions, separated and unse-
parated, are considered. Formulas for several residues and values of the zeta
function as well as for the determinant of the Laplacian are obtained. The
analysis is based upon contour integration techniques in combination with a
WKB analysis of solutions of related initial value problems.
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1. Introduction

Spectral zeta functions of typically Laplace-type operators are directly related to topics such
as analytic torsion [21], the heat kernel [13, 22], Casimir energies [4, 8, 20] and effective
actions [5, 6, 9]. It is therefore very desirable to have effective analytical tools available to
understand specific properties of zeta functions. Whereas in one-dimension closed answers
are relatively easily obtained for quantities like the functional determinant, see, e.g.,
[7, 10, 18], in higher dimensions the situation is much more involved. However, a contour
integral approach established in [2, 16] has been shown to be very useful as long as the
Laplace-type operator separates in a suitable fashion. This approach has been used in a variety
of configurations like the generalized cone [3], the spherical suspension [11], warped product
manifolds [12] and surfaces of revolution [15].

In some detail, in [15] the Laplacian on a surface of revolution was considered with
Dirichlet boundary conditions imposed. Properties of the zeta function like residues, values
and its derivative at zero were analyzed. Given that the strictly positive function
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∈f C x x( , )2
0 1 used to generate the surface of revolution is kept general, the analysis is not

based upon known eigenfunctions or known solutions of ordinary differential equations, but
instead on the asymptotic analysis of solutions of an initial value problem related to the
boundary conditions imposed. As the boundary conditions change the relevant initial value
problem changes and so does the pertinent asymptotic analysis. These changes capture how
spectral zeta functions depend on the boundary conditions. This is the main subject of the
current article, furthermore we consider the influence of kinks on the surface of revolution on
spectral properties.

The article is organized as follows. In section 2 we introduce the Laplacian on a surface
of revolution and find implicit eigenvalue equations when separated or unseparated boundary
conditions are imposed. Furthermore, using the WKB method [1, 19], asymptotic properties
of solutions of relevant initial value problems are determined. In section 3 we use these
properties to analyze the spectral zeta function for a variety of separated boundary conditions,
whereas in section 4 unseparated boundary conditions are considered. A particular case are
periodic boundary conditions, where as long as the function f and its derivative agree at the
endpoints the surface of revolution can be thought of as a smooth torus. However, if the
derivative does not agree this introduces a kink point on the torus. This leads to the discussion
about non-smooth surfaces in section 5. The conclusions point to the most important results of
the article. In the appendix we give an independent proof that the implicit eigenvalue
equations do not only capture the value of eigenvalues correctly but also their degeneracies.

2. Spectrum of the self-adjoint Sturm–Liouville equation

Let ∈f C x x( , )2
0 1 be a strictly positive function from x x[ , ]0 1 to . We consider the

Laplacian on the surface of revolution that is generated by revolving the graph of f around the
x-axis. Using separation of variables, the resulting eigenvalue equation for the Laplacian on
this surface of revolution is [15]
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where ∈ k is the separation constant entering from the cross-section S1. In rewriting
equation (1) as a system of first order differential equations, the quantity = ′v pu is
convenient. The equivalent form of equation (1) then is
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We denote the fundamental solution of (2) as
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where the superscripts N and D stand for solutions of the initial value problem λ =u x( ; ) 0,k
D

0

λ =v x( ; ) 1k
D

0 and λ =u x( ; ) 1,k
N

0 λ =v x( ; ) 0.k
N

0 In this way λ =E x I( ; )k 0 , furthermore
λ λ= =E x E xdet ( ; ) det ( ; ) 1.k k 0

To guarantee the operator is self-adjoint, the boundary condition must be in one of two
categories [23]. The first category is the separated boundary condition
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+ = + =au x bv x cu x v x( ) ( ) 0, ( ) d ( ) 0, (4)0 0 1 1

where ≠a b( , ) (0, 0) and ≠c d( , ) (0, 0). Following [17], the corresponding eigenvalues are
the zeros of the following function of λ,
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The second category is the unseparated boundary condition
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the corresponding eigenvalues are seen to be zeroes of
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We prove in the appendix that each zero of λF ( )k has the same multiplicity as that of the
corresponding eigenvalue. In general, the fundamental solution (3) will not be given in terms
of known special functions. In order to find certain properties of the zeta function associated
with eigenvalue problems on surfaces of revolution it will turn out to be sufficient to have a
knowledge of the large-λ uniform asymptotic expansion of (3). To this end we need to
analyze u v,k k

N N and u v,k k
D D. In order to prepare for the application of the WKB

approximation [1, 19], substituting the ansatz
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into equation (1), we get
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Imposing the initial conditions as indicated below equation (3), we can write the elements of
λE x( ; )k 1 as
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The left-hand sides of equations (10)–(13) will be the needed input for the contour integral
formulation of the zeta function. The right-hand sides will be the starting point for the
computation of the relevant uniform asymptotic expansion.

Next we make some general statements about the zeta function associated with
equation (1) supplemented by any choice of boundary conditions. Following [15], we first
compute

∏λ λ
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=
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where λk n, is the nth positive eigenvalue of equation (1) under a certain boundary condition.
For ≠F (0) 0k ,
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where, using the contour integral representation
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The functions ζ s( )1 and ζ s( )2 will be analyzed further by subtracting and adding back leading
terms in a suitable asymptotic expansion. Following [15], splitting the asymptotic expansion
into relevant and irrelevant pieces for the computation of the values and residues of ζ s( )1 , we
write −D z( )0

2 as

− = − + −( )( ) ( ) ( )D z L z R z C , (16)0
2

0
2

0
2

0

where −L z( )0
2 and −R z( )0

2 are the leading term and the remainder respectively, such that
−R z( )0

2 is exponentially small for large z; it therefore will not contribute to ζ − nRes (1/2 )1

or ζ −n( )1 for ⩾n 0. For ζ′(0)1 , in addition to −L zln ( )0
2 , the contribution from other terms is
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− Cln 0. Similarly, we write −D k z( )k
2 as

− = − + − +( )( ) ( ) ( ) ( )D k z L k z R k z L R(0) (0) , (17)k k k k k
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ζRes (1)2 , ζ − nRes (1/2 )2 or ζ −n( )2 for ⩾n 0. In order to compute ζ′(0)2 , the relevant

splitting will be
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After this outline of the computation for the general case, let us next consider specific

separated and unseparated boundary conditions.

