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Bubbly Flows and Application to
Cavitation Mitigation
The direct numerical simulation (DNS) method has been used to the study of the linear
and shock wave propagation in bubbly fluids and the estimation of the efficiency of the
cavitation mitigation in the container of the Spallation Neutron Source liquid mercury
target. The DNS method for bubbly flows is based on the front tracking technique devel-
oped for free surface flows. Our front tracking hydrodynamic simulation code FronTier is
capable of tracking and resolving topological changes of a large number of interfaces in
two- and three-dimensional spaces. Both the bubbles and the fluid are compressible. In
the application to the cavitation mitigation by bubble injection in the SNS, the collapse
pressure of cavitation bubbles was calculated by solving the Keller equation with the
liquid pressure obtained from the DNS of the bubbly flows. Simulations of the propaga-
tion of linear and shock waves in bubbly fluids have been performed, and a good agree-
ment with theoretical predictions and experiments has been achieved. The validated DNS
method for bubbly flows has been applied to the cavitation mitigation estimation in the
SNS. The pressure wave propagation in the pure and the bubbly mercury has been
simulated, and the collapse pressure of cavitation bubbles has been calculated. The
efficiency of the cavitation mitigation by bubble injection has been estimated. The DNS
method for bubbly flows has been validated through comparison of simulations with
theory and experiments. The use of layers of nondissolvable gas bubbles as a pressure
mitigation technique to reduce the cavitation erosion has been confirmed.
�DOI: 10.1115/1.2720477�
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Introduction
Wave propagation in bubbly fluids has attracted investigators

or many decades because of its special properties. Bubbly fluids
ave the unique feature that even a minute bubble concentration
volume fraction less than one percent� significantly increases the
ompressibility of the system. The system transports energy at a
peed considerably lower than the sound speeds in both phases as

result of the energy exchange between the liquid and the
ubbles. When additional effects such as vaporization and con-
ensation play a role, e.g., in cavitating flows, further phenomena,
till little understood, are superimposed upon the basic behavior of
ubbly flows. The rich internal structure of bubbly flows endows
he medium strikingly complex behavior.

One of the reasons for the study of bubbly flows is their wide
pplications ranging from hydraulic engineering to high energy
hysics experiments. In particular, we are interested in a recent
pplication of bubbly fluids in the mitigation of cavitation dam-
ges in the Spallation Neutron Source �SNS� �1�, which will be
iscussed in details in Sec. 5. Another important motivation is to
onnect the microscopic behavior of individual bubbles to the
acroscopic behavior of the mixed medium that one directly ob-

erves. Since the microstructure in this case is made up of a com-
lex substructure, the task is much more complicated than that of
lassical kinetic theory.

The wave propagation in bubbly fluids has been studied using a
ariety of mathematical models. Significant progress has been
chieved in the study of systems consisting of noncondensable gas
ubbles �2–5� and of vapor bubbles �6,7�. The treatment of the
inetic and thermal properties of the medium, e.g., the compress-
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ibility of the liquid and the thermal conduction, by different au-
thors varies. But they shared a common feature that the two
phases were not separated explicitly, i.e., the bubble radius and
concentration were considered as functions of time and space. The
Rayleigh-Plesset equation or the Keller equation governing the
evolution of spherical bubbles has been used as the kinetic con-
nection between the bubbles and fluid. These models include
many important physical effects in bubbly systems such as the
viscosity, the surface tension, and thermal conduction. Numerical
simulations of such systems requires relatively simple algorithms
and are computational inexpensive.

Nevertheless, homogenized models treat the system as a pseud-
ofluid and cannot capture all features of the rich internal structure
of the bubbles. They exhibit sometimes large discrepancies with
experiments �4� even for systems of noncondensable gas bubbles.
Their range of validity is limited to small void fraction and small
amplitude waves. These models are also not suitable if the bubbles
are distorted severely by the flow or even fission into smaller
bubbles, as it may happen in cavitating and boiling flows �8,9�.
The direct numerical simulation �DNS� method, which solves the
full nonlinear system of compressible fluid dynamics equations in
every component of the multiphase domain, is potentially free of
these deficiencies. DNS is based on techniques developed for free
surface flows. Welch �10� numerically investigated the evolution
of a single vapor bubble using the interface tracking method. Juric
and Tryggvason �11� simulated the boiling flows using the incom-
pressible flow approximation for both liquid and vapor and a sim-
plified version of interface tracking. 3D simulations of very large
volume fraction fluids using a method of front tracking with in-
compressible liquid approximation was also reported �12�. In this
paper, we perform DNS simulations of small void fraction bubbly
fluids using front tracking for compressible fluid equations. Our
FronTier code is capable of tracking and resolving topological

changes of a large number of interfaces in two- and three-
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Downlo
imensional spaces. A homogeneous approach to multiphase flows
as also been developed in the FronTier code and compared to the
NS approach �13,14�. In this paper, both the bubbles and the
uid are compressible because we are interested in the speed of
ave propagations. We simulated the propagation of acoustic and

hock waves in bubbly fluids with small void fraction and com-
ared them to the theory and experiments. After the validation of
he FronTier based DNS method for bubbly flows, it was applied
o the engineering problem of cavitation mitigation in the Spalla-
ion Neutron Source, which involves bubbly flows of relatively
arge void fraction.

