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Rayleigh—Taylor mixing rates for compressible flow
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We study Rayleigh—Taylor instability in both the moderately compressible and weakly compressible
regimes. For the two-dimensional single mode case, we find that the dimensionless terminal
velocities(and associated Froude numbease nearly constant over most of this region of parameter
space, as the thermodynamic parameters describing the equation of state are varied. The
phenomenological drag coefficient which occurs in the single mode buoyancy-drag equation is
directly related to the terminal velocities and has a similar behavior. Pressure differences and
interface shape, however, display significant dependence on the equation of state parameters even
for the weakly compressible flows. For three-dimensional multimode mixing, we expect accordingly
that density stratification rather than drag will provide the leading compressibility effect. We
develop an analytical model to account for density stratification effects in multimode self-similar
mixing. Our theory is consistent with and extends numerically based conclusions developed earlier
which also identify density stratification as the dominant compressibility effect for multimode
three-dimensional mixing. @005 American Institute of PhysidDOI: 10.1063/1.1843155

I. INTRODUCTION firmed by experiment and two-dimensional(2D)

L L simulations’ Alternate forms of(1) have been proposéd
Among the classic instabilities of a fluid interface, the i A replaced by 2/(A+1)

Rayleigh—Taylor(RT) instability associated with steady ac-

celeration has been studied for over four decddBs. is 2A0N A+1

important for astrophysic&upernov geophysicgthunder- IVpd =Chs\/ IVEL Chs=Cphs\/ ? (2)

storms, saltdomgsand technology(inertially confined fu- -

sior) among (_)ther_ problems. : . A more fundamental finitéA theory for C,¢ with a more
We examine first the well studied case of a single mode : :
. S S . . complicatedA dependence has been presented rec%?my.

RT instability, i.e., a periodic array of identical modes, con-

sisting of bubbles of light fluid rising into the heavy fluid and correction to this basic picture was identified as a late time

. JITES . o .~ oscillation inV, s about some mean vald& Moreover, the
spikes falling into light fluid, under gravitational acceleration , ' .
L - ! ; A=1 Froude number in 3D depends on the planar symmetry
of an initially unstablegheavy over light configuration. The

T 12 .
modes grow initially at an exponential rate but eventuallygrOUp of the periodic bubblés™and this effect should hold

saturate, and achieve a terminal velocit for A<1 also.
' y We discuss compressibility effects in RT mixing. We

Ve =Cy S\,Tg)\, (1) show in Sec. Il that bubblg and spike terminal ve_:lqcities_, ie.,

’ ’ the Cy, s and the related single mode drag coefficients intro-
with an Atwood numbeA=(p,—p1)/(po+p,) expressing the duced below are relatively insensitive to compressible equa-
contrast in fluid densities betwegn=pjgn: and p,=pheany  tion of state(EOS parameters over the range of parameters
g=9g(t) the gravitational acceleration, aidthe width of the  we examine, for moderately compressible and nearly incom-
periodic channel. Here the subscriph”“denotes bubble pressible flows. However, detailed examination of the inter-
(light fluid penetrating into heavy fluidand ‘s” denotes face shapes and of the pressure differences between the
s:pike.CﬁS is called the Froude number and it has been studheavy and light fluids, averaged at a common height, shows
ied theofeticallﬁ‘4 and numericall;? For bubbles, it has the a strong dependence on EOS parameters. Thus convergence
values C,=0.23 in two dimensions an€,=0.34 in three to a unique incompressible limit is not achieved within the
dimensions forA=1 according to analytic theoried con- very slightly compressible flows considered here.
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We measure compressibility through the pseudo-Mach 7i'Mi2r(Z_Zint) b7

number pi(2) = pd) TP ex — -TP+1( , (9
J”,_A
Mi = %, (3) Whel’e
' oYM PotP 1

wherec; is the sound speed in fluid In view of (1), P 7i’Mi2'piO T Pyt P Tiq (10)

