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Nonadiabatic transitions in finite-time adiabatic rapid passage
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To apply the adiabatic rapid passage process repetitively [T. Lu, X. Miao, and H. Metcalf, Phys. Rev. A 71,
061405(R) (2005)], the nonadiabatic transition probability of a two-level atom subject to chirped light pulses
over a finite period of time needs to be calculated. Using a unitary first-order perturbation method in the
rotating adiabatic frame, an approximate formula has been derived for such transition probabilities in the entire

parameter space of the pulses.
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I. BACKGROUND

Adiabatic rapid passage (ARP) is a long-studied method
of inverting the population of a two-level system that has
been well known since the early days of magnetic resonance.
The population inversion occurs as the result of a very large
frequency sweep through the resonance condition in a very
long time, so the sweeps are typically approximated as infi-
nite. By contrast, exploitation of ARP for producing large
optical forces requires repeated sweeps of both the optical
frequency and the amplitude of the light field so they are
necessarily finite in both frequency range and duration. In
either case the population inversion may be incomplete, and
we denote the probability for not making the desired adia-
batic transition as P,,,.

When the light beams are oppositely directed, a pair of
appropriately timed (nonoverlapping) sweeps coherently ex-
changes momentum between them, imparting the difference
2#ik to the atoms. When these cycles are repeated at rate
w,, >, the force is Fygp=hkw,,/ 7> hky/2, the usual radia-
tive force on the atoms [1,2]. Here A=27/k is the wave-
length of the transition to an excited state of lifetime 1/v. In
this paper we show that the details of both frequency and
amplitude sweep wave forms can have a dramatic impact on
the parameter dependence of P, ;. If the counterpropagating
light pulses overlap in time in the interaction region, the
momentum exchange between each pair can exceed 27k due
to multiphoton transitions [3]. However, this force is not di-
rectly related to P,,,,, and it is beyond the scope of this paper.

Numerical calculations for repetitive sweeps [1] have
shown that sinusoidal wave forms result in P,,, distributions
that have desirable consequences with readily accessible pa-
rameters, and experiments confirm these results [2]. How-
ever, there are modest differences between the measurements
and the calculations, and these may be partially attributed to
sweep wave forms that are not precisely sinusoidal. To ex-
plore this, we have recalculated the ARP map of Ref. [1]
with different wave forms, and have found very significant
qualitative differences among the results. In addition, we
have developed an analytic approximation for P,,,; that is
appropriate for a large class of finite wave forms.

We consider the reference frame that rotates at the fre-
quency of the light field so that the Hamiltonian H can be
written as [4]
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where 6= w;— w, is the detuning of the light at frequency w,
from the atomic resonance at ,, and Q= e(g|E-rle)/# is the
Rabi frequency that characterizes the on-resonance, electric
dipole interaction between the light and atoms. The ARP
process can be envisioned in a dressed-atom view of the
energies of the two-level system (see Refs. [1,5]). An alter-
native view is the rotation of the Bloch vector IS(Z)
=(y(t)|a|y(t)), where the & is an artificial vector whose
components are the Pauli matrices, on the Bloch sphere un-
der the influence of the modulated light field. The vertical
axis (z) of the sphere is the population difference term and
the horizontal axes are related to the relative phase of the
atomic superposition (see Ref. [4]). The equation of motion,
dR/dt=Q(t) X R, can be derived from Eq. (1). Here Q(z)
is an artificial “torque” vector having components
[Q(1),0,8(1)].

The process of ARP in this view involves a synchronized
sweep of both the amplitude and frequency of the light so
that the torque vector sweeps along a meridian from one pole
to the other. As illustrated in Fig. 1(a), if the initial state lies

FIG. 1. Adiabatic following of the Bloch vector along the track
of the torque vector of a modulated light pulse. (a) The wavy curve
connecting two poles is a typical trace of the Bloch vector on the
Bloch sphere. The meridian close to it is the trace of the torque
vector. (b) The same pair of traces in the adiabatic frame. The
meridian reduces to a fixed point at origin in the adiabatic frame.
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FIG. 2. Contour map of P,,,, for sinusoidal pulses. (a) The profiles of the pulse detuning and Rabi frequency. (b) The contour curves of
P,,4=0.1,0.01,.... The darkest regions represent zeros of P,,,,. The point A with coordinates [25, 18.724] in part (b) corresponds to the trace
of Bloch vector shown in Fig. 1. (c) The contour plot of the approximate P,,,.

in an eigenstate, R will start from a pole and precess around
the torque vector to the other pole. As long as the sweep is
slow enough, the population will be completely inverted at
the end. Figure 1(b) shows the trace of the Bloch vector in
the adiabatic frame. The adiabatic frame rotates together
with the torque vector along the meridian (but without pre-
cession), so that the torque vector is fixed at the origin,
which is point O in Fig. 1(b), while the Bloch vector starts
from and ends at the same point O over the duration of a
pulse.