3. Separated boundary conditions

For separated boundary conditions, we consider the following four cases:Dirichlet–Dirichlet
(DD), Neumann–Dirichlet (ND), Dirichlet–Neumann (DN), and Neumann–Neumann (NN).
The relevant choices for a b c d, , , in equation (4) are = =a c 1, = =b d 0 for DD,

= − =c b 1, = =a d 0 for ND, = =a d 1, = =b c 0 for DN, and finally = − =d b 1,
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The relevant aysmptotic terms in equation (18) are found from equations (10)–(13), once the
±Tk have been expanded. A WKB expansion starting with equation (8) shows (following [15])
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where =t zf x( )2 . This implies
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We next apply these expansions to (10)–(13) to deal with the various boundary conditions.

3.1. Dirichlet boundary condition

This case was studied in [15], but for convenience we include the results of [15] here. For
Dirichlet boundary condition, it is easy to show that
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Making the asymptotic terms explicit, by equation (20)
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The information gathered so far is sufficient to obtain the following properties of the function
ζ s( )1 associated with k = 0 (see [15])
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asymptotic terms are found from equation (22)
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From here, one can show
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( ) 1 ( )

1

8

( )

( ) 1 ( )

1

256

( )

( ) 1 ( )

1

32

( )

1 ( )
,

(0) 2 ln e
6

ln (2 )
1

2
ln ( ) ln ( )

1

6

( )

( ) 1 ( )
d

1

2

( )

1 ( )
d ,

x

x

x

x

A

x

x

x

x

2
DD 2

0 1

2
DD

2
DD

2

2 2

1

1 1
2

0

0 0
2

0
2

0 0
2

0

0
2 2

0

0 0
2

1

1 1
2

1
2

1 1
2

1

1
2 2

2
DD 2

0 1

2

2 2 3 2

0

1

0

1

0

1

0

1

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where ϕ is the Euler function, ϕ = ∏ −=
∞q q( ) (1 )k

k
1 . Adding up, ζ ζ ζ= +s s s( ) ( ) ( )1 2 , we

confirm the result in [15]

∫ζ = + ′f x f x xRes (1)
1

2
( ) 1 ( ) d , (28)

x

x
DD 2

0

1

ζ = − −
f x f x

Res
1

2

( )

4

( )

4
, (29)DD 0 1⎜ ⎟⎛

⎝
⎞
⎠

ζ =(0) 0, (30)DD

ζ − = −
′

+ ′
−

′′

+ ′

−
′

+ ′
−

′′

+ ′

( ) ( )

( ) ( )

f x

f x f x

f x

f x

f x

f x f x

f x

f x

Res
1

2

( )

256 ( ) 1 ( )

( )

32 1 ( )

( )

256 ( ) 1 ( )

( )

32 1 ( )
, (31)

DD
2

0

0
2

0

0

2
0

2

2
1

1
2

1

1

2
1

2

⎜ ⎟⎛
⎝

⎞
⎠

∫ζ ϕ

π

′ = − + + ′

+ ′

−
′

+ ′
+

′

+ ′
+ −

−( ) A f x

f x f x
x

f x

f x

f x

f x
A

(0) 2 ln e
6

1

6

( )

( ) 1 ( )
d

( )

2 1 ( )

( )

2 1 ( )
ln ln .

A

x

x
DD 2

2

2

0

0
2

1

1
2

0

1
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The residues and the value at s = 0 can be verified from known heat kernel asymptotics
[13, 16]. Let us denote the surface of revolution by M and its boundary by ∂M . The flat space
3 induces a metric tensor on the surface of revolution, which is given by

=
+ ′

g
f x

f x

1 ( ) 0

0 ( )
.

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

We then have

ζ
π

= MRes (1)
1

4
vol( ),DD

which agrees with (28) as the Riemannian volume element of M is ∣ ∣ = + ′g f x f x( ) 1 ( )1 2 2 .
Also,

ζ
π

= − ∂MRes
1

2

1

8
vol( ),DD ⎜ ⎟⎛

⎝
⎞
⎠

which is seen to agree with (29). To compare ζ (0)DD and ζ −Res ( 1/2)DD with the results
known from the heat kernel coefficients we need some curvature tensors of the surface of
revolution. In particular, the Riemann scalar reads

= − ′′

+ ′( )
R

f x

f x f x

2 ( )

( ) 1 ( )
, (32)

2 2

and the second fundamental form for the boundary at x1, respectively x0, is

=
′

+ ′
= −

′

+ ′
K

f x

f x f x
K

f x

f x f x

( )

( ) 1 ( )
,

( )

( ) 1 ( )
. (33)x x

1

1 1
2

0

0 0
2

1 0

Use of these in the local formula for ζ (0)DD shows (30)

∫ ∫ζ
π

θ θ= + =
∂{ }R g x K h(0)

1

4
·

1

6
d d 2 d 0,

M M

DD 1 2 1 2

once the induced Riemannian volume element on the boundary is realized as ∣ ∣ =h f1 2 .
Finally, to verify ζ −Res ( 1/2)DD , note that the normal component of the Ricci tensor is

=R R1/2mm , and so

∫ζ
π

θ− = −
∂

( )R K hRes
1

2

1

1536
12 3 d ,

M

DD 2 1 2⎜ ⎟⎛
⎝

⎞
⎠

in complete agreement with (31), once the expressions (32) and (33) have been substituted.
Note, that also for other boundary conditions we will find ζ ζ=Res (1) Res (1)DD , as this

residue is proportional to the volume of the surface, so it is independent of boundary
conditions.

