Connected sum construction of constant Q-curvature manifolds in higher dimensions

Yueh-Ju Lin Department of Mathematics University of Notre Dame

AMS Special Session on Recent Progress in Geometric and Complex Analysis 2014 Joint Mathematics Meetings

January 16, 2014

Yueh-Ju Lin Department of Mathematics University of Notre Dame [Connected sum construction of constant Q-curvature manifolds](#page-38-0)

イロト イ押 トイヨ トイヨト

§1 Conformal transformation law of scalar curvature

On a compact manifold (M^n, g) of dimension $n \geq 3$, if $\tilde{g} = u^{\frac{4}{n-2}}g$ for some positive function u (i.e., \tilde{g} is a conformal metric to g), we have the following Yamabe equation:

(ロトイ部)→(理)→(理)→

§1 Conformal transformation law of scalar curvature

On a compact manifold (M^n, g) of dimension $n \geq 3$, if $\tilde{g} = u^{\frac{4}{n-2}}g$ for some positive function u (i.e., \tilde{g} is a conformal metric to g), we have the following Yamabe equation:

$$
\Box_g u \equiv -\frac{4(n-1)}{n-2} \Delta_g u + R_g u = R_{\tilde{g}} u^{\frac{n+2}{n-2}} \tag{1}
$$

(ロトイ部)→(理)→(理)→

§1 Conformal transformation law of scalar curvature

On a compact manifold (M^n, g) of dimension $n \geq 3$, if $\tilde{g} = u^{\frac{4}{n-2}}g$ for some positive function u (i.e., \tilde{g} is a conformal metric to g), we have the following Yamabe equation:

$$
\Box_g u \equiv -\frac{4(n-1)}{n-2} \Delta_g u + R_g u = R_{\tilde{g}} u^{\frac{n+2}{n-2}} \tag{1}
$$

and the conformal covariant property:

$$
\Box_{\tilde{g}}(\phi) = u^{-\frac{n+2}{n-2}} \Box_{g}(u\phi), \qquad (2)
$$

イロト イ押ト イヨト イヨト

 QQ

where R_q is the scalar curvature of the metric q and \Box_q is called the conformal Laplacian operator.

§1 Conformal transformation law of scalar curvature

On a compact manifold (M^n, g) of dimension $n \geq 3$, if $\tilde{g} = u^{\frac{4}{n-2}}g$ for some positive function u (i.e., \tilde{g} is a conformal metric to g), we have the following Yamabe equation:

$$
\Box_g u \equiv -\frac{4(n-1)}{n-2} \Delta_g u + R_g u = R_{\tilde{g}} u^{\frac{n+2}{n-2}} \tag{1}
$$

and the conformal covariant property:

$$
\Box_{\tilde{g}}(\phi) = u^{-\frac{n+2}{n-2}} \Box_{g}(u\phi), \qquad (2)
$$

←ロ ▶ ←何 ▶ ← ヨ ▶ ← ヨ ▶ ..

 QQ

where R_q is the scalar curvature of the metric q and \Box_q is called the conformal Laplacian operator.

Yamabe Problem: Given a compact (M^n, g) of $n \geq 3$, does there exist a conformal metric $\tilde{g} \in [g]$ such that $R_{\tilde{g}} \equiv$ constant? (Solved by Yamabe, Trudinger, Aubin, and Schoen.)

§1 Conformal transformation law of scalar curvature

On a compact manifold (M^n, g) of dimension $n \geq 3$, if $\tilde{g} = u^{\frac{4}{n-2}}g$ for some positive function u (i.e., \tilde{g} is a conformal metric to g), we have the following Yamabe equation:

$$
\Box_g u \equiv -\frac{4(n-1)}{n-2} \Delta_g u + R_g u = R_{\tilde{g}} u^{\frac{n+2}{n-2}} \tag{1}
$$

and the conformal covariant property:

$$
\Box_{\tilde{g}}(\phi) = u^{-\frac{n+2}{n-2}} \Box_{g}(u\phi), \qquad (2)
$$

←ロ ▶ ←何 ▶ ← ヨ ▶ ← ヨ ▶ ..

 QQ

where R_q is the scalar curvature of the metric q and \Box_q is called the conformal Laplacian operator.