The paper is organized as follows: Sec. 2 presents the govern-
ng system of equations and main conclusions of the homogenized

odel of bubbly flows, and Sec. 3 gives the description of the
umerical method. In Sec. 4 we present the results of the DNS on
inear and shock wave propagation in bubbly fluids along with the
omparison to the theory and the experiments. In Sec. 5, after the
escription of the SNS and the bubble injection technique for the
avitation mitigation, the cavitation is estimated in two steps. First
he pressure wave propagation in the mercury target of the SNS is
imulated using the front tracking method, then the collapse pres-
ure of cavitation bubbles is calculated by solving the Keller equa-
ion under the ambient pressure whose profile has been obtained
n the first step. The efficiency of the cavitation mitigation is es-
imated by comparing the average collapse pressure with and
ithout injected bubbles. Finally, we conclude the paper with a

ummary of our results in Sec. 6.

Mathematical Formulation

2.1 Governing System of Equations. In the DNS method,
e study bubbly fluids as a system of one-phase domains sepa-

ated by explicit interfaces �see Fig. 1�. Namely we solve the
ystem of Euler’s equations

��

�t
= − � · ��u� �1�

�� �

�t
+ u · ��u = − �p �2�

�� �

�t
+ u · ��e = − p � · u �3�

p = p��,e� �4�
eparately in each gas bubble and in the ambient liquid subject to
he liquid-gas interface conditions. Here u, �, and e are the veloc-
ty, density, and the specific internal energy of the fluid, respec-
ively, and p is the pressure. The continuity of pressure and nor-

al velocity is satisfied at the liquid-gas interface. If the surface
ension is important as in surface instability problems, we modify

ig. 1 Schematic of the numerical experiments on the propa-
ation of linear and shock waves in bubbly fluids
he pressure interface condition by adding a pressure jump due to
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the surface tension and local curvature. In simulations presented
in this paper, the surface tension was neglected as it is important
only for bubbles of a submicron size. Gas bubbles in simulated
fluids are much larger. Notice that we have also neglected the
viscosity and heat conduction in fluid equations. These effects are
often important in the dynamics of bubbly flows, and will be
included in future simulations. We use the polytropic equation of
state �EOS� model for gas bubbles,

p = �� − 1��e

where � is the ratio of specific heats, and the stiffened polytropic
EOS for the ambient liquid

p = ��l − 1���e + e�� − �lp�

which models tension by allowing negative pressure values. Ex-
perimentally measurable liquid properties such as the sound speed
and specific heats can be used to calculate the parameters �l, p�,
and e�.

2.2 Wave Equations in Homogenized Models. Since some
of our results are compared to the homogenized theory of bubbly
fluids, we present in this section main equations. The theory on
bubbly flows is based on the homogenized model, in which the
fluid and bubbles are treated as a single mixed phase, opposed to
the two separated phases in the direct numerical simulations. In
compressible fluids with gas bubbles, the conservation of mass
and momentum in one spatial dimension give

1

� fcf
2

�p

�t
+

�u

�x
=

��

�t

���u�
�t

+
���u2 + p�

�x
= 0

where � is the bubble volume fraction, � is the averaged density
of the mixed phase that equals � f�1−��+�g�, and p is the aver-
aged pressure. The bubble oscillation in weakly compressible flu-
ids is governed by the Keller equation �15–17�, which is an ex-
tension of the Rayleigh-Plesset equation,

�1 −
1

cf

dR

dt
�R

d2R

dt2 +
3

2
�1 −

1

3cf

dR

dt
��dR

dt
�2

=
1

� f
�1 +

1

cf

dR

dt
+

R

cf

d

dt
��pB − p� �5�

The p in Eq. �5� coincides with the average pressure in the con-
servation laws to the lowest order in � �18�. pB is the liquid
pressure at bubble surface. The bubble pressure pg is approxi-
mately uniform except for sound waves of frequency far above the
resonance. For air bubbles of diameter 0.1 mm and above, the
thermal diffusivity �=� / ��cp���R2 except for sound waves of
frequency far below resonance ��, �, and cp are the heat conduc-
tivity, density and specific heat with fixed pressure for the gas,
respectively�. Therefore the bubbles are almost adiabatic for near-
resonant sound waves. For bubbles consisting of a �-law gas,

pgR3� = constant

Neglecting the viscosity, the difference between pg and pB is from
the surface tension,

pg = pB +
2	

R

2.2.1 Linear Waves. The following dispersion relation for lin-
ear sound waves in bubbly fluids was derived from the wave

equations �5�:
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k2

�2 =
1

cf
2 +

1

c2

1

1 − i

�

�B
−

�2

�B
2

�6�

here �B is the resonant frequency of single bubble oscillation, 

s the damping coefficient accounting for the various dissipation

echanisms. cf is the sound speed in bubble free fluid and c is the
ound speed in the low-frequency limit, which is given by

1

c2 = ���g + �1 − ��� f�� �

�gcg
2 +

1 − �

�gcf
2 �

here �g and � f are the densities of the gas and the fluid, cg and cf
re the sound speeds of the two phases. For adiabatic bubbles,

c =� �p

�� f

�B =
1

R
�3�p

� f
�7�

hapman and Plesset �19� formulated 
 as the sum of the acous-
ic, viscous, and thermal contributions. It has been pointed out by
rosperetti et al. �18,20� that 
 depends on the frequency of the
ound wave. Nevertheless, Eq. �6� has been widely used for the
ispersion relation. The dispersion relation for near-resonant
ound waves measured in different experiments �21–23� agreed
ith the theoretical predictions.