The structure of the computation for the other boundary conditions is as just presented.
The numerical coefficients in front of most terms will be different, but the strategy outlined
works equally well.

3.2. Dirichlet–Neumann boundary conditions

Next we consider the Neumann condition at x0 and Dirichlet condition at x1 (ND). In this case

= = ≠( ) ( )u x u x kA k0; 1, 0; cosh ( ), 0.k0
N

1
N

1
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Substituted into equation (14) for λF ( )k
ND ,

− = − − =
−

( ) ( ) ( ) ( )
D z u z x D k z

u k z x

kA
; ,

;

cosh ( )
.k

k
0
ND 2

0
N 2

1
ND 2

N 2
1

Substituting −u z x( ; )0
N 2

1 from equation (11) into −D z( )0
ND 2 , and following equation (16),

shows

− = − + − =−( )( ) ( ) ( )L z L z T z x Cln ln ln ; , 1.0
ND 2

0
DD 2

0
2

0 0
ND

For ≠k 0, substituting −u k z x( ; )k
N 2

1 from equation (11) into −D k z( )k
ND 2 , and following

equation (17), gives

− = − + − =− −( )( ) ( ) ( )L k z L k z T k z x k Rln ln ln ; , (0) e .k k k k
kAND 2 DD 2 2

0
ND 2

This reduces the calculation to the DD case, except for two terms, which follow from
equations (19) and (21), namely

− = + ∓ ′

+ ′

+ − ′
+ ′

+ ″

+ ′
+

±

−

( )

( )
( )

T z x z f x
f

zf f

z f

f

f

f f

f
O z

ln ; ln ln ( )
2 1

1

4 1 1
,

0
2

2

2 2

2

2 2 2
3

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

−
= + ∓ ′

+ ′ +

+
+

−
+

′
+ ′

+ ″

+ ′
+

±

−

( )

( )
( )

T k z x

k
t

f

k f

t

t

t

k t

t

t

f

f

f f

f
O k

ln
;

ln 1
2 1 ( 1)

4 ( 1)

2

1 1 1
.

k
2

2 3 2

2 2

2

2 2 2
3

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

Using the above expressions, we then find

ζ = −
f x f x

Res
1

2

( )

4

( )

4
,ND 0 1⎜ ⎟⎛

⎝
⎞
⎠

ζ =(0) 0,ND

ζ − = −
′

+ ′
+

″

+ ′

−
′

+ ′
−

″

+ ′

( ) ( )

( ) ( )

f x

f x f x

f x

f x

f x

f x f x

f x

f x

Res
1

2

5 ( )

256 ( ) 1 ( )

( )

32 1 ( )

( )

256 ( ) 1 ( )

( )

32 1 ( )
,

ND
2

0

0
2

0

0

2
0

2

2
1

1
2

1

1

2
1

2

⎜ ⎟⎛
⎝

⎞
⎠

∫ζ ϕ ϕ′ = − − + + ′

+ ′
− −( )( ) ( ) A f x

f x f x
x(0) 2 ln e ln e

6

1

6

( )

( ) 1 ( )
dA A

x

x
ND 4 2

2

20

1
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+
′

+ ′
+

′

+ ′
−

f x

f x

f x

f x

( )

2 1 ( )

( )

2 1 ( )
ln 2,0

0
2

1

1
2

where the residues at =s 1 2, = −s 1 2, and the value at s = 0 compare favorably with the
known results as they follow from known heat kernel coefficients [13, 16].

Similarly, for Dirichlet condition at x0 and Neumann condition at x1 (DN), one has

= = ≠( ) ( )v x v x kA k0; 1, 0; cosh ( ), 0.k0
D

1
D

1

Substituted into equation (14) for λF ( )k
DN , gives

− = − − =
−

( ) ( ) ( ) ( )
D z v z x D k z

v k z x

kA
; ,

;

cosh ( )
.k

k
0
DN 2

0
D 2

1
DN 2

D 2
1

Substituting in v y x( ; )k
D

1 from equation (12), and following equations (16) and (17), one
verifies

− = − + − =+( ) ( ) ( )L z L z T z x Cln ln ln ; , 1,0
DN 2

0
DD 2

0
2

1 0
DN

− = − + − =+ −( )( ) ( ) ( )L k z L k z T k z x k Rln ln ln ; , (0) e .k k k k
kADN 2 DD 2 2

1
DN 2

Again skipping to write out answers for ζ1 and ζ2, the results are

ζ = − +
f x f x

Res
1

2

( )

4

( )

4
,DN 0 1⎜ ⎟⎛

⎝
⎞
⎠

ζ =(0) 0,DN

ζ − = −
′

+ ′
−

″

+ ′

−
′

+ ′
+

″

+ ′

( ) ( )

( ) ( )

f x

f x f x

f x

f x

f x

f x f x

f x

f x

Res
1

2

( )

256 ( ) 1 ( )

( )

32 1 ( )

5 ( )

256 ( ) 1 ( )

( )

32 1 ( )
,

DN
2

0

0
2

0

0

2
0

2

2
1

1
2

1

1

2
1

2

⎜ ⎟⎛
⎝

⎞
⎠

∫ζ ϕ ϕ′ = − − + + ′

+ ′

−
′

+ ′
−

′

+ ′
−

− −( )( ) ( ) A f x

f x f x
x

f x

f x

f x

f x

(0) 2 ln e ln e
6

1

6

( )

( ) 1 ( )
d

( )

2 1 ( )

( )

2 1 ( )
ln 2.