M. = 1 _ « Mach number (4) is the relative stiffness of two fluidg,=p; =Py is the single

' besv"A pressure ar=z,,, and the primed indek denotes the fluid

complementary to fluid, i.e.,i’=3~i. Notice thatT?:l in

is approximately five times the Mach numb@¥y |/c) of  caseP, . =P.....
the bubble or spike tip at its terminal velocity for the value of The single mode RT simulations at terminal velocity are
A=1/3 considered here. The dimensionless parameters goviot affected by density stratification, but due to the much
erning compressible single mode RT mixing &g A, and  |onger time and perturbation heights needed to achieve self-
the EOS. similarity for multimode RT flows, density stratification is a

The complete EOS of a compressible fluid contains aneading compressibility effect for multimode flows. The
infinite number of parameters. These should become irrelstratification is measured by a time and space dependent At-

evant in the IimitMi2—>0. For simplicity, we consider a wood number. In Sec. Ill, we propose a simple physics
simple model for the EOS, the stiffeneglaw gas, defined model for this stratification. The ambient fluids are assumed
by the incomplete EOS (att=0) to be isothermal. The penetrating fluids are assumed
) to have a single pressure at the bubble and spike tips and to
pc”=y(p+P.), ®) change isentropically as they are displayed from theid

whereP,, is a constant with the dimension of pressure. Theisothermal state. Then formul&8) and(9) yield a model for

RT instability with this EOS depends on four thermodynamicf‘:Ab(lz't) andA:AS(z,td) at tdh_e bubple ?n.d spciike tipcs). TEess
parametersy, v, Py, andP,,. as well as the flow param- ormulas are compared to direct simulation data. On the ba-

etersA andM, (M, is determined fronM,, and the thermo- sis of Sec. Il results, we assume that the drag coefficient is
dynamics. M? can also be understood as giving a Iengthonly weakly sensitive to compressibility. On the basis of

scale(in units of\) over which compression induced density :)hese twodassumptlgns,twe edxatmlne the ?g.lll{['onf? Otf the
changes occur. Hydrostatic equilibrium is defined as a Solu_uc;yancdy- I;?g equation fo IOVF\? |fc ;%mpresg n )/f_e ects on
tion of the static momentum equation multimode mixing rates. We find density stratification as

the leading compressibility effect. These predictions are
dp compared to direct numerical simulations.
4Py (6)
Il. SINGLE MODE MIXING RATES
The dependence gf (and thusp) on z can be specified A. Growth models
initially by an arbitrary function ofz.

Two natural choices for this initigh(2) are defined by ~ Multimode (chaotio mixing rates are defined as solu-
isothermal or isentropic thermodynamics. Assuming an isolions of the buoyancy-drag equation
thermal initialization and a stiffeneg-law gas, the sound d?z . im,dpi, |2
speeds are initially constant in each fluid and the density (Pi+KiPir)¥=(Pi =piNg-(= 1)'7 (11
satisfies !

This equation describes the motion of the edges=1,2 (or
@:ﬂ ) b,s) of an acceleration driven mixing layer. Herg is an
dz ¢ added mass coefficient due to the existence of fiuicand

) o _ Cim'd is a phenomenological multimode drag coefficient for
Equation(7) is integrated to yield the edge of fluid.

B M2(2— For self-similar (multimode incompressible flow, the
pi(2) :pio exp{wfm)] = i0 p{y‘ i Z‘”‘)] bubble and the spike fronts grow with the acceleration scal-
C A ing proportional togt?,

8 Z(t) = (- 1) AgP. (12)

wherez,, is the initial mean interface position ar;nﬁ isthe The RT mixing rates o4 have been measured in
density of fluidi at z=z,,. For a bubble or spike penetrating experiment§?° and characterized by theorféd™® and
into an isothermally stratified ambient fluid, we assume asimulation studie$*?° The experiments, theories, and two
common horizontally averaged pressure in the two fluids as aimulationd”?® show a bubble growth rate of roughly
function ofz and isentropic density stratification in the pen- 0.06+0.01(i.e., in the range 0.05+0.005-0.063+0.00he
etrating phase. Using the ambient pressure ft@rand(8), other simulation® ' give a; of the order of 0.03. A detailed
we derive the formula discussion of the values af; can be found in Ref. 32. To
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FIG. 1. The front plots at terminal velocity for the four cases in Table I. H#5e 0.05. Gravityg points upward here, so that the bubble tip is located at the
bottom of each figure.