2.2.2 Shock Waves. The shock profile in the bubbly fluid
volves into a smooth steady form in contrast to the sharp discon-
inuity in the pure fluid. The steady state shock speed was ob-
ained from the Rankine-Hugoniot relation �4�

1

U2 =
1

cf
2 + � f

�b − �a

Pa − Pb
�8�

here subscripts a and b stand for ahead and behind the shock
ront. Since heat conduction and surface tension is neglected,

a�a
�= Pb�b

�. The evolution into a steady wave can take very long
ime and distance, and the unsteady waves move at higher veloci-
ies �4�. The shock profiles were measured for various gas bubbles
y Beylich and Gülhan �2�, to which our simulation results will be
ompared.

Numerical Method
In this paper, we study bubbly fluids as a system of one-phase

omains separated by free interfaces using FronTier, a front track-
ng compressible hydrodynamics code. Front tracking is an adap-
ive computational method in which a lower dimensional moving
rid is fit to and follows distinguished waves in a flow. The front
ropagates according to the dynamics around it �i.e., Lagrangian�
hile the regular spatial grid is fixed in time �i.e., Eulerian�. The
iscontinuities across the interfaces are kept sharp so as to elimi-
ate the interfacial numerical diffusion which plagues traditional
nite difference schemes.
The implementation of the front tracking method in the Fron-

ier code has been described in details by Glimm et al. �24�. Here
e formulate the main ideas. In each time step, the front is propa-
ated first, then the interior states are updated. For the front propa-
ation, each point of the interface is propagated in the normal
irection, and the states on either side of the interface are evolved
ccording to the solution of the nonlocal Riemann problem. The
yperbolic solver has three steps: slope reconstruction, prediction
sing local Riemann solver, and correction by nonlocal solver.
hen the states on the propagated fronts are updated in the tan-
ential direction while the fronts are fixed. After that the fronts are
ested for intersection and then untangled or redistributed if nec-
ssary to resolve the topological change or the clustering/sparsity

f grid points on the interfaces due to front contract/expand.
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For the subsequent interior state update, FronTier uses high
resolution shock-capturing hyperbolic schemes on a spatial grid.
Among the various shock capturing methods currently imple-
mented in FronTier, a second order monotone upwind scheme for
conservation laws �MUSCL� scheme developed by Van Leer and
adapted for FronTier by Chern was used for the simulation here.
MUSCL scheme is similar to the piecewise parabolic method
�25�, and detailed descriptions can be found in Collela’s paper
�26�, and the references therein. The two-pass implementation cur-
rently being used in FronTier, namely, first regular cells then ir-
regular cells update, is well documented �24�. Different equation
of state models are used for gas/vapor bubbles and the ambient
fluid.

FronTier can handle multidimensional wave interactions in both
two- �27� and three- �28� dimensional spaces. Although computa-
tionally intensive, front tracking is potentially very accurate in
treating many physical effects in bubbly flows, such as the com-
pressibility of the fluid, surface tension and viscosity. Since the
FronTier code is capable of tracking simultaneously a large num-
ber of interfaces and resolving their topological changes, many
effects that are difficult to handle in mathematical models for
bubbly flows are now naturally included in the simulations, e.g.,
the bubbles’ deviation from sphericity, bubble-fluid relative mo-
tion, bubble merge/fissure and bubble size/spatial distribution.
This approach has numerous potential advantages for modeling
the phase transitions in boiling and cavitation flows. We have
implemented a model for the phase transitions induced mass
transfer across free interfaces �29�. FronTier is implemented for
distributed memory parallel computers.

For the application of FronTier to the simulation of bubbly
flows, the region around a long column of bubbles �tens to hun-
dreds� has been chosen as the computational domain, as shown in
Fig. 1. Two approximations were used in the simulations. The
flow inside the column was assumed to be axisymmetric and the
influence from the neighboring bubbles was included by treating
the domain boundary as a reflecting wall, which is called the
Neumann boundary in FronTier. Thus the wave propagation in
bubbly flows was reduced to an axisymmetric two-dimensional
problem. An extensive introduction to the FronTier code for axi-
symmetric flows is available �24�.

We have shown that the assumption of axial symmetry is ad-
equate for the study of the main features of the wave propagation
in bubbly fluids. This conclusion is based on the comparison of
our numerical results with theoretical and experimental data pre-
sented in the next section. The axisymmetric assumption is exact
for the scattering of the planar wave by an isolated column of
bubbles that are initially spherical. The Neumann boundary con-
dition for the modeling of the presence of other bubbly layers is
strong because scattered pressure waves are only partially re-
flected. As a contrast, the scattering theory, on which the Keller
equation is based, completely neglects the reflection between
bubbles and the secondary scattering. Therefore the scattering
theory only holds for the case of small � such that bubble inter-
action is negligible. For moderate �, the secondary scattering can-
not be neglected, and the Neumann boundary condition between
adjacent bubbles is a better approximation.