A A

x

x
DN 4 2

2

2

0

0
2

1

1
2

0

1

The value and residue are again in agreement with expectations from the heat kernel
coefficients. Also, ζ s( )ND and ζ s( )DN are symmetric as expected.

3.3. Neumann boundary conditions

Unlike in previous cases, zero is an eigenvalue for the Neumann boundary condition, which
makes certain modifications necessary. First we note that

= = −( ) ( )v x
y

v x B0; 0,
d

d
0; ,0

N
1 0

N
1
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where

∫= + ′B f x f x x( ) 1 ( ) d . (34)
x

x
2

0

1

Substituted into equation (15) for F y( )0
NN , this yields

− =
−

( ) ( )
D z

v z x

z B

;
.0

NN 2 0
N 2

1

2

For ≠k 0, instead

=( )v x k kA0; sinh ( ),k
N

1

and substituted into equation (14) for F y( )k
NN shows

− =
−

( ) ( )
D k z

v k z x

k kA

;

sinh ( )
.k

kNN 2

N 2
1

Using the WKB expansion of v y x( ; )k
N

1 in equation (13), and following equations (16) and
(17), the relevant pieces are

− = − + − + − =− +( ) ( ) ( ) ( )L z L z T z x T z x C z Bln ln ln ; ln ; , ,0
NN 2

0
DD 2

0
2

0 0
2

1 0
NN 2

− = − + −

+ − = −

−

+ −

( )
( )

( ) ( ) ( )
( )

L k z L k z T k z x k

T k z x k R

ln ln ln ;

ln ; , (0) e .

k k k

k k
kA

NN 2 DD 2 2
0

2
1

NN 2

From here, one verifies the final answers are

ζ = +
f x f x

Res
1

2

( )

4

( )

4
,NN 0 1⎜ ⎟⎛

⎝
⎞
⎠

ζ = −(0) 1,NN

ζ − = −
′

+ ′
+

″

+ ′

−
′

+ ′
+

″

+ ′

( ) ( )

( ) ( )

f x

f x f x

f x

f x

f x

f x f x

f x

f x

Res
1

2

5 ( )

256 ( ) 1 ( )

( )

32 1 ( )

5 ( )

256 ( ) 1 ( )

( )

32 1 ( )
,

NN
2

0

0
2

0

0

2
0

2

2
1

1
2

1

1

2
1

2

⎜ ⎟⎛
⎝

⎞
⎠

∫ζ ϕ

π

′ = − + + ′

+ ′

+
′

+ ′
−

′

+ ′
− −

−( ) A f x

f x f x
x

f x

f x

f x

f x
B

(0) 2 ln e
6

1

6

( )

( ) 1 ( )
d

( )

2 1 ( )

( )

2 1 ( )
ln (4 ) ln ,

A

x

x

2
NN 2

2

2

0

0
2

1

1
2

0

1

and the same remarks as for the other boundary conditions hold.

4. Unseparated boundary conditions

For unseparated boundary conditions, we first consider two special cases, namely, periodic
boundary conditions (P)
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= =u x u x v x v x( ) ( ), ( ) ( ),1 0 1 0

and anti-periodic boundary conditions (AP)

= − = −u x u x v x v x( ) ( ), ( ) ( ).1 0 1 0

We assume =f x f x( ) ( )0 1 for both conditions. The periodic boundary condition represents a
torus. The associated functions are from (7)

= − − = + +F y u y x v y x F y u y x v y x( ) 2 ( ; ) ( ; ), ( ) 2 ( ; ) ( ; ). (35)k k k k k k
P N

1
D

1
AP N

1
D

1

4.1. Periodic and antiperiodic conditions

For periodic boundary conditions, zero is an eigenvalue.The relevant information needed is

= =F
y

F AB(0) 0,
d

d
(0) ,0

P
0
P

where A and B are defined in (23) and (34). Substituted into equation (15) for F y( )0
P ,

− =
− + − −

( ) ( ) ( )
D z

u z x v z x

z AB

; ; 2
.0

P 2 0
N 2

1 0
D 2

1

2

For ≠k 0,

= −F kA(0) 2(1 cosh ( )).k
P

Substituted into equation (14) for F y( )k
P ,

− =
− + − −

−( ) ( ) ( )
D k z

u k z x v k z x

kA

; ; 2

2(cosh ( ) 1)
.k

k kP 2

N 2
1

D 2
1

Using the WKB expansions of u y x( ; )k
N

1 and v y x( ; )k
D

1 in D y( )k
P , and following

equations (16) and (17), one obtains

− = − + − + − =− +( ) ( ) ( ) ( )L z L z T z x T z x C z ABln ln ln ; ; , ,0
P 2

0
DD 2

0
2

0 0
2

1 0
P 2⎡⎣ ⎤⎦

− = − +
− + −

+ = −

− +

−

( ) ( ) ( ) ( )

( )

L k z L k z
T k z x T k z x

k

L R

ln ln ln
; ;

2
,

(0) (0) 1 e .

k k
k k

k k
kA

P 2 DD 2
2

0
2

1

P P 2

Using the assumption that =f x f x( ) ( )0 1 , and writing t x( )0 as t0, we have

∫ δ
− = + ′ + ′

+ ′
− +( )L z z f

f

zf f
x

z f x
O

z
ln 1

8 1
d

32 ( )

