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This paper presents necessary and sufficient conditions for the peakedness comparison
and convex ordering between two elliptically contoured random fields about their
centers. A somewhat surprising finding is that the peakedness comparison for the infinite
dimensional case differs from the finite dimensional case. For example, a Student’s
t distribution is known to be more heavy-tailed than a normal distribution, but a
Student’s t random field and a Gaussian random field are not comparable in terms of
the peakedness. In particular, the peakedness comparison and convex ordering are made
for isotropic elliptically contoured random fields on compact two-point homogeneous
spaces.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The peakedness comparison and convex ordering between two elliptically contoured random fields about their centers
re in essence stochastic comparisons in the geometric aspect and the analytic aspect, respectively, as is seen from Wang
nd Ma (2018), Chen et al. (2021), and in the present paper. An elliptically contoured (or spherically invariant) random
ield is a scale mixture of Gaussian random fields, and its finite-dimensional distributions are symmetric about the center
Huang and Cambanis, 1979; Ma, 2011). More precisely, {Z(x), x ∈ D} is called an elliptically contoured random field, if it
can be expressed as

Z(x) = UZ0(x) + µ(x), x ∈ D, (1.1)

where {Z0(x), x ∈ D} is a Gaussian random field with mean function identical to 0, the mixing random variable U takes
merely nonnegative values and is independent with {Z0(x), x ∈ D}, µ(x) is a (non-random) function, and D is a temporal,
spatial, or spatio-temporal index domain. When µ(x) ≡ 0, x ∈ D, {Z(x), x ∈ D} is said to be centered. Examples of
elliptically contoured random fields include, but are not limited to, Gaussian, Student’s t, Cauchy, hyperbolic, hyperbolic
cosine ratio, hyperbolic sine ratio, hyperbolic secant, Laplace, logistic, variance Gamma, normal inverse Gaussian, K-
differenced, K-combined, stable, Linnik, and Mittag-Leffler ones. An elliptically contoured random field may or may not
have first-order moments, but its finite-dimensional distributions are symmetric about its center. Among all second-order
random fields, the class of second-order elliptically contoured random fields is one of the largest, if not the largest, classes
that allow for any given correlation structure.
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For two real-valued random fields {Zk(x), x ∈ D} whose finite-dimensional distributions are symmetric about µk(x)
(k = 1, 2), we say that {Z1(x), x ∈ D} is more peaked about µ1(x) than {Z2(x), x ∈ D} about µ2(x) (Wang and Ma, 2018),
and denote it by {Z1(x) − µ1(x), x ∈ D}

p
⪰ {Z2(x) − µ2(x), x ∈ D}, if

P((Z1(x1) − µ1(x1), . . . , Z1(xn) − µ1(xn))′ ∈ An)
≥ P((Z2(x1) − µ2(x1), . . . , Z2(xn) − µ2(xn))′ ∈ An)

(1.2)

holds for every n ∈ N, any xk ∈ D (k = 1, . . . , n), and any An ∈ An, where N is the set of positive integers, and An
denotes the class of compact, convex, and symmetric (about the origin) sets in Rn. A particular example of An ∈ An is
An = [−z1, z1] × · · · × [−zn, zn], and inequality (1.2) reads

P(|Z1(x1) − µ1(x1)| ≤ z1, . . . , |Z1(xn) − µ1(xn)| ≤ zn)
≥ P(|Z2(x1) − µ2(x1)| ≤ z1, . . . , |Z2(xn) − µ2(xn)| ≤ zn), z1, . . . , zn ≥ 0. (1.3)

More specifically, for n = 1, (1.3) means that |Z1(x) − µ1(x)| is smaller than |Z2(x) − µ2(x)| in the usual stochastic order.
By definition, a random variable Z1 is said to be smaller than Z2 in the usual stochastic order (denoted by Z1 ⪯st Z2), if

P(Z1 > x) ≤ P(Z2 > x), or equivalently, P(Z1 ≤ x) ≥ P(Z2 ≤ x), x ∈ R.

A random field {Z1(x), x ∈ D} is said to be smaller than another random field {Z2(x), x ∈ D} in the convex order,
denoted by {Z1(x), x ∈ D} ⪯cx {Z2(x), x ∈ D}, if the inequality

Eg(Z1(x1), . . . , Z1(xn)) ≤ Eg(Z2(x1), . . . , Z2(xn)) (1.4)

holds for every n ∈ N, any xk ∈ D (k = 1, 2, . . . , n), and any convex function g(z) such that the expected values on both
sides of (1.4) exist.