this reference we add the comment that the valuer dfas  the drag length scale. Frofi5), we evaluate the terminal
been observed to or is believed to depend on surface tensiamlocity

(for immiscible fluidg, physical or numerical mass diffusion
(for miscible fluidg, and on long wave length perturbations
(nois8 in the initial conditions, and for these reasons it may
not be universal. AA=1, the spike rate,,=1/2. Inthis flow,

the multimode drag coefficierd™=C*(A) has the func-  1y,¢ identity (16) shows the dependence o on 2A/L;

— 2
V1= VA x| o (16)

. 1 \
tional fornt =2A/[1-(-1)'A] as in(2). The comparison of16) with (1)
Lea; —[1+ (- 1)'A] - kL ives
Cim’d(A) - o — [ (- D'A] - |7 (13) g
oL,
2
Cpe= . 17
where bs= \/ L 17
. 20,
L=1-(-)A=—P (14)

Using the valueC,=0.23 atA=1,> we getC3=18.9. Notice
that the multimode drag coefficientdg"dz4.5 by substitu-
dtion of @;=0.05 into(13). The drag coefficient of the single
mode bubble front is approximately four times of that of the
multimode bubble front. Therefore the single bubble terminal
L, cisvd\/i°°2 velocity is about half the multimode bubble front velocity, a
= PN (15 result which is consistent with the numerital* and labora-
tory experiments. Physically, this is understandable because
from (11), whereCiS'd replacescim'd as the single mode drag the merger process in multimode advances the bubble termi-
coefficient and?is’d is defined in terms ok replacing|z;| as  nal velocity dramatically.

p1tpa

We consider cylindrical compressible front bubbles an
spikes(k;~1).%! For single mode RT mixingdVi/dt=0 at
terminal velocity,V;=V;". We obtain
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B. Compressible EOS effects

ooo?
We show, through an extensive simulation study, that the

drag coefficient€®>® and Froude numbers have small sensi- oooe
tivity to EOS parameters in the moderate to weak compress- I
ibility regime. In spite of this fact, we show striking EOS
dependence even for very weakly compressible flows. The :}—D ooo4
dependence is obvious in the shape of the interface at the
time the terminal bubble velocity is achieved, see Fig. 1, and I
in the strong dependence of pressure differerieesl pres- 0002
sure draggon EOS parameters, both for weakly compressible I
flows.

We performed a systematic study of 2D Rayleigh—Taylor o
single mode instability simulations, using the front tracking
code FronTier, with different EOS parameters ag5p In
our simulations, we set the Atwood numba&r1/3. The
initial configuration of the system contains a small ampli- !
tude, single sinusoidal mode interface with periodic bound- E
ary conditions on the left and right side of the computational |
domain of width\. The top and bottom of the computational 6[
domain are Neumann boundaries. The initial amplitude of -
the perturbation is set to 0.045The positions of the inter- A o
faces and the states of the system are updated by applying :
the front tracking method to the full two-dimensional Euler "
equations. All the numerical results use a ¥6D600 grid in -
a 1x10 computational domain. It is known that the bubble |~ T¥-newoo- ’
velocity has gradual oscillations associated with gradual 2w = W s e
shape changes in the bubble and spike, after first reaching a t
maXImum_VGIOCIt)E SO that the n_Otlon of terminal velocity FIG. 2. Left, the bubble front velocity vs time. Right, convergence of the
for A<1 is not a precisely defined concept. We take thedrag ratiosDj  to a large time asymptotic limit. Rapid small oscillations are
terminal velocity to be the velocity at the first maximum in suppressed by time averaging of the data. The top(§péd) is Dy and the
these oscillations. We record the first peak as the termindiottom(dashedlis D HereM,=0.05,Py./Po=0, P;./Py=10,7,=4.0, and
velocity, after which the velocity is weakly oscillatory as [
seen in Fig. 2. For the pressure differences and drag ratios
(bubble or spikg Dj ={pressure drgg{form dragd, there
are rapid small oscillations at late time, removed by localregarded as a pressure drag force on the bubble/spike tip.
time averages in Fig. 2. These forces display significant EOS and compressibility de-