1
,

x

x

0
P 2 2

2

2 2

0
2

2 2
0

3
0

1
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

∫

δ

− = + − +
+

′

+ ′

−
+

+

( ) ( )

( )

L k z
k

p
t

t

k t

f

f f
x

t

k t
O

k

ln 1 1
8 ( 1) 1

d

32 1

1
,

k
x

x
P 2

2

5 2

2

2

0
2

0
2

2
0

3 3

0

1
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟
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where

δ =
′

+ ′
−

′

+ ′

f x

f x

f x

f x

( )

1 ( )

( )

1 ( )
. (36)0

0

0
2

1

1
2

From the expansion we obtain for the k = 0 mode

∫ζ = + ′f x xRes
1

2

1

2
1 ( ) d , (37)

x

x

1
P 2

0

1
⎜ ⎟⎛
⎝

⎞
⎠

ζ = −(0) 1, (38)1
P

∫ζ
π

− = ′

+ ′

f x

f x f x
xRes

1

2

1

16

( )

( ) 1 ( )
d , (39)

x

x

1
P

2

2 20

1
⎜ ⎟⎛
⎝

⎞
⎠

ζ ′ = − −A B(0) ln ln , (40)1
P

and for the ≠k 0 modes

∫ζ = − + ′f x xRes
1

2

1

2
1 ( ) d , (41)

x

x

2
P 2

0

1
⎜ ⎟⎛
⎝

⎞
⎠

ζ =(0) 0, (42)2
P

∫ζ
π

δ− = − ′

+ ′
−f x

f x f x
x

f x
Res

1

2

1

16

( )

( ) 1 ( )
d

3

512 ( )
, (43)

x

x

2
P

2

2 2 0
0
2

0

1
⎜ ⎟⎛
⎝

⎞
⎠

∫ζ ϕ′ = − + + ′

+ ′
−( ) A f x

f x f x
x(0) 4 ln e

6

1

6

( )

( ) 1 ( )
d . (44)A

x

x

2
P

2

20

1

Adding up, ζ ζ ζ= +s s s( ) ( ) ( )1 2 , we get

ζ =Res
1

2
0,P ⎜ ⎟⎛

⎝
⎞
⎠

ζ = −(0) 1,P

ζ δ− = −
f x

Res
1

2

3

512 ( )
,P

0
0
2⎜ ⎟⎛

⎝
⎞
⎠

and

∫ζ ϕ′ = − + + ′

+ ′
− −−( ) A f x

f x f x
x A B(0) 4 ln e

6

1

6

( )

( ) 1 ( )
d ln ln .A

x

x
P

2

20

1

The first of the above equations reflects that the torus does not have a boundary. The second
equation says that its Euler characteristic is zero, taking into account that the one zero mode is
not included in the zeta function.
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For antiperiodic boundary condition, the corresponding equations are

− =
− + − +

− =
− + − +

+

( ) ( ) ( )

( ) ( ) ( )
D z

u z x v z x

D k z
u k z x v k z x

kA

; ; 2

4
,

; ; 2

2(cosh ( ) 1)
,k

k k

0
AP 2 0

N 2
1 0

D 2
1

AP 2

N 2
1

D 2
1

which imply that

− = − =( ) ( )L z L z Cln ln , 4,0
AP 2

0
P 2

0
AP

− = − + − = + −( ) ( ) ( ) ( )L k z L k z L R k zln ln , (0) 1 e .k k k k
kAAP 2 P 2 AP AP 2 2

The resulting residues of ζ s( )1 and ζ s( )2 are the same as those for periodic boundary
conditions. Their values and derivatives at s = 0 are

ζ =(0) 0, (45)1
AP

ζ ′ = −(0) ln 4, (46)1
AP

ζ =(0) 0, (47)2
AP

∫ζ ϕ ϕ′ = − − + + ′

+ ′
− −( )( ) ( ) A f x

f x f x
x(0) 4 ln e ln e

6

1

6

( )

( ) 1 ( )
d . (48)A A

x

x

2
AP 2

2

20

1

They lead to

ζ =Res
1

2
0,AP ⎜ ⎟⎛

⎝
⎞
⎠

ζ =(0) 0,AP

ζ δ− = −
f x

Res
1

2

3

512 ( )
,AP

0
0
2⎜ ⎟⎛

⎝
⎞
⎠

and

∫ζ ϕ ϕ′ = − − + + ′

+ ′
−− −( )( ) ( ) A f x

f x f x
x(0) 4 ln e ln e

6

1

6

( )

( ) 1 ( )
d ln 4.A A

x

x
AP 2

2

20

1

Similar remarks as those made above for periodic boundary conditions apply.

4.2. Klein bottle

We consider a special unseparated boundary condition that involves the azimuthal angle θ,

θ θ θ θ= − = −( ) ( ) ( ) ( )u x u x v x v x, , , , , .1 0 1 0

We assume =f x f x( ) ( )0 1 . The boundary condition represents a Klein bottle (K). For k = 0, it
is the same as periodic boundary condition. Therefore

ζ ζ=s s( ) ( ).K
1 1

P

For ≠k 0, the eigenfunction are no longer in the form of ϕ θx k( ) exp (i ). Instead, the
eigenfunction is either
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θ ϕ θ=u x x k( , ) ( ) cos ( ),

with periodic ϕ x( ), or

θ ϕ θ=u x x k( , ) ( ) sin ( ),

with antiperiodic ϕ x( ). As a result

ζ
ζ ζ

=
+

s
s s

( )
( ) ( )

2
,K

2
2
P

2
AP

and

ζ =Res
1

2
0,K ⎜ ⎟⎛

⎝
⎞
⎠

ζ = −(0) 1,K

ζ δ− = −
f x

Res
1

2

3

512 ( )
,K

0
0
2⎜ ⎟⎛

⎝
⎞
⎠

∫ζ ϕ′ = − + + ′

+ ′
− −−( ) A f x

f x f x
x A B(0) 2 ln e

6

1

6

( )

( ) 1 ( )
d ln ln .K A

x

x
2

2

20

1

Once again, observations made earlier regarding the first two equations are valid also for the
Klein bottle.