Two pairs of elliptically contoured random fields are compared in Sections 2 and 3, with respect to the peakedness and
convex orderings, respectively, with necessary and sufficient conditions derived. In one pair, two elliptically contoured
random fields share the same mixing random variable U but have different Gaussian random fields in (1.1). In the other
pair, two elliptically contoured random fields share the same Gaussian random field but have different mixing random
variables. The peakedness comparison and convex ordering are conducted in Section 4 for isotropic elliptically contoured
random fields on compact two-point homogeneous spaces. For the investigation on isotropic random fields on Md, we
refer the reader to Gangolli (1967), Askey and Bingham (1976), Lu and Ma (2020), Ma and Malyarenko (2020), and Lu
et al. (2021). Proofs of theorems are given in Section 5.

2. Peakedness comparison

By definition, the peakedness comparison is the comparison between finite-dimensional distributions only. To address
our findings neater in this section, however, we simply make the statements in terms of stochastic representation pairs.
The pair of elliptically contoured random fields in Theorem 2.1 share the same Gaussian random field but have distinct
mixing random variables. The finding in Theorem 2.1 or Corollary 2.1.1 is somewhat surprising, and reveals a fact that
the peakedness comparison for the infinite dimensional case differs from the finite dimensional case. Another pair of
elliptically contoured random fields in Theorem 2.2 share the same mixing random variable but have different Gaussian
random field, which includes Theorem 5 (i) of Wang and Ma (2018) as a special case where the moment existence is
assumed for the mixing variable.

By a positive random variable U , we mean P(U < 0) = 0 and P(U = 0) < 1. In this paper ‘‘positive definite’’ and
‘‘nonnegative definite’’ are synonyms, and in a strict sense, the term ‘‘strictly positive definite’’ is adopted.

Theorem 2.1. Let two elliptically contoured random fields be defined by

Zk(x) = UkZ0(x) + µk(x), x ∈ D, k = 1, 2,

where Uk (k = 1, 2) are two positive random variables and are independent of a zero-mean Gaussian random field {Z0(x), x ∈

D} whose covariance function is C(x1, x2). Under the assumptions that C(x1, x2) is strictly positive definite, a necessary and
sufficient condition for {Z1(x) − µ1(x), x ∈ D}

p
⪰ {Z2(x) − µ2(x), x ∈ D} is U1 ⪯st U2.

In particular, if P(U2 = 1) = 1, then {Z2(x), x ∈ D} reduces to a Gaussian random field, and Theorem 2.1 results in the
following corollary.

Corollary 2.1.1. For a Gaussian random field {Z0(x), x ∈ D} and an elliptically contoured random field {UZ0(x), x ∈ D},
{UZ0(x), x ∈ D}

p
⪰ {Z0(x), x ∈ D} if and only if P(U > 1) = 0.

Consider a Student’s t random field {Z(x), x ∈ D} (Ma, 2013; Røislien and Omre, 2006) defined by

Z(x) = c V
1
2 Z (x), x ∈ D,
0 0
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here c0 = I[0,1)(λ) +

(
λ−1
β

) 1
2
I(1,∞)(λ), β are λ are positive constants, V is an inverse Gamma random variable with

ensity function βλ

Γ (λ)u
−λ−1 exp

(
−

β

u

)
I(0,∞)(u), and IA(x) denotes the indicator function of a set A. By Corollary 2.1.1, this

Student’s t random field is not comparable in the peakedness with the Gaussian random field {Z0(x), x ∈ D}. In contrast, a
tudent’s t distribution is known to be more heavy-tailed than a normal distribution. As another application of Theorem
.1, two Student’s t random fields are not comparable in the peakedness, which agrees with the finite dimensional cases
bserved by Dunn (1965) that the univariate Student’s t distribution of a higher degree of freedom is more peaked, while
he order of peakedness is reversed in sufficiently high dimensions.

A necessary and sufficient condition is presented in Theorem 2.2, for the peakedness comparison between two
lliptically contoured random fields who share the same mixing random variable U and have distinct Gaussian random
ields {Yk(x), x ∈ D} (k = 1, 2) as ingredients of format (1.1). It contains Theorem 5 (i) of Wang and Ma (2018) as a special
ase, where an additional moment assumption is made on the mixing variable.

heorem 2.2. Suppose that two elliptically contoured random fields are defined by

Zk(x) = UYk(x) + µk(x), x ∈ D, k = 1, 2,

where U is a positive random variable and is independent of the Gaussian random field {Yk(x), x ∈ D} whose mean function is
identical to 0 and whose covariance function is Ck(x1, x2). Then {Z1(x) − µ1(x), x ∈ D}

p
⪰ {Z2(x) − µ2(x), x ∈ D} if and only if

C2(x1, x2) − C1(x1, x2) is a positive definite function on D.

Corollary 2.2.1. {Z1(x)− µ1(x), x ∈ D}
p

⪰ {Z2(x)− µ2(x), x ∈ D} and {Z2(x)− µ2(x), x ∈ D}
p

⪰ {Z1(x)− µ1(x), x ∈ D} if and
only if C2(x1, x2) ≡ C1(x1, x2), x1, x2 ∈ D.