4 Simulation Results on Bubbly Flows
In this section, we present the results of the DNS of the linear

and shock wave propagations in bubbly fluids. Since the void
fraction is small �0.02% for linear waves, 0.25% for shock
waves�, the homogenized model is expected to be valid. The dis-
persion relation measured from simulations is compared with the-
oretical predictions in Sec. 4.1. Shock speed values measured
from simulations are compared to steady-state values, and shock
profiles for various gas bubbles are compared to experimental data
�2� in Sec. 4.2.
4.1 Linear Waves. To compare the simulation results with the
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heory, we measured the dispersion relation. Writing down the
omplex wave number k in Eq. �6� as k=k1+ ik2, we have

ei�kx−�t� = e−k2xei�k1x−�t�

rom which the phase velocity of the sound wave is defined as

V =
�

k1
�9�

nd the attenuation coefficient � in dB per unit length is defined
s

� = 20 log10 e · k2 �10�

he bubble radius in the simulation was R=0.06 mm. From Eq.
7�, we have

fB =
�B

2�
=

1

2�R
�3�p

� f
= 54.4 kHz

We simulated the sound waves of frequencies ranging from
0 to 300 kHz. The volume fraction was �=0.02%. The ampli-
ude of the pressure wave was chosen to be 0.1 bar, one tenth of
he ambient pressure. The linearity was ensured by performing
umerical simulations with sound waves of half amplitude which
ave virtually the same dispersion relation. For each frequency,
he sound wave of up to eight wavelengths was propagated from
he pure fluid into the bubbly region. The cross-sectional averaged
ressure in the bubbly region was recorded at selected times and
ositions, from which the phase velocity and the attenuation co-
fficient were measured. The phase velocity was obtained by mea-
uring the propagation speed of the first pressure node in the bub-
ly region. The envelope of the oscillating pressure wave was
lotted and the attenuation coefficient was measured in the 1 cm
ong bubbly fluid region next to the incident plane by fitting the
nvelope to an exponential curve. A shorter region was used for
he frequency with the strongest attenuation �=2 cm�.

The phase velocities and attenuation coefficients measured
rom the simulations are listed in Table 1 along with theoretically
redicted values. Theoretical values were calculated using the
amping coefficient 
=0.7 in Eq. �6�. There are various theoreti-
al and empirical formulas for the damping coefficient �5�, several
f them giving value under 0.1. The parameters in our simulations
s closest to those in experiment of Fox et al. �21�, who used the
mpirical value of 0.5 for the damping coefficient. The measured
ispersion relation was compared to the theoretical curve in Fig.
�a�. It can be seen that the simulation agrees well with the theory.
owever, the point in Fig. 2�a� with frequency about 100 kHz has
large deviation from the theoretical value. Most likely the de-

iation is due to the dependence of 
 on the frequency, especially
ear the resonance �18,20�.

The grid resolution for most of our simulations on linear wave
ropagations was 100 grids per millimeter. To ensure the accuracy
f the simulation results, a mesh refinement check has been car-
ied out. Figure 3 shows a typical result. It can be seen that the

Table 1 Phase velocities „V… and attenuatio
theory. � is the wavelength in pure water. V an
theoretical predictions from Eq. „6… with �=0.7

 �cm� f �kHz� V �cm/ms�

0.5 290 155
1.0 145 183
1.5 96.7 220
2.0 72.5 160
2.5 58.0 100

2.75 52.7 75
3.0 48.3 68
4.0 36.3 62
5.0 29.0 66
esults were reasonably accurate at the default grid resolution

98 / Vol. 129, MAY 2007
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�100 grids/mm�. The one-dimensional grid on the bubble surface,
which is the explicitly tracked fluid interface, was more refined,
and the circumference of a bubble in the simulation was dis-
cretized into 50 points. The approximation of a cylindrical domain
has been justified by varying the aspect ratio of the cylinder con-
taining a bubble, which confirms that the dispersion relation only

oefficients „�… from the simulation and the
are the simulation results, Vth and �th are the
=0.06 mm, �=0.02%.

�cm/ms� � �dB/cm� �th �dB/cm�

153 2.2 0.9
194 5.7 5.0
274 18.4 20.7
173 28.5 30.9
100 21.8 29.4
84 18.9 25.2
75 17.8 20.4
68 10.7 8.5
69 3.9 4.4

Fig. 2 Comparison of the dispersion relation between the
simulation and the theory. R=0.06 mm, �=0.02%. „a… The phase
velocity; „b… the attenuation coefficient. In both figures, the
crosses are the simulation data and the solid line is the theo-
retical prediction from Eq. „6… with �=0.7. The horizontal line in
n c
d �
. R

Vth
„a… is the sound speed in pure water.
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epends on the void fraction, i.e., the ratio of the bubble volume
ver the cylinder volume, but not on the aspect ratio.

4.2 Shock Waves. Beylich and Gülhan �2� studied the propa-
ation of shock waves in glycerol filled with bubbles of various
ases. We carried out numerical simulations using their experi-
ental settings. We have also varied the sound speed in the pure
uid to measure the corresponding shock speeds and compared

hem to the steady-state values given by Eq. �8�. In the simula-
ions, the pressure behind the shock was either fixed at the bound-
ry or set as the initial pressure in an air layer next to the bubbly
uid. The results from the two methods have been compared and
ound to be very close.

The measured shock speeds are listed in Table 2. The speeds
ere measured about 10 cm away from the shock incident plane.

t is seen from the table that the measured shock speeds differ

ig. 3 The pressure profile in bubbly water 23 �s after the
ncidence of the sound wave with a wavelength of 1 cm in pure
ater. The default resolution used in the simulations was
00 grids/mm, under which the bubble radius R=0.06 mm cor-
esponds to 6 grids. The solid line is the default resolution of
00 grids/mm, the dashed-dotted line is 50 grids/mm, the
ashed line is 200 grids/mm.

Table 2 Shock speeds measured from the si
ues. �a is the bubble volume fraction ahead of
U and Uth are the measured shock speed and
„8…. pa=1.11 bar, �f=1.22 g/cm3, Ra=1.15 mm.