5. Nonsmooth surfaces

For the examples with unseparated boundary conditions, a smooth surface requires that
′ = ′f x f x( ) ( )0 1 , which implies that ζ − =Res ( 1/2) 0P . On the other hand, if ′ ≠ ′f x f x( ) ( )0 1 ,

the kink points on the torus would generate a nonzero residue of the zeta function at −1/2. In
this section we will study the effect of kink points in f(x) inside the interval x x[ , ]0 1 on the zeta
function for various boundary conditions. For clarity we assume f(x) has only one kink point
at xK. Let

= ⩽ ⩽ = < ⩽f x f x x x x f x f x x x x( ) ( ), , and ( ) ( ), ,K K1 0 2 1

where f x( )1 and f x( )2 are smooth, and

= ′ ≠ ′f x f x f x f x( ) ( ), ( ) ( ).K K K K1 2 1 2

The WKB method cannot be applied to nonsmooth f(x) directly, but it can be applied to f1 and
f2 respectively. Introducing the fundamental solution for the intervals x x[ , ]K0 and x x[ , ]K 1 as

λ
λ λ

λ λ
λ

λ λ

λ λ
= =E x

u x u x

v x v x
E x

u x u x

v x v x
( ; )

( ; ) ( ; )

( ; ) ( ; )
( ; )

( ; ) ( ; )

( ; ) ( ; )
,k

k k

k k
k

k k

k k
,1

,1
N

,1
D

,1
N

,1
D ,2

,2
N

,2
D

,2
N

,2
D

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

with the conditions λ =E x I( ; )k,1 0 and λ =E x I( ; )k K,2 , the fundamental solution from x0 to
x1 is

=E y x E y x E y x( ; ) ( ; ) ( ; ). (49)k k k K1 ,2 1 ,1

J. Phys. A: Math. Theor. 48 (2015) 145204 T Lu et al

16



First consider Dirichlet boundary condition. By equation (49)

= +u x u x u x u x v x( ) ( ) ( ) ( ) ( ).K K
D

1 2
N

1 1
D

2
D

1 1
D

Following equation (16)

= +
+ +

+ −L
u x u x

T x T x
T x T x

( ) ( )

2 ( )2 ( )
( ) ( ) .K

K
K K

DD 1 2 1

1 0 2
1 2

⎡⎣ ⎤⎦
For k = 0, taking the logarithm

∫ ∫− =
−

+
−

−
− + −

− +

( ) ( ) ( )

( ) ( )

L z
T z x

p x
x

T z x

p x
x

T z x T z x
K z

ln
;

( )
d

;

( )
d

ln ; ln ;

2
ln 2 ( ),

x

x

x

x

0
DD 2

0
2

0
2

0
2

0 0
2

1

K

K0

1

where

=
− + −

−
− + −− +( ) ( ) ( ) ( )

K z
T z x T z x T z x T z x

( ) ln
; ;

2

ln ; ln ;

2
.

K K K K0,2
2

0,1
2

0,1
2

0,2
2

Note, that K(z) would vanish if ′ = ′f x f x( ) ( )K K1 2 . For ′ ≠ ′f x f x( ) ( )K K1 2 ,

δ δ
= − + −( )K z

zf x z f x
O z( )

4 ( ) 32 ( )
,K

K

K

K

2

2 2
3

where

δ =
′

+ ′
−

′

+ ′

f x

f x

f x

f x

( )

1 ( )

( )

1 ( )
. (50)K

K

K

K

K

2

2
2

1

1
2

Using equation (24)

∫

δ

− = + ′ + ′

+ ′
+ ′

+ ′

−
− + −

− − + −

( )

( ) ( ) ( )

L z z f
f

zf f
x

f

zf f

T z x T z x

z f x
O z

ln 1
8 1

d
4 1

ln ; ln ;

2
ln 2

32 ( )
.

x

x

x

x

K

K

0
DD 2 2

2

2 2 2

0
2

0 0
2

1 2

2 2
3

0

1

0

1⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

The formula for ζRes (1/2)1
DD , ζ (0)1

DD , ζ −Res ( 1/2)1
DD and ζ ′(0)1

DD are not affected, though
ζ −( 1)1

DD changes. Similarly

∫ ∫− =
− −

+
− −

−
− + −

+
( ) ( )

( ) ( ) ( )

( ) ( )

L k z
T k z x k

p x
x

T k z x k

p x
x

T k z x k T k z x k
K k z

ln
;

( )
d

;

( )
d

ln ; ln ;

2
( , ),

k
x

x k

x

x k

k k

DD 2
2 2

2
0

2
1

K

K0

1
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where

δ δ
=

+
−

+
+ −

( )
( )

( )
K k z

t

k t

t

k t
O k( , )

4 1 32 1
,K K

K

K K

K
2 3 2

2 2

2 3
3

in which =t zf x( )K K
2 . With equation (26), this shows

∫

δ

− = + − +
+

′

+ ′

+
+

′

+ ′

−
− + −

−
+

+ −

( ) ( )

( )

( ) ( )

( )

( )

( )

L k z
k

p
t

t

k t

f

f f
x

t

k t

f

f

T k z x k T k z x k

t

k t
O k

ln 1 1
8 ( 1) 1

d

4 ( 1) 1

ln ; ln ;