Table | shows that the terminal velocity coefficie@gs  pendence in the moderate to weak compressibility regime.
are nearly independent of EOS and compressibility paramWe dimensionalize this force through division by the form
eters. See also Tables IlI-VI in the Appendix. Fr@hd), the  drag force or in view of15) by Ag. Similar definitions apply
phenomenological drag coefficie[‘jf"d in the single mode to Av and Av,s. Herewv; (v,) is the light (heavy phase
buoyancy-drag equation is related to the terminal velocitieyelocity averaged over the space.
and it thus has a similar behavior. However, the solutions are  Simple results in Table | and details in Tables 1lI-VI in
not actually converging even within the fairly small Mach the Appendix show a significant dependence of the pressure
numbers we achieve with our compressible code. In Fig. 1drag force, or the drag ratio of EOS parameters and com-
we observe that the shape of the bubble fronts at the termingiressibility,
velocities depends significantly on the EOS parameters for Ap
very weakly compressible flows. Continuing this point of DL,S:%'
view, we see that pressure differences between the two Psp(Avps)
phases are likewise sensitive to EOS and compressibility effhe time dependent drag ratios are evaluated at the time of
fects. The same sensitivity of pressure differences on simuerminal (bubble or spikg velocity. The sensitivity of the
lation parameters was observed in Ref. 22 in the content afrag ratios to EOS parameters results directly from the
multiphase averaged equations. strong sensitivity of the pressure differences to these param-

Let Ap denote the differencp,—p; in the pressures be- eters. The strongest EOS dependence occurs in Table IV with
tween the two phases, averaged over the horizontal spa¢g,./Py=10>P,../Py=0 and fory,=4.0> y,=1.1, which is
variablex, as a function otz andt. ThenAp=0 at the bubble in the four right columns of each table. Generally, the pres-
tip and Ap=0 at the spike tip. We defindp,s to be the sure differences and drag ratios decrease as the penetrating
value of (-1)'Ap at the bubble or spike tip at the time of phase becomes stiff@largery or P.,) relative to the ambient
terminal velocity. ThenAp, /X is a force, and it can be phase, and these quantities are much more sensitive to varia-

ooos

opo3

0oo1

(18
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TABLE I. Dependence o€, and drag ratidj,  on compressible EOS parameters. Hegds the pressure at
the initial mean interface position. The smallest Mach numiities right most columnare =0.02.[See(3).]

EOSW, 0.55 0.32 0.1 0.05
11=2.0,,=1.1 M, 0.29 0.17 0.05 0.03
P/ Po= P2,/ Py=0 Cy 0.31 0.30 0.25 0.25
C, 0.43 0.35 0.37 0.36
D} 1.1 1.2 1.9 2.0
D! 1.2 1.4 2.9 3.0
11=1.1,7,=2.0 M, 0.52 0.30 0.10 0.05
P/ Po= P2,/ Py=10 Cy 0.32 0.29 0.25 0.25
C, 0.41 0.43 0.39 0.40
D} 1.1 1.1 2.5 3.1
D! 1.0 1.0 15 1.9
11=4.0,y,=1.1 M, 0.68 0.39 0.12 0.06
P1:/Po=0, Pp./Po=10 Cy 0.29 0.32 0.26 0.25
Cs 0.36 0.39 0.40 0.42
D} 1.0 1.2 2.5 3.1
D! 1.2 1.1 1.0 1.0
11=1.1, 1,=4.0 M, 0.22 0.13 0.04 0.02
P/ Py=10, P../Po=0 Cy 0.29 0.32 0.30 0.30
C, 0.43 0.43 0.40 0.39
D} 1.2 1.2 1.6 1.4
D! 1.1 1.6 3.1 3.6

tion of P,, than to variation ofy. We also observe that EOS maximum bubble width follows the same trend. The mini-
effects are diminished at high compressibility, so that themum bubble width(which can be regarded as defining a
M,=0.55 column of Table | is nearly independent of the maximum spike widthhas an opposite trend and is probably
EOS, in contrast to the EOS dependence, especially of presot a good predictor of bubble motion. Shape is an important
sure differences and drag ratios for the weakly compressibleariable in determining drag and terminal velocity, as we see
columnM,=0.05. In the high compressibility limit, the pres- from Fig. 3 and the analysis here.

sure drag is approximately equal to the form drag.