Gas ��� cf �m/s� �a �%�

SF6�1.09� 1450 0.25
SF6�1.09� 458 0.25
SF6�1.09� 145 0.25
N2�1.4� 1450 0.25
N2�1.4� 458 0.25
N2�1.4� 145 0.25

He�1.67� 1450 0.25
He�1.67� 458 0.25
He�1.67� 145 0.25
SF6�1.09� 1450 2.17
SF6�1.09� 458 2.17
SF6�1.09� 145 2.17
N2�1.4� 1312 2.17
N2�1.4� 458 2.17
N2�1.4� 145 2.17

He�1.67� 1450 1.04
He�1.67� 458 1.04
He�1.67� 145 1.04
ournal of Fluids Engineering
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from the steady state values by less than 15%. The reason for the
deviation is that the shock waves in simulations had not reached
the steady state.

The shock profiles were measured at 1.0 m away from the
shock incident plane as in the experiments of Beylich et al. �2�.
The shock profiles for SF6 bubbles of volume fraction 0.25% are
plotted in Fig. 4. These figures show that the pressure in the bub-
bly fluid oscillated after the passage of the shock front. The oscil-
lation amplitude from the simulation was close to the experimen-
tal value. However the oscillation period from the simulation was
28% shorter than the experimental value.

There were several sources of error that could be responsible
for the deviation. The main source of error was numerical dissi-
pation at the bubble surface. The default grid resolution for the
simulations on shock wave propagation was 100 grids per centi-
meter, and the bubble circumference contains about 100 points. It
has been found that increasing resolution only slightly changed
the oscillation amplitude and period. Other sources of error in-
clude the axisymmetric approximation and the Neumann bound-
ary condition on the domain wall. It is worth mentioning that the
oscillation period calculated by Watanabe et al. �4� based on the
homogenized model was also about 1 /4 shorter than the experi-
mental value.

The shock profiles with various gas bubbles and different vol-
ume fractions were measured and they agreed with the experi-
ments as well. The oscillation amplitude was found to be smaller
for gas with larger polytropic index �, and the oscillation period
was longer for larger bubble volume fraction �, both of which
agreed with the experiments. As a summary, the shock velocity
measurement agreed well with the theory, while the shock profiles
agreed with the experiment qualitatively and partly quantitatively.

According to Noordzij and van Wijngaarden �30�, waveforms
observed during the propagation of shocks in bubbly liquids can
be classified into three types, referred to as A-, B-, and C-type
waves. The highly oscillatory A-type waveform is usually found
near the boundary at which the shock is introduced. The other two
represent later stages in the evolution of the wave. As pointed out
by Watanabe and Prosperetti �4�, the heat exchange between
bubbles and liquid plays an important role in the formation of B-
and C-type shocks. Due to the negligence of heat diffusion in our
simulations, we only observed A-type shocks. Our simulations
agreed with Beylich and Gülhan’s experiments �2�, in which they

lations are compared to the steady state val-
e shock, Pb is the pressure behind the shock,
rresponding steady-state value given by Eq.

Pb �bar� U �m/s� Uth �m/s�

1.9 26.20 25.40
1.9 22.52 22.48
1.9 13.47 12.64
1.7 25.56 26.68
1.7 22.21 23.35
1.7 12.29 12.79
1.9 25.68 30.01
1.9 22.69 25.49
1.9 13.52 13.11
1.8 8.72 8.52
1.8 8.04 8.39
1.8 7.10 7.35
1.8 8.60 9.42
1.8 9.09 9.25
1.8 7.80 7.92
1.9 13.92 14.96
1.9 12.70 14.29
1.9 9.70 10.44
mu
th
co
MAY 2007, Vol. 129 / 599
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nly published data on A-type shocks. We have already imple-
ented a heat diffusion algorithm in FronTier �31�, and will ex-

lore all types of shock profiles in the future.

Application of Bubbly Flows to Cavitation Mitiga-
ion

The comparison of simulation results with theory and experi-
ents in the previous section validated the FronTier based DNS
ethod for bubbly flows. The DNS method is used in this section

o study the cavitation reduction problem in the Spallation Neu-
ron Source target container. The DNS method is well suited for
he description of bubbly flows in the SNS target since large void
raction fluids and very strong pressure waves make the applica-
ility of the homogenized theory questionable. Section 5.1 intro-
uces the design of the SNS target and the associated fluid dy-
amical issue. The method of approach is described in Sec. 5.2.
ection 5.3 analyzes the simulation results on the pressure wave
ropagation in the pure and bubbly mercury. In Section 5.4, the
ollapse pressure of cavitation bubbles is calculated. Lastly, the
fficiency of cavitation mitigation by bubbly injection is estimated

ig. 4 The shock profiles in glycerol filled with SF6 bubbles.
he parameters in the simulations were from the experiments
2‡. Pa=1.11 bar, Pb=1.80 bar, �f=1.22 g/cm3, Ra=1.15 mm, �
1.09, and �=0.25%. The top figure is from the simulation, the
ottom one is from the experiment. The curves in the experi-
ental figure is the original fitting with artificial turbulent vis-

osity †2‡.
n Sec. 5.5.
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5.1 Spallation Neutron Source. The Spallation Neutron
Source �SNS� is an accelerator-based neutron source being built at
Oak Ridge National Lab. The SNS will provide the most intense
pulsed neutron beam in the world for scientific research and in-
dustrial development. In the SNS, 800 MeV proton beams bom-
barding the mercury target in a steel container deposit totally
2.1 kJ of energy per pulse in less than 300 ns which results in the
rapid pressure increase in the mercury �see Fig. 5�. The peak
deposited energy density is 19 J /cm3, corresponding to 500 bar in
mercury. The subsequent pressure waves induces severe cavitation
on the container, so much so that the lifetime of the container was
only two weeks with 1 MW proton pulses at the frequency of
60 Hz �1�. In order to mitigate the cavitation erosion, research is
being done on the evaluation of cavitation-resistant materials and
coatings. It has also been suggested that the injection of nondis-
solvable gas bubbles into the container could absorb the energy of
the pressure wave. Our goal is to estimate the efficiency of the
cavitation mitigation by the bubble injection method.