Example 2.3. Let D be one of the three metric spaces, Rd, a unit sphere Sd
=

{
x ∈ Rd+1

: ∥x∥ = 1}, and a hyperbolic
space Hd, and denote by ρ(x1, x2) the metric over D. Since ρ(x1, x2) is conditionally negative definite (Gangolli, 1967)
over D, there exists a fractional Brownian motion {Y1(x), x ∈ D} with covariance function (Istas, 2005; Cohen and Lifshits,
2012; Ma, 2015)

C(x1, x2) = ρν(x1, x0) + ρν(x2, x0) − ρν(x1, x2), x1, x2 ∈ D, (2.1)

where the legitimate range of the parameter ν varies with respect to D, ν ∈ (0, 2] if D = Rd, ν ∈ (0, 1] for D = Sd,
ν ∈ (0, 1] for D = Hd, and x0 ∈ D is a fixed point. Given a positive random variable U with Laplace transform
ℓU (ω) = E exp(−Uω), ω ≥ 0, an elliptically contoured random field

Z1(x) =
√
UY1(x), x ∈ D,

has stationary increments, in the sense that the distribution of every increment Z1(x1)−Z1(x2)

ρ
ν
2 (x1,x2)

does not depend on either x1

r x2, for distinct x1 and x2. In fact, the characteristic function of Z1(x1)−Z1(x2)

ρ
ν
2 (x1,x2)

is

E exp
(
ıω

Z1(x1) − Z1(x2)
ρ

ν
2 (x1, x2)

)
= E exp

(
ıω

√
U
Y1(x1) − Y1(x2)

ρ
ν
2 (x1, x2)

)
=

∫
∞

0
E exp

(
ıω

√
u
Y1(x1) − Y1(x2)

ρ
ν
2 (x1, x2)

)
dFU (u)

=

∫
∞

0
exp

(
−

ω2u
2

var
(
Y1(x1) − Y1(x2)

ρ
ν
2 (x1, x2)

))
dFU (u)

= ℓU
(
ω2) , ω ∈ R,

here ı is the imaginary unit, and FU (u) denotes U ’s distribution function. In particular, when U is a positive stable random
ariable with Laplace transform E exp(−ωU) = exp(−ωκ ), ω ≥ 0, {Z1(x), x ∈ D} is a stable random field, and Z1(x1)−Z1(x2)

ρ
ν
2 (x1,x2)

s a stable random variable with characteristic function

E exp
(
ıω

Z1(x1) − Z1(x2)
ρ

ν
2 (x1, x2)

)
= exp

(
−|ω|

2κ) , ω ∈ R,

where 0 < κ ≤ 1. If 0 < κ ≤
1
2 , then {Z1(x), x ∈ D} does not have a finite first-order moment. It reduces to a Gaussian

andom field in case U is a degenerate random variable with P(U = 1) = 1, and reduces to a Cauchy random field when
=

1
2 .

Over D = Sd, ρ(x1, x2) = arccos(x′

1x2) is the spherical (angular, or geodesic) distance between x1 and x2 on the largest
ircle on Sd that passes through them, where x′

1x2 is the inner product between x1 and x2. For ν ∈ (0, 1], a bifractional
rownian motion {Y2(x), x ∈ Sd

} is a Gaussian random field with covariance function

C(x , x ) = (ρ(x , x ) + ρ(x , x ))ν − ρν(x , x ), x , x ∈ Sd, (2.2)
1 2 1 0 2 0 1 2 1 2
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nd a trifractional Brownian motion {Y3(x), x ∈ Sd
} is a Gaussian random field (Ma, 2015) with covariance function

C(x1, x2) = ρν(x1, x0) + ρν(x2, x0) − (ρ(x1, x0) + ρ(x2, x0))ν, x1, x2 ∈ Sd. (2.3)

ince (2.1) is a sum of (2.2) and (2.3), it follows from Theorem 2.1 that

{
√
UY2(x), x ∈ Sd

}
p

⪰ {Z1(x), x ∈ Sd
}, and {

√
UY3(x), x ∈ Sd

}
p

⪰ {Z1(x), x ∈ Sd
}.

A similar peakedness comparison can be made over Hd, after verifying both (2.2) and (2.3) are positive definite on Hd via
Theorems 2 and 3 of Ma (2015).

As the definition suggested, the peakedness is compared about the finite-dimensional distributions of two elliptically
contoured random fields around their centers, which may be or may be not on the same probability space. The following
theorem makes the peakedness comparison when they are defined on the same probability space, and, significantly, its
novel part is that neither the mixing random variables nor the associated Gaussian random fields are specified.