. . [ll. EFFECTS OF DENSITY VARIATION ON MIXING
C. Shape effects on compressible mixing rates RATES

The purpose of this section is to study strong cOmpress- |, his section, we study the effect of compressibility

ibility ,i“}?'uceg shape effects on mixing rates. We let com-j,q,ced density stratification on 3D multimode mixing rates.
pressibility M3 vary from 0.1 to 00'8' Over this range, the the chaotic mixing problem differs from the single mode
terminal velocity increases by 10%. We study the radius of, op1em in that considerably longer solution times and pen-
curvature and bubble width to understand co_mpreSS|b|I|ty iNetration distances are needed to achieve asymptotic self-
duced shape effects. We calculate the radius curvature Ryimiiar scaling. For this reason, density stratification associ-
fitting a circle to three interface points Iocated>at0.4$, ated with the weakly compressible regime is generally
0.5, and 0.55. We see from Table Il a trend for the radius OEignificant, in contrast to the single mode case where the

curvature to increase as the compressibility increases. The .« have nearly constant density contrast. We develop an

analytical model to account for density stratification effects
TABLE Il. Radius curvature for the parameter values1/3, y,=1.1, y, in multimode Self'sf'm'lar m'_X'ng' F“?m Re.f' 25, we _knOW
=4.0,P,../P,=10, andP,../P,=0. Herek=1/R is the bubble tip curvature. that the compressible multimode simulations remain self-
similar after removal of stratification effects, until a reversal
M, G, k=1/RatVp=V, Bubble width(min) Bubble width(max  of the Atwood number regime occurs. Here we reach the

032 0.32 778 054 0.56 same conclusion through analytic mpdels. We use thg r.esults
055 0.29 4.32 0.52 0.61 of Sec. Il to_postulate that the multimode drag _cqgfﬂuents
071 025 289 0.43 0.66 are not sensitive to weak or moderate compressibility effects
089 0.22 265 0.38 0.66 and we study the influence of compressibility induced den-

sity stratification.
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FIG. 4. Left, comparison of the model time dependent Atwood nurAbey
plotted vs time, with direct simulation data. Right, at the bubble tip,
comparing model, and simulation data. HeM%zO.l (moderately
compressiblg

where the multimode drag coefficiedf™® is given in (13)
andL; is defined in(14). Let S=V?/Z. Then§ can be re-
garded as a function of, because;=Z;(t) is monotone. We

obtain
25[
[ | =======- Simulation Data .
| Model
[ .
L ,'
[ 15 . ’
.2 1 1 ) ) 1 | 1 1 1 1 1 — : P
o 0s 1 N | "v
FIG. 3. 2D single mode RT front plots with different compressibiliigem r .7 ‘
left to right, M,=0.32, 0.55, 0.7]Lat terminal velocity. Herey, and P;., are H s
as in Table II. [ iy
osf ’
5 ’
s
’,
For cylindrical front tips, we assume thét1)'Z;(t)>0 "u; e
for t>0, the initial mean interface heig(0)=0, and that P r
the mixing zone expands, i.e(+1)'V,>0. Then Eq.(11) 2 uInA(s)g dsdr

reduces to the equation ) o ) )
FIG. 5. Comparison of the model bubble edge with direct simulation data