The SNS target prototype tested at the Los Alamos National
Laboratory is a cylinder of 10 cm diameter and 30 cm length �1�.
The pressure in the target is about 1 bar in the absense of the
proton beam. After the proton beam bombards the target, the pres-
sure rises in the mercury almost instantaneously compared to
acoustic time scales. The pressure distribution, as shown in Fig. 5,
has a Gaussian profile in the transverse direction with 	=1.0 cm
and an exponential attenuation along the axis. The pressure profile
can be approximated as

P0�r,z� = 500e−r2−0.1z bar �11�

where r and z are in cm, and the origin of the z axis is the window
where proton beams enter. When nondissolvable gas bubbles are
injected into the container, the bubble pressure has little change
after the proton pulse and it remains about 1 bar.

5.2 Method of Approach. Before we compare the cavitation
erosion in pure and bubbly mercury, a brief introduction to the
mechanism of cavitation damage and the method we used to quan-
tify it is given in this section. Cavitation is the process in which
bubbles, consisting of vapor and noncondensable gas, form, ex-
pand, and collapse in the fluid according to the surrounding pres-
sure which decreases and increases rapidly. Vapor bubbles are
formed when the pressure falls below the saturated vapor pressure
of the fluid at the ambient temperature or some critical pressure
smaller than the corresponding saturation pressure �32�. They im-
plode when the fluid pressure rises back above the saturated vapor
pressure or when the bubbles move into a region with higher
pressure. If the bubble is close to the container wall, the shock
wave from the rebound of the collapse erodes the wall as in the
SNS target container.

The attenuation of the pressure wave during the rebound phase
of the cavitation bubbles has been studied extensively �33�. The
pressure of the rebounded wave that hits the container wall can be
used to quantify the cavitation erosion. Since it is proportional to
the first collapse pressure of cavitation bubbles, we only need to
compare the average collapse pressure in the pure mercury and the
bubbly mercury for the estimation of the cavitation mitigation
efficiency. In order to calculate the collapse pressure, we need to
know how the cavitation bubbles grow and collapse under the
pressure wave in the container. Since the collapsed bubble size
��0.1 �m� is less than a millionth of the container size �10 cm�,
it is difficult to directly simulate the evolution of cavitation
bubbles in the entire container. Instead we estimated it in two
steps.

First, we simulated the propagation of pressure waves in the
container caused by the initial pressure distribution given by Eq.
�11�. The simulation was carried out for both the pure mercury
and mercury containing nondissolvable gas bubbles. For the simu-
lation of the bubbly mercury, the bubble surfaces were tracked

explicitly via the front tracking method described in the previous
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ections. The pressure relaxation caused by the cavitation was
gnored in the simulation of pressure waves in the container. We
ssumed that the growth and collapse of cavitation bubbles is
ncorrelated, namely, that the far field liquid pressure for a cavi-
ation bubble is not significantly perturbed by relaxation waves
rom neighboring cavitation bubbles. Since the distribution of
avitation centers is unknown for mercury under such conditions,
ccounting for pressure relaxation processes would contain a large
mount of uncertainty.

In the second step, the collapse pressure of cavitation bubbles
as calculated by solving the Keller equation �Eq. �5�� under the

iquid pressure whose profile was obtained in the first step. A
avitation bubble consists of vapor and noncondensable gas. Due
o the liquid-vapor phase transition, the partial vapor pressure in a
ubble remains negligible compared to the amplitude of pressure
aves in the SNS target, while the partial pressure of the gas

typically air� changes violently. As a result, it suffices to calculate
he growth and collapse of cavitation bubbles that consist only of
ir for the estimation of the collapse pressure.

5.3 Pressure Wave Propagation in the Container. Inferred
rom Eq. �11� for the initial pressure distribution, the strongest
ressure oscillation and consequently the most severe cavitation
ight be located at the center of the entrance window, which was

onfirmed by the simulation. Therefore we compared the pressure
rofile at the window center in the pure and bubbly mercury. The
ressure profile in the pure mercury is shown in Fig. 6�a�, while
he pressure profile in the mercury filled with air bubbles is shown
n Fig. 6�b�.

It is readily seen that, as expected, the pressure decayed much
aster in the bubbly mercury, since bubbles absorbed the energy
rom pressure waves and spread it away from the entrance win-
ow. The pressure oscillation in the bubbly mercury was also
ore rapid due to reflections between the window and bubbles.

Fig. 5 The pressure distribution right after a
the Spallation Neutron Source „courtesy of S
Lab…
he typical decay time in both cases is shorter than the period

ournal of Fluids Engineering
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between two proton pulses at the-frequency of 60 Hz. Both pro-
files can be approximately described by the following formula:

Pw�t� = Pw0e−�t/�� cos�2�t

T
� �12�

where Pw0 is the pressure oscillation amplitude on the window
right after the bombard of the proton pulse, � is the inverse of the
attenuation rate, and T is the oscillation period. Numerical values
of the coefficients are Pw0=500 bar, �=0.94 ms, T=70 �s for
pure mercury and Pw0=600 bar, �=50 �s, T=12 �s for mercury
filled with air bubbles of radius 1.0 mm and volume fraction
2.5%.