Theorem 2.4. Suppose that {Z1(x), x ∈ D} and {Z2(x), x ∈ D} are two centered elliptically contoured random fields on the
same probability space. If they are independent each other, then

{Zk(x), x ∈ D}
p

⪰ {Z1(x) + Z2(x), x ∈ D}, k = 1, 2.

3. Convex ordering

Two pairs of elliptically contoured random fields are compared in terms of convex ordering in this section. As is
conjectured in Wang and Ma (2018), the existence of the expected value of the mixing random variable is crucial for
convex ordering between two elliptically contoured random fields who share the same mixing random variable, with a
necessary and sufficient condition given in Theorem 5 (ii) of Wang and Ma (2018) under the assumption of the mixing
random variable U that EUτ < ∞ for a constant τ ≥ 1, which is questioned whether such moment condition could be
dropped there. Interestingly, the first-order moment assumption is actually sharp for the convex ordering, as the following
theorem states.

Theorem 3.1. Two elliptically contoured random fields {Zk(x), x ∈ D} are defined by

Zk(x) = UYk(x), x ∈ D, k = 1, 2,

where U is a positive random variable and is independent with the Gaussian random field {Yk(x), x ∈ D} whose mean function
s identical to 0 and whose covariance function is Ck(x1, x2).

(i) Under the assumption that EU < ∞, {Z1(x), x ∈ D} ⪯cx {Z2(x), x ∈ D} if and only if C2(x1, x2) − C1(x1, x2) is positive
definite.

(ii) If EU = ∞, then Eg(Zk(x1), . . . , Zk(xn)) = g(0) whenever it exists, k = 1, 2.

The conclusion of Theorem 3.1(ii) is somewhat beyond our expectations, since it states that two elliptically contoured
random fields are ‘‘equal’’ in the sense of the convex order, whenever EU = ∞; in other words, it makes no sense to
compare them via the convex order.

Corollary 3.1.1. Under the assumption that EU < ∞, {Z1(x), x ∈ D} ⪯cx {Z2(x), x ∈ D} and {Z2(x), x ∈ D} ⪯cx {Z1(x), x ∈ D} if
and only if C2(x1, x2) ≡ C1(x1, x2), x1, x2 ∈ D, or equivalently, {Z1(x), x ∈ D} and {Z2(x), x ∈ D} has the same finite-dimensional
distributions.

For two random variables U1 and U2, U1 is said to be smaller than U2 in the increasing convex, denoted by U1 ⪯icx U2,
if

Eg(U1) ≤ Eg(U2)

holds for all increasing convex functions g(x) on R, provided that the expectations exist. The last inequality is equivalent
to

E(U1 − x)+ ≤ E(U2 − x)+, x ∈ R,

where (x)+ = max(x, 0), x ∈ R; see, for example, Section 4.A of Shaked and Shanthikumar (2007).

Theorem 3.2. Let two elliptically contoured random fields {Zk(x), x ∈ D} defined by

Zk(x) = UkY (x), x ∈ D, k = 1, 2,

where Uk (k = 1, 2) are positive random variables and are independent with the Gaussian random field {Y (x), x ∈ D} whose
mean function is identical to 0 and whose covariance function is C(x1, x2). Under the assumptions that C(x1, x2) is strictly
positive definite, Then {Z (x), x ∈ D} ⪯ {Z (x), x ∈ D} if and only if either EU or EU does not exist, or U ⪯ U .
1 cx 2 1 2 1 icx 2
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The following corollary follows as a consequence of Theorems 2.1 and 3.2, since U1 ⪯st U2 implies U1 ⪯icx U2.

Corollary 3.2.1. If {Z1(x), x ∈ D}
p

⪰ {Z2(x), x ∈ D}, then {Z1(x), x ∈ D} ⪯cx {Z2(x), x ∈ D}.

4. Peakedness and convex ordering on compact two-point homogeneous spaces

In this section we apply the results obtained in the last two sections to compare elliptically contoured random fields
on a d-dimensional compact two-point homogeneous space Md, which is a compact Riemannian symmetric space of rank
one and belongs to one of the five families described in Wang (1952). The distance ρ(x1, x2) between two points x1 and
x2 on Md is defined in such a way (Ma and Malyarenko, 2020) that the length of any geodesic line on all Md is equal to
2π , or the distance between any two points is bounded between 0 and π , i.e., 0 ≤ ρ(x1, x2) ≤ π . Over the unit sphere
d, for instance, ρ(x1, x2) is defined by ρ(x1, x2) = arccos(x′

1x2), x1, x2 ∈ Sd.
A second-order random field {Z(x), x ∈ Md

} is called a stationary (homogeneous) and isotropic random field, if its
ean function EZ(x) does not depend on x, and its covariance function cov(Z(x1), Z(x2)) depends only on the distance
(x1, x2) between x1 and x2. Such a covariance function is denoted by C(ρ(x1, x2)), x1, x2 ∈ Md, and is called an isotropic
ovariance function on Md. An isotropic random field on Sd enjoys a simple orthogonal decomposition (4.1), due to the
acts that x ∈ Sd if and only if −x ∈ Sd and

ρ(−x1, x2) = π − ρ(x1, x2), x1, x2 ∈ Sd.