Yamabe Problem: Given a compact (M^n, g) of $n \geq 3$, does there exist a conformal metric $\tilde{g} \in [g]$ such that $R_{\tilde{g}} \equiv$ constant? (Solved by Yamabe, Trudinger, Aubin, and Schoen.) ⇐⇒ Solving

§1 Conformal transformation law of scalar curvature

On a compact manifold (M^n, g) of dimension $n \geq 3$, if $\tilde{g} = u^{\frac{4}{n-2}}g$ for some positive function u (i.e., \tilde{g} is a conformal metric to g), we have the following Yamabe equation:

$$
\Box_g u \equiv -\frac{4(n-1)}{n-2} \Delta_g u + R_g u = R_{\tilde{g}} u^{\frac{n+2}{n-2}} \tag{1}
$$

and the conformal covariant property:

$$
\Box_{\tilde{g}}(\phi) = u^{-\frac{n+2}{n-2}} \Box_{g}(u\phi), \qquad (2)
$$

where R_q is the scalar curvature of the metric q and \Box_q is called the conformal Laplacian operator.

Yamabe Problem: Given a compact (M^n, g) of $n \geq 3$, does there exist a conformal metric $\tilde{g} \in [g]$ such that $R_{\tilde{g}} \equiv$ constant? (Solved by Yamabe, Trudinger, Aubin, and Schoen.) ⇐⇒ Solving

$$
\Box_g u = \lambda u^{\frac{n+2}{n-2}},\tag{3}
$$

←ロ ▶ ←何 ▶ ← ヨ ▶ ← ヨ ▶ ..

 QQ

for some constant λ.

§1 Q-curvature and the Paneitz operator

When $n \geq 5$, Q-curvature and the Paneitz operator P_{g}^{n} are higher order analogue of scalar curvature and the conformal Laplacian respectively.

イロト イ押 トイヨ トイヨト

§1 Q-curvature and the Paneitz operator

When $n \geq 5$, Q-curvature and the Paneitz operator P_{g}^{n} are higher order analogue of scalar curvature and the conformal Laplacian respectively.

$$
P_g^n u := (-\Delta)^2 u - \text{div}(a_n R_g g - b_n Ric_g) du + \frac{n-4}{2} Q_g^n u \tag{4}
$$

$$
Q_g^n := -\frac{1}{2(n-1)} \Delta_g R_g + c_n R_g^2 - d_n |Ric_g|^2 \tag{5}
$$

where Ric_a is the Ricci curvature and a_n ,..., d_n are dimensional constants.

イロト イ押ト イヨト イヨト

§1 Q-curvature and the Paneitz operator

When $n \geq 5$, Q-curvature and the Paneitz operator P_{g}^{n} are higher order analogue of scalar curvature and the conformal Laplacian respectively.

$$
P_g^n u := (-\Delta)^2 u - \text{div}(a_n R_g g - b_n Ric_g) du + \frac{n-4}{2} Q_g^n u \qquad (4)
$$

$$
Q_g^n := -\frac{1}{2(n-1)} \Delta_g R_g + c_n R_g^2 - d_n |Ric_g|^2 \tag{5}
$$

where *Ric^g* is the Ricci curvature and *an*,...,*dⁿ* are dimensional constants. On a compact manifold (M^n,g) of $n\geq 5,$ if $\tilde{g}=u^{\frac{4}{n-4}}g,\,u>0,$ we have

(ロ) (何) (ヨ) (ヨ)

§1 Q-curvature and the Paneitz operator

When $n \geq 5$, Q-curvature and the Paneitz operator P_{g}^{n} are higher order analogue of scalar curvature and the conformal Laplacian respectively.

$$
P_g^n u := (-\Delta)^2 u - \text{div}(a_n R_g g - b_n Ric_g) du + \frac{n-4}{2} Q_g^n u \qquad (4)
$$

$$
Q_g^n := -\frac{1}{2(n-1)} \Delta_g R_g + c_n R_g^2 - d_n |Ric_g|^2 \tag{5}
$$

where *Ric^g* is the Ricci curvature and *an*,...,*dⁿ* are dimensional constants.

On a compact manifold (M^n,g) of $n\geq 5,$ if $\tilde{g}=u^{\frac{4}{n-4}}g,\,u>0,$ we have

$$
P_g^n u = \frac{n-4}{2} Q_{\tilde{g}}^n u^{\frac{n+4}{n-4}} \tag{6}
$$

$$
P_{\tilde{g}}^{n}(\phi) = u^{-\frac{n+4}{n-4}} P_{g}^{n}(\phi u) \text{ (conformal covariant).}
$$
 (7)

イロト イ何 トイヨ トイヨ ト

§1 Q-curvature and the Paneitz operator

When $n \geq 5$, Q-curvature and the Paneitz operator P_{g}^{n} are higher order analogue of scalar curvature and the conformal Laplacian respectively.

$$
P_g^n u := (-\Delta)^2 u - \text{div}(a_n R_g g - b_n Ric_g) du + \frac{n-4}{2} Q_g^n u \qquad (4)
$$

$$
Q_g^n := -\frac{1}{2(n-1)} \Delta_g R_g + c_n R_g^2 - d_n |Ric_g|^2 \tag{5}
$$

where Ric_a is the Ricci curvature and a_n ,..., d_n are dimensional constants.