for the M§:O.l moderately compressible case. The dashed line represents

L C-m’dV-2 the simulation data and the solid is calculated from the model @§sand
(-1'z,=Ag-(-1)'=—, (19) (24). The drag coefficien€™ in (19) is chosen to allow approximate agree-
2 Z ment between these curves.
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024104-7 Rayleigh—Taylor mixing rates
TABLE Ill. Py../Py=P,./Py=0.
Mlv va CS' DL’ D;
Yo\ 1.1 2.0 4.0
1.1 0.07, 0.25, 0.39, 2.0, 2.0 0.05, 0.25, 0.37, 1.9, 2.9 0.04, 0.27, 0.35, 1.0, 4.0
2.0 0.10, 0.26, 0.40, 2.5, 1.5 0.07, 0.25, 0.39, 2.0, 2.0 0.05, 0.25, 0.37, 1.6, 3.0
4.0 0.13, 0.26, 0.42, 2.5, 1.0 0.10, 0.25, 0.40, 2.5, 1.5 0.07, 0.25, 0.39, 2.0, 2.0
ds Vi2 V;dV, We propose a physics model for time dependent Atwood
d_Zi:_? za (20 number based on isothermal initial conditions. We assume
i i

From (20), substituton of the identity Z=dV;/dt
=V;dV,/dz, shows

isentropic flow within the mixing zone. The single phase
region has very little flow so that its isothermal initialization
property is retained. The density stratification thus satisfies
(8) for the continuing phase flow at the mixing zone edge

zid_S =-§+2Z. (21)  and(9) for the vanishing flow at the mixing zone edge. From
dz (3), the phaseé compressibilityM; is a dimensionless length-
Substituting(21) into (11), we obtain scale over Whigh gravity causes significant fluid compression
for fluid i. Motivated by Sec. Il, we assume that the drag
(- 1)i1‘(zid_s + 3) —Ag- (-1 iECim,dS’ (22) coefficientC"“=C*(A) is independent oi;, and so we are
2\ 'dz 2 concerned only with density stratification effects, i.e., vari-
e able Atwood number effects on the mixing rates. Then
= pi [TP explyM2Z/\) - T2+1]Y%  will replace p; and
i ds i i expl( S M2Z/\) will replace p;, at the front tipZ; in the
-1z~ =2Ag- (- D)'(Lic™ + DS. 23 PSRN P '
=D 'dz g- (- LG S @3 drag-buoyancy equation. Thus only the Atwood number
|
[ WMZ o WMZ,
pi| TP ex N -T°+1|  -pex N
—(_ 1\ -
AZ)=(-1)'— v 0 iz (24)
17V & 1TV &
pi T?exp( | )—Tio+1 +pi,exp< : )
L A i A

at the bubble or spike tip if23) changes, wher@? is de-

ence between the model and the data is caused by two fac-

fined in (10). In Fig. 4, we compare this model to numerical tors. Both heavy and light fluid at the bubble tip in the model

data from direct simulation of the multimode mixiAyThe

are too light relative to the simulation data. The first, and

solid line in the left frame of Fig. 4 is the model Atwood larger, of these effects can be understood as follows. As con-
number plot based of24) using direct numerical simulation firmed from analysis of the 3D multimode simulation data,

dataz;. We see that the model is qualitatively correct

butsome of the heavy fluid near the bubble tip originated near

overstates the influence of density stratification. The differthe Z=0 value for the initial bubble position and was trans-

TABLE IV. Py../Py=Ps./Py=10.

My, Cy, Cs, Dy, D¢

S

Y\ m 1.1 2.0 4.0
1.1 0.07, 0.25, 0.39, 2.0, 2.0 0.05, 0.25, 0.38, 1.8, 2.7 0.04, 0.26, 0.35, 1.0, 3.7
2.0 0.10, 0.25, 0.39, 2.5, 1.5 0.07, 0.25, 0.39, 2.0, 2.0 0.05, 0.25, 0.37, 1.6, 3.0
40 0.13, 0.26, 0.41, 2.5, 1.0 0.10, 0.26, 0.40, 2.5, 1.5 0.07, 0.25, 0.38, 2.1, 2.1
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TABLE V. P,../Py=0 andP,,/P,=10.