Similar properties seem not to hold on other compact two-point homogeneous spaces.

heorem 4.1. For an isotropic random field {Z(x), x ∈ Sd
} with covariance function C(ρ(x1, x2)), define

Z1(x) =
Z(x) + Z(−x)

2
, and Z2(x) =

Z(x) − Z(−x)
2

, x ∈ Sd.

(i) {Z(x), x ∈ Sd
} possesses an orthogonal decomposition

Z(x) = Z1(x) + Z2(x), x ∈ Sd, (4.1)

in the sense that {Z1(x), x ∈ Sd
} and {Z2(x), x ∈ Sd

} are uncorrelated, i.e.,

cov(Z1(x1), Z2(x2)) = 0, x1, x2 ∈ Sd.

(ii) The covariance function of {Z1(x), x ∈ Sd
} is C(ρ(x1,x2))+C(π−ρ(x1,x2))

2 .
(iii) The covariance function of {Z2(x), x ∈ Sd

} is C(ρ(x1,x2))−C(π−ρ(x1,x2))
2 .

(iv) As an additional assumption, suppose that {Z(x), x ∈ Sd
} is an isotropic elliptically contoured random field, and

Z(x) = UY (x) + µ(x), x ∈ Sd,

where U is a second-order positive random variable and is independent with a zero-mean Gaussian random field
{Y (x), x ∈ Sd

}. Then
{Zk(x) − EZk(x), x ∈ Sd

}
p

⪰ {Z(x) − EZ(x), x ∈ Sd
}, k = 1, 2.

(v) Under the assumption of Part (iv),
{Zk(x) − EZk(x), x ∈ Sd

} ⪯cx {Z(x) − EZ(x), x ∈ Sd
}, k = 1, 2.

According to Theorem 2.1 of Schoenberg (1942), the covariance function C(ρ(x1, x2)) of an isotropic and mean square
ontinuous random field {Z(x), x ∈ Sd

} takes the form

C(ρ(x1, x2)) =

∞∑
n=0

bnP

(
d−1
2

)
n (cos ρ(x1, x2)), x1, x2 ∈ Sd,

where {bn, n ∈ N0} is a sequence of nonnegative constants, the series
∑

∞

n=0 bnP

(
d−1
2

)
n (1) converges, and P

(
d−1
2

)
n (x) (n ∈ N0)

re ultraspherical or Gegenbauer’s polynomials (Szegö, 1975). They are special cases of Jacobi polynomials, whose exact
xpressions are

P (α,β)
n (x) =

Γ (α + n + 1)
n!Γ (α + β + n + 1)

n∑
k=0

(
n
k

)
Γ (α + β + n + k + 1)

Γ (α + k + 1)

(
x − 1
2

)k

, x ∈ R, n ∈ N0.

Associated with the orthogonal decomposition (4.1), {Z1(x), x ∈ Sd
} possesses the covariance function∑

∞

(
d−1
2

)
d
cov(Z1(x1), Z1(x2)) = n=0 b2nP2n (cos ρ(x1, x2)), x1, x2 ∈ S ,

5
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nd {Z2(x), x ∈ Sd
} possesses the covariance function

cov(Z2(x1), Z2(x2)) =

∞∑
n=0

b2n+1P

(
d−1
2

)
2n+1 (cos ρ(x1, x2)), x1, x2 ∈ Sd,

oticing that P

(
d−1
2

)
n (x) is an even function on R if n is even, and is an odd function if n is odd.

heorem 4.2. Suppose that two second-order elliptically contoured random fields are defined by

Zk(x) = UYk(x) + µk(x), x ∈ Md, k = 1, 2,

here U is a positive random variable and is independent with the Gaussian random field {Yk(x), x ∈ Md
} whose mean function

s identical to 0 and whose covariance function is

Ck(ρ(x1, x2)) =

∞∑
n=0

b(k)n P (α,β)
n (cos ρ(x1, x2)) , x1, x2 ∈ Md. (4.2)

Then {Z1(x) − µ1(x), x ∈ Md
}

p
⪰ {Z2(x) − µ2(x), x ∈ Md

} if and only if the inequality b(2)n ≥ b(1)n holds for each n ∈ N0.