2

32 1
.

k
x

x

x

x

k k

K K

K

DD 2
2

5 2

2

2

3 2 2

2
0

2
1

2 2

2 3
3

0

1

0

1

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

The formula for ζRes (1/2)2
DD , ζ (0)2

DD and ζ ′(0)2
DD are not affected. However,

ζ −Res ( 1/2)2
DD changes, and we find

ζ

δ

− = −
′

+ ′
−

′′

+ ′

−
′

+ ′
−

′′

+ ′

−

( ) ( )

( ) ( )

f x

f x f x

f x

f x

f x

f x f x

f x

f x

f x

Res
1

2

( )

256 ( ) 1 ( )

( )

32 1 ( )

( )

256 ( ) 1 ( )

( )

32 1 ( )

3

512 ( )
. (51)K

K

DD
2

0

0
2

0

0

2
0

2

2
2

2
2

2

2

2
2

2

2

⎜ ⎟⎛
⎝

⎞
⎠

If there is more than one kink point, ζ −Res ( 1/2)DD will have an extra term
δ− f x3 (512 ( ))K K

2 for each kink point. We will prove that the effect on the zeta function is
the same for other boundary conditions, by showing that the ratio between L y( )DD and the
L(y) for a given boundary condition is unaffected by kink points. For clarity we drop the
dependence on k and y in the derivation and denote the leading term of u x( )D by u xˆ ( )D , etc.
Then for a kink point in f(x) at xK,

= +
−( )E x

T x
T x u xˆ ( )

1
( )

( ) 1 ˆ ( ),K
K

K1
1

1 0 1
D

⎛
⎝⎜

⎞
⎠⎟

= +
−( )E x

T x
T x u xˆ ( )

1
( )

( ) 1 ˆ ( ),K2 1
2 1

2 2
D

1
⎛
⎝⎜

⎞
⎠⎟

which gives

= = +
−( )E x E x E x

T x
T x u xˆ ( ) ˆ ( ) ˆ ( )

1
( )

( ) 1 ˆ ( ),K1 2 1 1
2 1

1 0
D

1
⎛
⎝⎜

⎞
⎠⎟
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where

= +− +u x u x u x T x T xˆ ( ) ˆ ( ) ˆ ( ) ( ) ( ) .K K K
D

1 2
D

1 1
D

2 1
⎡⎣ ⎤⎦

It indicates that the ratios between u xˆ ( )N
1 , v xˆ ( )D

1 , v xˆ ( )N
1 and u xˆ ( )D

1 are unaffected by the
kink point, therefore the corresponding zeta functions will change as much as ζ s( )DD .

6. Conclusions

This paper provides the analysis of the spectral zeta function for the Laplacian on a surface of
revolution with a variety of boundary conditions imposed. Explicit results for several residues
and values of the zeta function are given; all are in agreement with results known for more
general geometries [13]. Furthermore, surprisingly simple results for the determinant are
found. Our analysis allowed for the introduction of kink points such that the effect of non-
smoothness could be studied. Additional contributions to some properties due to the kink
point were found as was expected from a general perspective [14]. In some detail, denoting by
Σ the circle of the surface located at xK, in the notation of [14] our continuity assumptions on
the eigenfunctions along Σ imply U = 0. Then, ζ (0)DD and ζ −Res ( 1/2)DD obtain additional
contributions due to the fact that the surface is not smooth, namely (see theorem 2.3 in [14]
restricted to the surface of revolution)

∫ ∫ ∫

∫ ∫

ζ
π

θ θ θ

ζ
π

θ θ

= + + +

− = − + +

Σ
Σ

Σ
Σ

∂
+ −

∂
+ −

{ }
{ ( )

( )

( )

R g x K h K K h

R K h K K h

(0)
1

4
·

1

6
d d 2 d 2 d ,

Res
1

2

1

1536
12 3 d

9

2
d ,

M M

M

DD 1 2 1 2 1 2

DD 2 1 2 2 1 2⎜ ⎟⎛
⎝

⎞
⎠

⎫⎬⎭
where +K , respectively −K , are the second fundamental forms as induced from the surface to
the left, respectively to the right, of xK, and ∣ ∣Σh 1 2 is the Riemannian volume element of the
circle at xK, namely ∣ ∣ =Σh f x( )K

1 2 . The additional contribution along Σ in ζ (0)DD

guarantees that still ζ =(0) 0DD , as this piece is needed to compensate a contribution coming
from the integral along M because of the non-smoothness at xK.

The contribution along Σ in ζ −Res ( 1/2)DD generates exactly the last term in (51), so that
our result is in agreement with [14]. This was not completely clear as in [14] continuity of the
metric is assumed which here is not given. Also in agreement with our findings, [14] predicts
that these additional contributionas are independent of the boundary conditions imposed at
∂M .

Appendix. Spectral function of Sturm–Liouville equation

In this appendix we give an independent proof that equations (5) and (7) not only determine
the eigenvalues but also the degeneracy correctly.

Consider the Sturm–Liouville problem.