If the sweep is not slow enough, the Bloch vector does not
follow the torque vector adiabatically, and there is a small
fraction of the population not inverted at the end of each
sweep. The amount of the small fraction is called the nona-
diabatic transition probability, denoted by P,,,;. In order to
design sweep schemes with vanishingly small P,,,; we need
to calculate P,,, for various pulse schemes and parameters.
The ARP process is usually used for one-time population
inversions, where the sweep time can be regarded as infinite.
Extensive research has been done in this area [6—10], while
the focus of this paper is on the class of finite-time sweeps.

II. CHARACTERISTICS OF THE P,,; DISTRIBUTION

The value of P,,; resulting from a chirped light pulse
depends on the maximum pulse intensity, denoted by (), the
maximum detuning, denoted by &, and the pulse profile. We
start from a sinusoidally varying light pulse, whose time de-
pendence is described by

Q) = Qp cos w,t, 8t) = & sin w,t, (2)

where w,,=m/T and -T/2<t<T/2. The pulse profile is
plotted in Fig. 2(a). The special case of {,=4, has been
studied analytically in some detail [11]. Assuming that the
atom starts in the ground state, we integrate the Schrodinger
equation numerically from —-7/2 to 7/2 and calculate the
remaining ground state population at the end, which gives
P,.q for the process. From dimensional analysis, P,,; is a
function of two dimensionless parameters &,/ w,, and Qy/ ®,,.

For the case of y= &, we reproduce the results of Ref. [11].
The two-dimensional map of P, is plotted in Fig. 2(b). The
lower-left corner of Fig. 2(b) has been corroborated experi-
mentally [2].

The P,,, map is divided into two regions—oscillatory and
nonoscillatory. Just as pointed out in Ref. [10] for infinite-
time transitions, each oscillation is connected to an integer
number of precessions of the Bloch vector during the time
evolution. For example, Fig. 1 shows the trace of the Bloch
vector under the influence of a sinusoidal light pulse with
parameters at point A in Fig. 2(b). Point A in Fig. 2(b) lies on
the 11th curve counted from the origin along the diagonal.
Correspondingly, Fig. 1(b) shows that in the adiabatic frame,
the Bloch vector precesses exactly 11 cycles while the torque
vector is fixed at the origin. Along each “loop” of zeros of
P, .q [the darkest regions in Fig. 2(b)], there is a special point
connecting the upper arc and lower arc, whose precession
number differs by one.

Roughly speaking, in the nonoscillatory region &,> (),
the nonadiabatic transition is dominated by the barely
avoided crossing at resonance, and the Landau-Zener for-
mula applies,
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In the oscillatory region, the oscillation amplitude of P,

decreases from 1 to 0 as &,/{), increases. For an unchirped

pulse, i.e., 5,=0,

T2
Pua= cosz( f Q(t)dl) = cosz(%) ) (4)
0 m

It agrees with the area theorem [4]. To attain complete popu-
lation inversion, i.e., P,,;,=0, with an unchirped pulse, the
integral of the eigenfrequency (r) over the entire pulse
must be an odd multiple of 7. In the adiabatic limit, i.e.,
Qy— and §,— o simultaneously with their ratio fixed, or
equivalently, #— 0, we will show later that
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FIG. 3. Contour map of P, for the Demkov-Kunike model. (a) The profiles of the detuning and Rabi frequency. (b) The contour curves

of P,,;=0.1,0.01,.... The darkest regions represent zeros of P,,,. (c) The contour plot of the approximate P,
&5\ ) 12 ’ In the following section we will derive a simple formula
Prga~ T s Q' ()dt that serves as a good approximation for P,,; of finite-time
Q(E) 0 pulses in the entire map.

-2 7
= (Qin) sin2<fO Q’(ﬁdt), (5)

where Q'(t)=18(1)+Q%(7) is the generalized Rabi fre-
quency. To attain complete population inversion in the adia-
batic limit, the integral of the eigenfrequency ' (r) over the
entire pulse must be an integer multiple of 2. All charac-
teristics of the P,,; map described above are true for general
pulse profiles. Precise asymptotic forms of P,,; will be pre-
sented with detailed derivation in a forthcoming paper.