Mlv va CS' DL’ D;

v\n 11 2.0 4.0

1.1 0.23, 0.26, 0.43, 2.5, 0.6 0.17, 0.26, 0.42, 2.5, 0.9 0.12, 0.26, 0.40, 2.5, 1.0

2.0 0.32, 0.26, 0.44, 2.5, 0.5 0.23, 0.26, 0.42, 2.5, 0.5 0.17, 0.26, 0.41, 2.5, 0.9

4.0 0.45, 0.26, 0.44, 2.5, 0.4 0.33, 0.26, 0.44, 2.5, 0.5 0.23, 0.27, 0.44, 2.5, 0.6
ported there by the bubble motion. This heavy fluid evolves  5(z) =5 + Yz, (29)
from its Z=0 density isentropically and is heavier than the . .
model assumption. for smallZ;. We substitut¢28) and(29) into (23) and equate

In Fig. 5, we compare the edge modd9) with the terms of the same order &. Notice that the zeroth-order

direct numerical dat® The solid line represents the solution t€rms cancel. Using27), the coefficients o, give the iden-
Z,(t) of (19) with the Atwood number24). Here the drag Uty

coefficien'F in(19) _is an adju§table parameter, chosen t_o give g(cim,d +1)(1-A?) %'Mizr(T?— )
the best fit for this comparison. We are here comparing not S(l) = — o (30)
only the buoyancy-drag equati¢h9) to simulation, but also yNLCGMT+2) (LG + 1)

the influence of the modéR4) or a time dependent Atwood
number in this comparison.
The exact solution 0f23) is

Observe that the sign ca(l) depends on the sign dr?—yi.
We note that ifA=1 or T?:yi is satisfied, it follows from
(30) that Sfl)=0 and thus a higher order approximation is
wo ZL(y)emd+ 1 required for§=S(zZ) in (29). Assuming thatS” #0, we

S =9 exp _f y dy now solve the equation

2
2 YL(C™+1 | (-1)i2a Vi _qo,qvy
+J exp f i(S)Ci ds (Y] (y)gdy, 2 S9+gvz, (31)
0 z S y
(25) for Z,. The solution of Eq(31) is
0)
whereS? =S5(z,=0), A(Z) is given in(24) and %[COSWEV@) -1] ifs¥>0
Li(Z)=1-(- D'AZ). (26) Z=\ <o : (32
= CdDy_11 i aD
From (23), we see that for a finitdS/dZz atZ,=0, the initial 25(1)[“)5“\ s -1 ifg¥<o
condition is given as
2Ag From (32), we derive for smalty/|S*),
0 - L= =(-1)——— = (- 14w
§7=8Z=0= (D mg 7 = DdaAg. (@7 250

tZsl)
Z;= L4+ ot*'s™?) |. (33)

4
whereA=A(Z;=0) andL;=L;(Z=0).

The integrals in(25) are not evaluated explicitly, so we This holds for small2|5fl)|, ie.,
introduce the approximation df4),

(L= ME(T? = ) N
AZ)=A+(-1) 2 Z, (28) %
Y In the incompressible limityl;=0 andel):O, Eq.(33) gives

valid for smallyi,MiZ,Zi/yi)\, i.e., smallz; andM;.. Suppose the asymptotic solutiorZi:tZSfc’)M which recovers the in-
that compressible flow solutiofi12).

I AIWMIT? - o

<1. (34)

TABLE VI. P,../Py=10 andP,./Py=0.

er Cb’ CSY DrbY D;

Y\ m 1.1 2.0 4.0
1.1 0.02, 0.36, 0.39, 0.7, 5.2 0.016, 0.40, 0.40, 0.5, 4.9 0.01, 0.49, 0.40, 0.02, 6.8
2.0 0.03, 0.33, 0.40, 1.1, 4.0 0.02, 0.36, 0.40, 0.6, 5.0 0.015, 0.43, 0.40, 0.2, 6.0
40 0.04, 0.30, 0.40, 1.6, 3.1 0.03, 0.32, 0.39, 1.0, 3.5 0.02, 0.37, 0.39, 0.5, 5.4
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