Corollary 4.2.1. If {Z1(x) − µ1(x), x ∈ Md
}

p
⪰ {Z2(x) − µ2(x), x ∈ Md

}, then the inequality∫ π

0
(C2(ϑ) − C1(ϑ)) cos(nϑ)dϑ ≥ 0 (4.3)

holds for every n ∈ N0.

Theorem 4.3. In addition to the assumption of Theorem 4.2, let EU < ∞. Then {Z1(x)−µ1(x), x ∈ Md
} ⪯cx {Z2(x)−µ2(x), x ∈

Md
} if and only if the inequality b(2)n ≥ b(1)n holds for each n ∈ N0.

5. Proofs

In the proof of Theorems 2.1 and 3.2, we need the following lemma, which is of interest in its own right. For an n× n
nonsingular matrix Σp , denote an ellipsoid by

Bα = {x ∈ Rn
: x′Σp −1x ≤ α2

}, α ≥ 0,

and write xBα = Bxα, x ≥ 0.

Lemma 5.1. If Y is an n-variate normal random vector with mean 0 and a nonsingular variance–covariance matrix Σp , then

(i) Y has the same distribution as WU, where U is an n-variate random vector uniformly distributed on a unit ellipsoid B1,
and is independent with a positive random variable W that has a density function

fW (w) =
wn+1

2
n
2 Γ

( n
2 + 1

) exp
(

−
w2

2

)
I(0,∞)(w);

(ii) the probability of Y over an ellipsoid Bx is

P (Y ∈ Bx) = P
(
W 2

n ≤ x2
)
, x > 0, (5.1)

where W 2
n is a χ2 random variable with n degrees of freedom;

(iii)

lim
n→∞

P
(
uY ∈ B√

nx
)

= I[0,x](u), x > 0, u ≥ 0, x ̸= u; (5.2)

(iv)

lim
n→∞

∫
∞

x
P

(
uY /∈ B√

ny
)
dy = (u − x)+, x > 0, u ≥ 0. (5.3)

.1. Proof of Theorem 2.1

The sufficiency is proved in Wang and Ma (2018). To verify U1 ⪯st U2 is a necessary condition, let {Z1(x) − µ1(x), x ∈

D}
p

⪰ {Z2(x) − µ2(x), x ∈ D}. It implies that, for an arbitrary n ∈ N,

(U Z (x ), . . . ,U Z (x ))′
p

⪰ (U Z (x ), . . . ,U Z (x ))′, x ∈ D, k = 1, . . . , n,
1 10 1 1 n0 n 2 10 1 2 n0 n k
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w )′
i

a

I

k

5

p

here x1, . . . , xn are assumed to be distinct so that the variance matrix Σp of the normal random vector (Z10(x1), . . . , Zn0(xn)
s nonsingular. We have

P((U1Z10(x1), . . . ,U1Zn0(xn))′ ∈ B√
nx) ≥ P((U2Z10(x1), . . . ,U2Zn0(xn))′ ∈ B√

nx), x ≥ 0,

nd ∫
∞

0 P(u(Z10(x1), . . . , Zn0(xn))′ ∈ B√
nx)dFU1 (u)

≥
∫

∞

0 P(u(Z10(x1), . . . , Zn0(xn))′ ∈ B√
nx)dFU2 (u), x ≥ 0.

t follows from the proof of Lemma 5.1 (iii) and the dominated convergence theorem that P(U1 < x) + P(U1 = x)/2 ≥

P(U2 < x)+P(U2 = x)/2, as n → ∞. Finally we have U1 ⪯st U2 by noting that P(Uk ≤ x) = infy>x(P(Uk < y)+P(Uk = y)/2),
= 1, 2.

.2. Proof of Theorem 2.2

It suffices to prove the ‘‘only if’’ part, while the ‘‘if’’ part is established in Wang and Ma (2018).
Suppose that {Z1(x), x ∈ D}

p
⪰ {Z2(x), x ∈ D}, but C2(x1, x2) − C1(x1, x2) is not positive definite. Then there exists n

oints xk ∈ D and ak ∈ R (k = 1, . . . , n) such that
n∑

i=1

n∑
j=1

ai[C2(xi, xj) − C1(xi, xj)]aj < 0.

In other words, var(Y2n) < var(Y1n), where Ykn is a normal random variable with mean 0 and

Ykn =

n∑
i=1

ai(Yk(xi) − µk(xi)), k = 1, 2.

It implies that Y2n
p

⪰ Y1n, and, moreover, UY2n
p

⪰ UY1n, which contradicts the assumption that {Z1(x), x ∈ D}
p

⪰ {Z2(x), x ∈

D}.