It is instructive to compare the P,,; map for finite-time
sinusoidal pulses, which is not exactly solvable, to that for
infinite-time pulses in the Demkov-Kunike (DK) model
[7,10], which has a similar pulse profile but is exactly solv-
able. The time dependence of the field in the DK model is

O(r)=Q, sech(lt), 1) =6, tanh(lt> ) (6)
2T 2T

The pulse profile of the DK model, which is plotted in Fig.
3(a), is similar to that of sinusoidal pulses except for the tails
at large |7|. The special case of O5—&y=(m/27)* was studied
in Ref. [4]. The nonadiabatic transition probability of the DK
model was derived in Ref. [10],

ok cosh? T8 — O -
nad ™ cosh? 1y %
The contour map of P, for the DK model is plotted in Fig.
3(b). As in Fig. 2(b), it has a nonoscillatory region where the
Landau-Zener formula applies; for unchirped pulses the area
theorem also applies. However, the figures differ signifi-
cantly in the oscillatory region because Eq. (5) does not
agree with Eq. (7) in the adiabatic limit. As a conclusion, the
seemingly negligible tails in the pulse profile makes a big
difference in the map of P,,,. Equation (7) is a poor approxi-
mation of P,,, for sinusoidal pulses.

II1. APPROXIMATE FORMULA FOR P,

We derive an approximate formula for P, for finite-time
pulses with large intensity and detuning. It is obtained by a
first order perturbation calculation in the appropriate refer-
ence frame. The rotating frame is not appropriate because the
Hamiltonian in it [see Eq. (1)] is large and so the atomic state
changes quickly. Since the atomic state follows the energy
eigenstate adiabatically under such a pulse, the adiabatic
frame is more appropriate. The transformation matrix from
the rotating frame to the adiabatic frame is formed by instan-
taneous energy eigenstates, which are called the dressed
states of the atom in the field [12],

cos(6/2)  sin(6/2) ) @®)

Uyu(t) =
A1) (— sin(6/2) cos(6/2)

where 0< <7 with tan 60(r)=Q(r)/ 8(¢r). The Hamiltonian
in the adiabatic frame is

R P T VORI ())
HA(I)=UAHRUA_thAEUA=E 0(0 _Q’(t) .

)

The large diagonal elements of H, indicate that the atomic
state has a rapidly changing phase as it follows the energy
eigenstate. In the Bloch sphere view, it means that the Bloch
vector precesses rapidly around the torque vector. Only in a
reference frame that rotates at the same frequency about the
eigenstate (the torque vector) does the atomic state (the
Bloch vector) change slowly enough so that a perturbation
method can be applied. Such a frame is called the rotating
(precessing) adiabatic frame [8,10]. The transformation ma-
trix associated with the rotation is
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Ug(t) = ( 0 omis/2
where s(1)=[{Q)’ (7)d7. The Hamiltonian in the rotating adia-
batic frame is

d # 0 i0(t)e™®
H(t) = UgH Ul — ihUp—Ul = — )
(1) = UgHpUg — i R R 2<—i9(t)e‘”(’) 0

(11)

The absolute value of H(7) is not small for highly detuned
intense pulses, but due to the rapidly changing phase s(z), the
evolution of the atomic state in this frame is indeed slow. In
general the Schrodinger equation in the rotating adiabatic
frame is not exactly solvable. A formal solution can be writ-
ten as the Dyson expansion that involves nested time inte-
grations and time-ordered products [13,14].

Here we apply the perturbation method in the rotating
adiabatic frame. Denote the propagation matrix for time from
0 to 7 by O(¢). The first order perturbation gives

o) ~1- Lj H(7drT. (12)
iy

However, this approximation is not unitary, which can lead
to unphysical results if used repeatedly. A better option is to
use

o) =exp<— éftn(r)w), (13)
0

which is called the unitary first order approximation. Equa-
tion (13) ignores the noncommutativity between the Hamil-
tonians at different times, therefore it is exact only for com-
mutative Hamiltonians. Nevertheless, as demonstrated
below, Eq. (13) serves as a good approximation for the map-
ping of P,,, resulting from a general chirped light pulse.
Substituting Eq. (11) into Eq. (13), we can obtain the explicit

form of O(7),

A [ 0 iz(1)
O(t):eXp{_l<—iz*(t) 0 )}

cos|z()| % sin|z(7)|
| oo o
- 20| sin|z(?)] cos|z(?)]

where z(t):% i) ’Odré(r)eiS(T) and z'(1) is the complex conju-
gate of z(z).

In spite of the unitarity, Eq. (13) is still only of first order
accuracy. Higher order unitary approximations for O(f) can
also be derived from the Dyson expansion. However, their
expressions and evaluations are more complicated and will
not be discussed in this paper.