λ= − ′ ′ + = ⩽ ⩽ u Pu Qu Ru t( ) ( ) , 0 1,

where >P 0, Q, >R 0, and u are functions of t, and for simplicity we have chosen the
interval [0, 1]. With = ′v Pu , the equation can be written as

J. Phys. A: Math. Theor. 48 (2015) 145204 T Lu et al

19



λ
′ =

−
−( ) ( )u

v
P

Q R
u
v

0
0

.
1⎛

⎝⎜
⎞
⎠⎟

P(t), Q(t), and R(t) are not necessarily continuous. We write the fundamental solution λE t( ; )
as in equation (3). As described in section 2, to guarantee that  is self-adjoint, the boundary
condition can be chosen as separated, equation (4), or unseparated ones, equation (6). For
separated boundary conditions, the corresponding eigenvalues are the zeros of the following
function of λ, see equation (5)

λ λ λ= + = −( ) ( ) ( )( )F a b
c d

E c d E b
a

( ) det
0 0

0 0 ( ; 1) ( ; 1) , (52)⎜ ⎟⎛
⎝

⎞
⎠

whereas for unseparated conditions the corresponding eigenvalues are the zeros of, see
equation (7),

λ λ λ λ λ λ= − = − − + +F E M u av cu bv( ) det ( ( ; 1) ) 2 d ( ; 1) ( ; 1) ( ; 1) ( ; 1). (53)N N D N

For the separated boundary condition, each eigenvalue is simple [23]. We will prove that the
corresponding λF ( ) also has only simple zeros. For the unseparated boundary condition, the
eigenvalues can be simple or double. For example, for P = 1, Q = 0, R = 1, and the periodic
boundary condition, all eigenvalues are double except for λ = 0. We will prove that each zero
of λF ( ) has the same multiplicity as that of the corresponding eigenvalue.

Taking the derivative with respect to λ on both sides of the following equation,

λ=( )u Ru ,N N

we have

λ
λ

λ
∂
∂

= ∂
∂

+ u
R

u
Ru .

N N
N

⎛
⎝⎜

⎞
⎠⎟

The solution is

∫ ∫λ
λ

λ τ λ τ λ τ τ λ τ λ τ τ∂
∂

= − ( )u t
u t R u u u t R u

( ; )
( ; ) ( ) ( ; ) ( ; )d ( ; ) ( ) ( ; ) d .

t tN
N

0

N D D

0

N 2

Similarly

∫ ∫λ
λ

λ τ λ τ τ λ τ λ τ λ τ τ∂
∂

= −( )u t
u t R u u t R u u

( ; )
( ; ) ( ) ( ; ) d ( ; ) ( ) ( ; ) ( ; )d .

t tD
N

0

D 2 D

0

N D

Setting t = 1, we have

∫ ∫
∫ ∫

λ
λ
λ

λ
λ
λ

λ λ λ

λ λ λ

λ
λ

=

=
−

−

×

( )

( )

u

u
K

u

u

R t u t u t t R t u t t

R t u t t R t u t u t t

u

u

d

d

( ; 1)

( ; 1)
( )

( ; 1)

( ; 1)

( ) ( ; ) ( ; )d ( ) ( ; ) d

( ) ( ; ) d ( ) ( ; ) ( ; )d

( ; 1)

( ; 1)
. (54)

N

D

N

D

0

1
N D

0

1
N 2

0

1
D 2

0

1
N D

N

D

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠
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⎛
⎝
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⎠
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It is easy to see that

λ
λ
λ

λ
λ
λ

=
v

v
K

v

v

d

d

( ; 1)

( ; 1)
( )

( ; 1)

( ; 1)
,

N

D

N

D

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

and therefore

λ
λ λ λ=E E K

d

d
( ; 1) ( ; 1) ( ).T

For separated the boundary condition, if λ is a zero of F, by equation (52) there exists ≠k 0
such that

λ =( ) ( )c d E k a b( ; 1) ,

≠k 0, because ≠c d( , ) (0, 0) and λE ( ; 1) is nonsingular. Then

∫
λ

λ λ λ λ

λ λ

= − = −

= −

( ) ( )( ) ( )F c d E K b
a

k a b K b
a

k R t au t bu t t

d

d
( ) ( ; 1) ( ) ( )

( ) ( ; ) ( ; ) d ,

T T

0

1 D N 2⎡⎣ ⎤⎦
which is nonzero since λu t( ; )N and λu t( ; )D are linearly independent. Therefore λ is a simple
zero of F.

For the unseparated boundary condition, if λ is a double eigenvalue, λ =E M( ; 1) , and
so λ is a zero of each element of λ −E M( ; 1) . By equation (53) λ is a zero of λF ( ) with
multiplicity at least 2. We prove that the multiplicity is indeed 2 by noticing

λ
λ λ

λ
λ λ λ= = =F

E
E K K

1

2

d

d
( ) det

d ( ; 1)

d
det ( ; 1)det ( ) det ( ),T T

2

2

which is positive by the Cauchy–Schwarz inequality and because λu t( ; )N and λu t( ; )D are
linearly independent. Finally, to prove that a single eigenvalue of L must be a single zero of F,
we will show that if λ is a zero of F with multiplicity more than 1, λ =E M( ; 1) must hold.
Indeed, if λ is a zero of F with multiplicity at least 2

λ
ϵ

λ ϵ λ− = + − =
ϵ=

( )( )E M E I K Mdet ( ( ; 1) ) 0,
d

d
det ( ; 1) ( ) 0.T

0

Let λ= − −A I Me ( ; 1)1 , we have

ϵ
ϵ λ= + =

ϵ=
( )A A Kdet 0,

d

d
det ( ) 0.T

0

Combining =Adet 0 with − = =I A Mdet ( ) det 1, we have =Atr 0. Notice that we also
have λ =Ktr ( ) 0T . Denoting the elements of A and K by aij and kij, we have

+ = = +a k a k a k a k a k2 . (55)11 22 22 11 11 22 12 12 21 21

On the other hand, =Adet 0 implies

− =a a a ,12 21 11
2

and >Kdet 0T implies

− >k k k .12 21 22
2
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Consequently

+ ⩾ ⩾a k a k a k a k a k2 2 .12 12 21 21 12 12 21 21 11 22

Therefore equation (55) only holds when =a 011 , which implies A = 0, or λ =E M( ; 1) .
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