We compared the result of direct numerical simulations with
that of the multiple scattering theory introduced in Sec. 2.2. The
homogenized wave equations in Sec. 2.2 were solved numerically
in the longitudinal direction of the chamber, with the initial liquid
pressure given by Eq. �11� rather than a sinusoidal profile as for
acoustic waves. As widely recognized �3,18�, the equations in Sec.
2.2 are valid for small void fractions and accurate up to the first
order of �. In our simulation for the SNS problem, �=2.5%,
which is not very small. Therefore, the simulation results could be
different from the theoretical predictions based on homogenized
wave equations. Indeed we found discrepancies, for example, for
injected air bubbles of radius 1.0 mm and volume fraction 2.5%,
the simulation showed an oscillation with period T=12 �s, while
the homogenized wave equations gave a period of 15.4 �s. The
simulated frequency is higher due to the nonlinear effect of a finite
void fraction. In another example, where �=0.53% and R
=0.5 mm, the simulation had an oscillation period T=16 �s,
while the theory gave a period of 17.6 �s, which is still different
but closer to the simulation result because the void fraction is
smaller in this case. Another reason for the discrepancy is the high

lse of proton beams in the mercury target of
experimental facilities, Oak Ridge National
pu
NS
frequency of the pressure wave in the liquid. The wave equations
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n Sec. 2.2 were derived for sound waves with �R. In the SNS
roblem, the energy deposition from the proton beam increases
he liquid pressure to about 500 bar at the entrance window, while
he pressure in the injected bubbles remains around 1 bar. At finite
ubble volume fraction, the induced pressure wave has a wave-
ength of the same order as the bubble radius. These effects make
NS a valuable method in the study of the SNS problem and a
ore general class of bubbly flows.
The accuracy of the results has been guaranteed by mesh re-

nement check. Thanks to the relatively large void fraction, we
ere able to use higher resolution in simulations of bubble layers

n SNS than in those of linear and shock waves. Due to the expo-
ential decay of proton beams along their path, the energy depo-
ition has longitudinal attenuation as indicated by Eq. �11�. In the
resence of the attenuated deposition, standing wave does not
orm in the container, which is confirmed by numerical simula-
ions. Furthermore, simulations showed that the longitudinal at-
enuation was strengthened by injected bubbles due to energy ab-
orption, such that a 3-cm layer of bubbles near the entrance
indow is effectively the same as a chamber full of bubbles in

erms of pressure damping.

5.4 Collapse Pressure of Cavitation Bubbles. The second

ig. 6 The pressure profile at the center of the entrance win-
ow. „a… The pure mercury. „b… The mercury injected with non-
ondensable gas bubbles of radius 1.0 mm and volume frac-
ion 2.5%.
tep is the calculation of the collapse pressure of cavitation
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bubbles. The Keller equation for the bubble growth and collapse
in the weakly compressible liquid was used for that purpose. With
the ambient liquid pressure obtained in the first step, the closed
system of equations is

�1 −
1

cf

dR

dt
�R

d2R

dt2 +
3

2
�1 −

1

3cf

dR

dt
��dR

dt
�2

=
1

� f
�1 +

1

cf

dR

dt
+

R

cf

d

dt
��pB − p�

pg = pB +
2	

R

pgR3 = pg0R0
3

The p in the equation above is the difference between the ambient
pressure and the vapor pressure of mercury in the bubble, how-
ever the latter is much smaller in our case and can be neglected. In
the last equation, the gas pressure in the bubble is associated with
the bubble radius by the isothermal relation, which is valid for
most of the cavitation bubbles in the target and especially during
their evolution stages after the formation and before the collapse.
To estimate the range of initial bubble sizes for our numerical
studies, recall that the cavitation bubble grows from a nucleus
whose radius is bounded below by the stability condition �32,34�

4	

3R0
� − p

For liquid mercury, 	=0.48 kg/s2, in SNS a typical tension of
100 bar gives R0�0.065 �m. Therefore it is reasonable to as-
sume that the initial radius of most cavitation bubbles in the SNS
are below 1 �m, which justifies the isothermal relation for the
bubbles.

The pressure waves in both the pure and bubbly mercury have
an attenuating sinusoidal form. Since the attenuation is much
slower than the period of oscillation, we calculated the overall
collapse pressure of cavitation bubbles by using a purely sinu-
soidal pressure wave for one period and summing up all periods
with the attenuating amplitude. The purely sinusoidal time-wise
fluctuation of pressure has the following form:

p�t� = P sin�2�t

T
+ �0� �13�

where �0 is the initial phase when a cavitation bubble starts to
grow from a nucleus. �0 must be within �−� ,0� because for the
bubbles to grow the initial pressure must be below the saturated
pressure of mercury, which is almost 0 compared to the pressure
wave in the SNS target.

The typical bubble size evolutions with various �0 are shown in
Fig. 7. It is interesting to notice that the bubble does not always
collapse—the bubbles beginning to grow at �0�−0.8� continues
to grow after a period. Although they may collapse after two or
more periods according to the Keller equation, the associated col-
lapse pressure is smaller since the ambient pressure has attenu-
ated. On the other hand, for �0 within �−0.8� ,0� a bubble col-
lapses within about a period. We are only interested in the first
collapse because it produces the largest pressure peak and after
that the bubble often fissures into a cloud of tiny bubbles and the
Keller equation no longer applies �32�. Figure 8 shows the depen-
dence of the first collapse pressure Pc on �0. It is seen that the
collapse pressure is highest for �0 around −0.63�, and the aver-
age collapse pressure Pc is roughly one half of the peak value at
�0=−0.63�.