The nonadiabatic transition amplitude is the off-diagonal
element of the propagation matrix in the rotating adiabatic
frame for the entire pulse ([-7/2,T/2]). Successive applica-
tion of the unitary approximation to the propagation matrix
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on each half pulse ((-7/2,0] and [0,7/2]) enhances the ac-

curacy of O for the entire pulse, from which 13,md is derived.
For simplicity, we only consider symmetric pulses in this
paper, i.e., 8(-)==8(), Q(-t)=Q(r). For such pulses the
propagation matrices for the two half pulses are related in a
simple way. Denote the propagation matrix O(¢) by

a'(t) - B )

B0 al) (15)

0@:(
For a symmetric pulse we have

Or-112,1121 = O10,112101=112,0]

_(a*(m) —3(T/2)><a*(r/2) —ﬁ*(T/z))
C\BT2)  a12) )\ B(TR2)  aTV2)
(16)

So
P =[a(TI2)B(TI2) + o« (T/2) B (T/2) 1% (17)

Comparison between Egs. (14) and (15) gives the approxi-
mation for a(r) and B(r). Substituting the approximations

a(t) and ,é(t) into Eq. (17), we have the approximate formula

for P
mo ™o
f dré(r)e™" cosz(argf dt@(t)e’“”).
0

0
(18)

nad>

A

— qin2
P,.q=sin

The contour map of ﬁnad for sinusoidal pulses is plotted in
Fig. 2(c). It is in good quantitative agreement with the con-
tour map of the exact P,,; in Fig. 2(b). The maximum error
is 0.176 at a point near origin. To demonstrate the universal-
ity of Eq. (18), we did the same comparison for triangular
pulses. The time dependence of the intensity and the fre-
quency sweep for a triangular pulse is

Q1) = Qy(1 = 24T

), 8(1)=6,24T). (19)

The pulse profile is plotted in Fig. 4(a). In the Bloch sphere
view of the problem, the torque vector moves along a
straight line with uniform speed for each half pulse. The
problem reduces to the Landau-Zener model in a rotated
frame, and thus is solvable in terms of confluent geometric
functions. The map of the exact P, is plotted in Fig. 4(b).

The corresponding ﬁ,md is plotted in Fig. 4(c). Again the
differences are small, and there is good quantitative agree-
ment. The maximum error is 0.172.

Equation (18) can also be applied to infinite-time pulses.
The approximate P,,; obtained from Eq. (18) for the
Demkov-Kunike model is plotted in Fig. 3(c). Once again
they agree quantitatively with the exact form, Eq. (7), and its
contour plot in Fig. 3(b). The maximum error is 0.168.

From Eq. (18) we can derive the asymptotic form of P,
in the adiabatic limit,
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FIG. 4. Contour map of P, for triangular pulses. (a) The profiles of the pulse detuning and Rabi frequency. (b) The contour curves of

P,,4=0.1,0.01,.... The darkest regions represent zeros of P,,,. (c) The contour plot of the approximate P,

. = o ) mo ARP process in the entire parameter space of pulse intensity
P 4q=sin f dr6(1)e™" | cos?| arg f dré(r)e"" and detuning. We showed that P, for finite-time pulses and
0 0 infinite-time pulses of similar profile has characteristically
. RE m ) different distribution in the parameter space. For finite-time
= ‘ f dro(t)e? cos2<arg f dt 9(1‘)6”0)) pulses, the map of P,,, in the pulse parameter space is di-
0 0 vided into oscillatory and nonoscillatory regions. The
mo ]2 a(1)e™ Tz|2 Landau-Zener formula only applies in the nonoscillatory re-
= |Re f drf(t)e*”| = | Re o gion. In the oscillatory region, the oscillation amplitude and
0 Q) 1o the phase of P,,, have different asymptotic forms depending

£ \2 2 on the region in the parameter space.
= 0 sinz(f QO (t)dt) . (20) The map of P, in the pulse parameter space provides the
Q(Z) 0 critical guidance in the selection of optimal parameters to

2

Since f’m,d is obtained by perturbation calculation in the ro-
tating adiabatic frame, its asymptotic form in the adiabatic
limit is the same as that of the exact P,,,;, which is given in
Eq. (5).

IV. CONCLUSION

By applying unitary first order perturbation in the rotating
adiabatic frame, we have derived an approximate formula for
the nonadiabatic transition probability P,,,, for the finite-time

achieve large optical force using the ARP scheme [2]. The
failure of the Landau-Zener formula in the oscillatory region
necessitates an approach that is appropriate for finite-time
pulses. The agreement between the exact P,,; and the ap-

proximate formula f’,,ad obtained here has proven that the
unitary first order perturbation in the rotating adiabatic frame
is a successful approach.
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