1 Solution to Homework 2

6.2

\[E_{ij} = \frac{\delta_{i,j} + \delta_{i,m+1-j}}{2} \]

\(E \) is a projector because \(E^2 = E \). It is an orthogonal projector because \(E = E^* \).

7.3

\(A = QR \). \(| \det A | = | \det R | = \prod_{i=1}^{m} |r_{ii}| \). Denote the \(i \)th column of \(R \) by \(r_{i} \), then

\[\| a_{i} \|_{2} = \| Qa_{i} \|_{2} = \| r_{i} \|_{2} \geq |r_{ii}|. \]

Therefore \(| \det A | \leq \prod_{i=1}^{m} \| a_{i} \|_{2} \). The geometric interpretation is that the volume of an \(m \)-dimensional parallelepiped is bounded by the product of the length of the \(m \) spanning edges.

8.2

function [Q,R]=mgs(A)
[m,n]=size(A);
Q=A;
R=eye(n);
for i=1:n
R(i,i)=norm(Q(:,i));
Q(:,i)=Q(:,i)/R(i,i);
if i==n
break
end
for j=i+1:n
R(i,j)=Q(:,i)'*Q(:,j); % modified GS
Q(:,j)=Q(:,j)-R(i,j)*Q(:,i);
end
end

10.2

(a)
function [W,R]=house(A)
[m,n]=size(A);
W=zeros(m,n); % store Householder vectors
for k=1:n
x=A(k:m,k);
if x(1)==0
 sgn=1;
else
 sgn=sign(x(1));
end
A(k:m,k)=0;
\textbf{10.4}

(a) F reflects a vector with respect to the line of azimuthal angle $(\pi - \theta)/2$. J rotates the plane by $-\theta$.

(b) For each nonzero vector $<a, b> \in \mathbb{R}^2$, we can apply J with $\theta = \arctan(b/a)$ to it and turn it into a vector with 2nd entry zero. For each nonzero vector in \mathbb{C}^2, we can modify J to include the relative phase of the two entries, so that J still maps it into a vector with 2nd entry zero. For any given matrix A, we can apply such J for the 1st and 2nd rows of A to to get $A' = JA$ with $A'_{21} = 0$; then apply such J for the 1st and 3rd rows of A', and so on, until we get a matrix whose 1st column is all zero except the 1st entry. The we can apply such J for the 2nd and 3rd row, without computation involving the 1st column because the relevant entries are all 0. The process can be continued until we transform A into an upper-triangular matrix by successive rotations, whose product is a unitary matrix.

(c) For the first J, which acts on the 1st and 2nd rows of length n, the multiplication by J takes $6n$ flops. The introduce all the zeros in the first column, we need $6n(m - 1)$ flops, so the average per entry is 6, as compared to the average of 4 in the Householder triangularization.

\textbf{11.1}

Denote by P the orthogonal projection onto $\text{Col}A$. For any $x \in \mathbb{C}^m$, there exists a $y \in \mathbb{C}^n$, such that

\[x = Px + (1 - P)x = Ay + (1 - P)x. \]

Since $A^+A = I$, and $\text{Nul}A^+ = \text{Col}(1 - P)$,

\[A^+x = A^+Ay + A^+(1 - P)x = y. \]
On the other hand,

\[Ay = \begin{pmatrix} A_1 y \\ A_2 y \end{pmatrix}, \]

so

\[\| x \|_2^2 = \| Ay \|_2^2 + \| (1 - P)x \|_2^2 \geq \| Ay \|_2^2 \geq \| A_1 y \|_2^2. \]

As a result,

\[\begin{aligned} \frac{\| A^+ x \|}{\| x \|} &= \frac{\| y \|}{\| x \|} \leq \frac{\| y \|}{\| A_1 y \|} = \frac{\| A_1^{-1} A_1 y \|}{\| A_1 y \|}. \end{aligned} \]

Taking the sup on both ends, we get

\[\| A^+ \| \leq \| A_1^{-1} \|. \]