5.3. Proof of Theorem 2.4

Suppose that Z1(x) = UY1(x), x ∈ D, where U is a positive random variable and is independent with a zero-mean
Gaussian random field {Y1(x), x ∈ D}. For every n ∈ N, any xk ∈ D (k = 1, . . . , n), and any An ∈ An, we have

P((Y1(x1), . . . , Y1(xn))′ + yn ∈ An) ≤ P((Y1(x1), . . . , Y1(xn))′ ∈ An),

for an arbitrary yn ∈ Rn, according to Theorem 4.2.4 of Tong (1990). Furthermore, it follows from the independent
assumption between {Z1(x), x ∈ D} and {Z2(x), x ∈ D} that

P((Z1(x1) + Z2(x1), . . . , Z1(xn) + Z2(xn))′ ∈ An)

=
∫
yn∈Rn P((Z1(x1), . . . , Z1(xn))′ + yn ∈ An)dF(Z2(x1),...,Z2(xn))′ (yn)

=
∫
yn∈Rn P(U1(Y1(x1), . . . , Y1(xn))′ + yn ∈ An)dF(Z2(x1),...,Z2(xn))′ (yn)

=
∫

∞

0

∫
yn∈Rn P(u1(Y1(x1), . . . , Y1(xn))′ + yn ∈ An)dF(Z2(x1),...,Z2(xn))′ (yn)dFU1 (u1)

≤
∫

∞

0

∫
yn∈Rn P(u1(Y1(x1), . . . , Y1(xn))′ ∈ An)dF(Z2(x1),...,Z2(xn))′ (yn)dFU1 (u1)

=
∫

∞

0 P(u1(Y1(x1), . . . , Y1(xn))′ ∈ An)dFU1 (u1)

= P((Z1(x1), . . . , Z1(xn))′ ∈ An);

that is, {Z1(x), x ∈ D}
p

⪰ {Z1(x) + Z2(x), x ∈ D}.

5.4. Proof of Theorem 3.1

Part (i) is proved in Wang and Ma (2018). For Part (ii), denote by Σp the variance–covariance matrix of an n-variate
normal random vector (Y1(x1), . . . , Y1(xn))′, where xk ∈ D, k = 1, . . . , n. Let the rank of Σp be r = rank(Σp ) ≥ 1, and write
its eigenvalue decomposition as

Σp = Q′DQ,

where Q is an n × n orthogonal matrix, and D is an n × n diagonal matrix whose diagonal entries are Σp ’s eigenvalues in
the descending order, λ ≥ · · · ≥ λ > 0, λ = · · · = 0.
1 r r+1
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Given a convex function g(z), z ∈ Rn, define h(z) = g(Q′z), z ∈ Rn. Clearly, the convexity of g(z) over Rn implies that
of h(z).

Let (W1, . . . ,Wn)′ = Q(Y1(x1), . . . , Y1(xn))′. It is an n-variate normal random vector with mean 0 and variance matrix
D, and

Eg(Z1(x1), . . . , Z1(xn)) = Eg(U(Y1(x1), . . . , Y1(xn)))
= Eh(U(W1, . . . ,Wn))
= Eh(U(W1, . . . ,Wr , 0, . . . , 0)),

where the last equality follows since (W1, . . . ,Wn)′ and (W1, . . . ,Wr , 0, . . . , 0) have the same distribution.
If the function h(z) is identical to a constant, then this constant has to be h(0) and is the same as g(0). As a result, we

have

Eg(Z1(x1), . . . , Z1(xn)) = h(0) = g(0).

Now suppose that the function h(z) is not identical to h(0). Then, by its convexity, there exists a nonzero z0k ∈ R
(k = 1, . . . , r) such that h(z01, . . . , z0r , 0, . . . , 0) > h(0), and, by the Geometric Hahn–Banach Theorem (Rudin (1991)),
there exists a linear function l(z1, . . . , zr ) = a0 +

∑r
i=1 aizi such that

l(z01, . . . , z0r ) = h(z01, . . . , z0r , 0, . . . , 0), and h(z01, . . . , z0r , 0, . . . , 0) ≥ l(z1, . . . , zr ).

Here the vector a = (a1, . . . , ar )′ is nonzero, since h(z01, . . . , z0r , 0, . . . , 0) > h(0). Denoting (W1, . . . ,Wr ) by W and its
distribution function by FW(w), we obtain

Eg(Z1(x1), . . . , Z1(xn)) = Eh(U(W1, . . . ,Wr , 0, . . . , 0))

≥

∫ ∫
a′wu+a0≥0

(a′w + a0)dFU (u)dFW(w)

≥

∫
u≥1

∫
a′w≥max(−a0,0)

a′wudFU (u)dFW(w) + min(a0, 0)

=

∫
u≥1

udFU (u)
∫
a′w≥max(−a0,0)

a′wdFW(w) + min(a0, 0),

which diverges provided that EU = ∞.