Neglecting the surface tension and the viscosity, which is jus-
tified by the high pressure wave in the liquid, the Keller equation
becomes a purely acoustic equation so that Pc is a function of
R0 /cfT. In prescribed ambient pressure wave, Pc is a function of

R0 and pg0, and we observed that Pc depends only on the gas
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ontent pg0R0
3 as long as pg0� P. Combining the two observa-

ions, we see that Pc is a function of P and pg0�R0 /cfT�3. In fact,
n the range of P�10 kbar and T�1 ms, an empirical formula
or Pc with P, T as variables and pg0, R0 as parameters was
btained

Pc�P,T� �
1

2
Pc�P,T,�0 = − 0.63��

�
93.0

2
� P

� fcf
2�1.25� pg0

� fcf
2� R0

cfT
�3�−0.50

kbar �14�

ith errors less than 1%. The result agreed with the fact that the
igher rate of stressing the fluid is experiencing, the higher ten-
ion can be sustained. In the bubble injection regime, the period of
ressure oscillation T decreases which in turn reduces the cavita-
ion bubble collapse pressure.

ig. 7 Bubble size evolution with different �0. R0=1.0 �m,
g0=0.01 bar, P=100 bar, T=20 �s.

ig. 8 The first collapse pressure Pc versus �0 under the sinu-
oidal pressure waves with different amplitude P and period T.
he solid line and the dashed line correspond to the pure mer-
ury, the dotted line and the dashed-dotted line correspond to
he mercury filled with air bubbles of radii 1.0 mm and volume

raction of 2.5%.
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5.5 Efficiency of Cavitation Damage Mitigation. Our goal
is to evaluate the mitigation of the cavitation damage by the
bubble injection, i.e., to find the ratio between the overall impact
on the container from the collapses of cavitation bubbles in the
pure mercury and the mercury with nondissolvable gas bubbles.
As mentioned in Sec. 5.2, we needed only to compare the average
collapse pressure Pc. It is worth pointing out that, according to Eq.
�14�, Pc can be factored into two parts, one depending on P and T,
and the other one on pg0, R0. This implies that the ratio between
the two cases �with and without bubble injection� is independent
of the size of the initial nucleus and amount of gas in it as long as
pg0� P.

To estimate quantitatively the efficiency of the cavitation miti-
gation on the entrance window by the bubble injection, we found
the average collapse pressure in each period and took the sum
over all the periods of the attenuating sinusoidal pressure wave
given in Eq. �12�. In other words, we defined

S = �
n=0

�

Pc�Pw�nT�,T� = �
n=0

�

Pc�Pw0e−�nT/��,T� �15�

where the summand is the average collapse pressure in the nth
period. The overall cavitation damage is proportional to S. The
ratio of S in pure mercury and S in bubbly mercury was defined to
be the mitigation efficiency, i.e.,

E��,R� =
S�� = 0�
S��,R�

�16�

where � and R are the volume fraction and mean radius of the
injected bubbles. Combining Eqs. �14� and �15�, we obtain

S � KPw0
1.25T1.50�

n=0

�

e−1.25�nT/�� = K
Pw0

1.25T1.50

1 − e−1.25T/� �17�

where K is a coefficient depending only on the cavitation nucleus
and cancels in E.

Using the data in the paragraph following Eq. �12�, we found
that E��=2.5% ,R=1.0 mm�=32.7. Varying � and R in the simu-
lation of pressure wave propagation we can easily measure the
corresponding efficiency. For example, when �=0.53% and R
=0.5 mm, we found Pw0=450 bar, �=44 �s, T=16 �s. From
Eqs. �16� and �17�, E�0.53% ,0.5 mm�=42.9.

Therefore, we have confirmed the mitigation of cavitation
through the injection of nondissolvable gas bubbles. The bubbles
absorb/disperse the energy and rapidly attenuate the pressure on
the entrance window of the SNS target so that the cavitation lasts
for much shorter time. The simulation results will be compared to
experimental data from the SNS group on bubble injection and
cavitation mitigation once they are available.

6 Conclusion
Through the comparison of numerical simulations with experi-

ments and theoretical predictions on the propagation of acoustic
and shock waves in bubbly fluids, the direct approach to the simu-
lation of bubbly flows using the method of front tracking and the
FronTier code has been validated. The method has a variety of
current and prospective applications, such as Rayleigh-Taylor in-
stability �35,36� and cavitating flows �29�. For cavitating flows,
the dynamics of vapor bubble phase boundaries was resolved in
the simulations of atomization of a high speed jet, and the tracking
of the bubble surfaces was extended to dynamically created
bubbles.

The pressure wave relaxation in bubbly mercury in the SNS
target has been investigated numerically using the FronTier hydro
code. The estimation of cavitation bubble collapse pressure under
periodic ambient pressure has been carried out systematically. The
efficiency of the mitigation of overall cavitation damage by the

injection of bubbles has been calculated. The overall cavitation
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amage has been found to be reduced by more than an order of
agnitude through the injection of gas bubbles with volume frac-

ion of order 1%. Therefore the use of layers of nondissolvable
as bubbles as a pressure mitigation technique to reduce the cavi-
ation erosion has been confirmed.
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