On a compact manifold (M^n,g) of $n\geq 5,$ if $\tilde{g}=u^{\frac{4}{n-4}}g,\,u>0,$ we have

$$
P_g^n u = \frac{n-4}{2} Q_{\tilde{g}}^n u^{\frac{n+4}{n-4}} \tag{6}
$$

$$
P_{\tilde{g}}^{n}(\phi) = u^{-\frac{n+4}{n-4}} P_{g}^{n}(\phi u) \text{ (conformal covariant).}
$$
 (7)

• For example:
On
$$
(\mathbb{R}^n, |dx|^2)
$$
, $P^n = (-\Delta)^2$.
On (M^n, g) , g is Einstein, $P^n = (-\Delta)^2 + \alpha \Delta + \beta$, where $\alpha, \beta \in \mathbb{R}$.

Qing-Raske('06): For *n* ≥ 5, there exists a metric in the conformal class of *g* with positive constant *Q*-curvature if (*M n* , *g*) is a closed locally conformally flat manifold with positive Yamabe constant and its Poincaré exponent less than $\frac{n-4}{2}$.

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m} \rightarrow

- **Qing-Raske('06)**: For *n* ≥ 5, there exists a metric in the conformal class of *g* with positive constant *Q*-curvature if (*M n* , *g*) is a closed locally conformally flat manifold with positive Yamabe constant and its Poincaré exponent less than $\frac{n-4}{2}$.
- **Main difficulty**: Lack of a maximum principle.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

- **Qing-Raske('06)**: For *n* ≥ 5, there exists a metric in the conformal class of *g* with positive constant *Q*-curvature if (*M n* , *g*) is a closed locally conformally flat manifold with positive Yamabe constant and its Poincaré exponent less than $\frac{n-4}{2}$.
- **Main difficulty**: Lack of a maximum principle.

=⇒ Solutions to

$$
P_g^n u = Q u^{\frac{n+4}{n-4}}
$$

are not necessary strictly positive.

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m} \rightarrow

- **Qing-Raske('06)**: For *n* ≥ 5, there exists a metric in the conformal class of *g* with positive constant *Q*-curvature if (*M n* , *g*) is a closed locally conformally flat manifold with positive Yamabe constant and its Poincaré exponent less than $\frac{n-4}{2}$.
- **Main difficulty**: Lack of a maximum principle.

=⇒ Solutions to

$$
P_g^n u = Q u^{\frac{n+4}{n-4}}
$$

are not necessary strictly positive.

Gluing method:

Joyce('03) glued together two compact constant scalar curvature manifolds. Then he conformally perturbed it to another manifold with constant scalar curvature.

(ロ) (何) (ヨ) (ヨ)

- **Qing-Raske('06)**: For *n* ≥ 5, there exists a metric in the conformal class of *g* with positive constant *Q*-curvature if (*M n* , *g*) is a closed locally conformally flat manifold with positive Yamabe constant and its Poincaré exponent less than $\frac{n-4}{2}$.
- **Main difficulty**: Lack of a maximum principle.

=⇒ Solutions to

$$
P_g^n u = Q u^{\frac{n+4}{n-4}}
$$

are not necessary strictly positive.

Gluing method:

Joyce('03) glued together two compact constant scalar curvature manifolds. Then he conformally perturbed it to another manifold with constant scalar curvature.

Mazzeo-Pollack-Uhlenbeck('95) did the gluing for noncompact, positive constant scalar curvature manifolds.

(ロ) (何) (ヨ) (ヨ) (

§2 Main theorem

Nondegeneracy condition:

A *n*-dimensional compact manifold (*M n* , *g*) satisfies the nondegeneracy condition if the linearized operator

$$
L_g := P_g^n - \frac{n+4}{2} Q_g^n : W^{4,2}(M) \to L^2(M)
$$

is invertible.