5.5. Proof of Theorem 3.2

For an arbitrary n ∈ N, if g(x) is a convex function in Rn, then Eg(uY (x1), . . . , uY (xn)) is a convex function of u ∈ R for
xk ∈ D (k = 1, . . . , n), whenever the expectation exists. Observing that

Eg(−uY (x1), . . . ,−uY (xn)) = Eg(uY (x1), . . . , uY (xn)), u ∈ R,

Eg(uY (x1), . . . , uY (xn)) is also an increasing function of u ∈ [0, ∞). If U1 ⪯icx U2, then

Eg(U1Y (x1), . . . ,U1Y (xn)) ≤ Eg(U2Y (x1), . . . ,U2Y (xn)),

which implies {Z1(x), x ∈ D} ⪯cx {Z2(x), x ∈ D}.
Conversely, suppose that {Z1(x), x ∈ D} ⪯cx {Z2(x), x ∈ D}. For an arbitrary n ∈ N and distinct xk ∈ D (k = 1, . . . , n),

the variance matrix Σp of (Y (x1), . . . , Y (xn)) is nonsingular. For nonnegative constants α and β , write

gα,β (y) = (inf{r ≥ 0 : y ∈ rBα} − β)+, y ∈ Rn.

It is easy to verify that gα,β (y) is a convex function in Rn. Thus,

Egα,β (U1Y (x1), . . . ,U1Y (xn)) ≤ Egα,β (U2Y (x1), . . . ,U2Y (xn)),

or ∫
∞

0
Egα,β (uY (x1), . . . , uY (xn))dFU1 (u) ≤

∫
∞

0
Egα,β (uY (x1), . . . , uY (xn))dFU2 (u).

In particular, taking α =
√
nx and β = x ≥ 0 yields∫

∞

0

∫
∞

x P(u(Y (x1), . . . , Y (xn))′ /∈ B√
ny)dydFU1 (u)

≤
∫

∞

0

∫
∞

x P(u(Y (x1), . . . , Y (xn))′ /∈ B√
ny)dydFU2 (u).

Letting n → ∞, it follows from Lemma 5.1 (iv) and the dominated convergence theorem that E(U1−x)+ ≤ E(U2−x)+, x ≥

0; that is U ⪯ U .
1 icx 2
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.6. Proof of Theorem 4.1

(i) Both {Z1(x), x ∈ Sd
} and {Z2(x), x ∈ Sd

} are isotropic random fields, and they are uncorrelated, since

cov(Z1(x1), Z2(x2)) =
1
4
cov(Z(x1) + Z(−x1), Z(x2) − Z(−x2))

=
1
4
{C(ρ(x1, x2)) − C(ρ(x1, −x2)) + C(ρ(−x1, x2)) − C(ρ(−x1, −x2))}

= 0, x1, x2 ∈ Sd,

here the last equality is due to the fact that

ρ(−x1, x2) = arccos((−x1)′x2) = π − arccos(x′

1x2) = π − ρ(x1, x2), x1, x2 ∈ Sd.

(ii) The covariance function of {Z1(x), x ∈ Sd
} is

cov(Z1(x1), Z1(x2)) =
1
4
cov(Z(x1) + Z(−x1), Z(x2) + Z(−x2))

=
1
4
{C(ρ(x1, x2)) + C(ρ(x1, −x2)) + C(ρ(−x1, x2)) + C(ρ(−x1, −x2))}

=
C(ρ(x1, x2)) + C(π − ρ(x1, x2))

2
, x1, x2 ∈ Sd.

(iii) This is derived in the similar way as Part (ii).
(iv) It follows directly from Theorem 2.1, due to a simple decomposition of C(ρ(x1, x2)),

C(ρ(x1, x2)) =
C(ρ(x1, x2)) + C(π − ρ(x1, x2))

2
+

C(ρ(x1, x2)) − C(π − ρ(x1, x2))
2

, x1, x2 ∈ Sd.

(v) It follows from Theorem 2.4, similar to Part (iv).

5.7. Proof of theorem Theorems 4.2 and 4.3

It follows from (4.2) that

C2(ρ(x1, x2)) − C1(ρ(x1, x2)) =

∞∑
n=0

(
b(2)n − b(1)n

)
P (α,β)
n (cos ρ(x1, x2)) , x1, x2 ∈ Md.

By Theorem 2.1, {Z1(x) − µ1(x), x ∈ Md
}

p
⪰ {Z2(x) − µ2(x), x ∈ Md

} if and only if C2(ρ(x1, x2)) −C1(ρ(x1, x2)), x1 ∈
d, x2 ∈ Md, is positive definite, or, equivalently, all its coefficients, b(2)n − b(1)n , n ∈ N0, are nonnegative, according to
heorem 2 of Ma and Malyarenko (2020). The proof of Theorem 4.3 is similar to that of Theorem 4.2.
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