イロト イ押 トイヨ トイヨト

§2 Main theorem

Nondegeneracy condition:

A *n*-dimensional compact manifold (*M n* , *g*) satisfies the nondegeneracy condition if the linearized operator

$$
L_g := P_g^n - \frac{n+4}{2} Q_g^n : W^{4,2}(M) \to L^2(M)
$$

is invertible.

Theorem (L.)

Given a compact manifold (*M*, *g*2) *of dimension n* ≥ 6 *with constant Q-curvature* ν*. Let* (*N*, *g*1) *be a compact manifold of dimension n. Assume (i)* (*M*, *g*2) *satisfies the nondegeneracy condition. (ii)* The Paneitz operator $P_{g_1}^n$ has positive Green's function G(x, y) on N. *Then the connected sum* $M = M \# N$ admits a smooth metric \tilde{q} with constant *Q- curvature* ν*.*

(ロ) (何) (ヨ) (ヨ)

Step 1: Remove a small disk centered at *p* on (*N*, *g*1) and a small disk centered at *q* on (*M*, *g*2).

イロト イ押 トイヨ トイヨト

 299

э

Step 1: Remove a small disk centered at *p* on (*N*, *g*1) and a small disk centered at *q* on (*M*, *g*2).

イロト イ押 トイヨ トイヨト

 299

э

Step 2: Obtain an asymptotically flat manifold $(N \setminus \{p\}, g_N)$ by defining $g_N := G_p^{\frac{4}{n-4}} g_1.$ Moreover, we have $Q_{g_N}^n \equiv 0$ on $N \setminus \{p\}.$

 $($ \Box \rightarrow $($ \Box \rightarrow $($ \Box \rightarrow \Box \rightarrow \Box \rightarrow

 OQ

Yueh-Ju Lin Department of Mathematics University of Notre Dame [Connected sum construction of constant Q-curvature manifolds](#page-0-0)

 OQ

Step 3: Scale down the metric g_N to $a^2b^2g_N$ by two small parameters $a,b>0$. And glue (identify) the two annuli together.

イロト イ押 トイヨ トイヨト

Step 3: Scale down the metric g_N to $a^2b^2g_N$ by two small parameters $a,b>0$. And glue (identify) the two annuli together.

イロト イ押ト イヨト イヨト

 2990

Step 4: Define an "approximate" metric $g_{a,b}$ on the connected sum $\widetilde{M} = M \# N$ by smoothly joining $a^2b^2g_N$ and g_2 using cut-off functions.

イロト イ押 トイヨ トイヨト

Step 4: Define an "approximate" metric $g_{a,b}$ on the connected sum $\tilde{M} = M \# N$ by smoothly joining $a^2b^2g_N$ and g_2 using cut-off functions.

Goal: To find a conformal metric $\tilde{g}=(1+\phi)^{\frac{4}{n-4}}g_{a,b}$ s.t. $\mathit{Q}_{\tilde{g}}\equiv\nu\equiv$ const.

イロト イ押 トイヨ トイヨト

Goal: To find a conformal metric $\tilde{g} = (1 + \phi)^{\frac{4}{n-4}} g_{a,b}$ s.t. $Q_{\tilde{g}} \equiv \nu \equiv \text{const.}$

 $($ \Box \rightarrow $($ \Box \rightarrow $($ \Box \rightarrow \Box \rightarrow \Box \rightarrow

 η a

Goal: To find a conformal metric $\tilde{g} = (1 + \phi)^{\frac{4}{n-4}} g_{a,b}$ s.t. $Q_{\tilde{g}} \equiv \nu \equiv \text{const.}$

$$
\iff \text{ solving } \mathcal{N}_{g_{a,b}}[1+\phi] := (1+\phi)^{-\frac{n+4}{n-4}} P_{g_{a,b}}^n(1+\phi) - \frac{n-4}{2}\nu \equiv 0
$$
\n
$$
\text{and } 1+\phi > 0.
$$

 $($ \Box \rightarrow $($ \Box \rightarrow $($ \Box \rightarrow \Box \rightarrow \Box \rightarrow

 η a

Goal: To find a conformal metric $\tilde{g} = (1 + \phi)^{\frac{4}{n-4}} g_{a,b}$ s.t. $Q_{\tilde{g}} \equiv \nu \equiv \text{const.}$

$$
\iff \text{ solving } \mathcal{N}_{g_{a,b}}[1+\phi] := (1+\phi)^{-\frac{n+4}{n-4}} P_{g_{a,b}}^n(1+\phi) - \frac{n-4}{2}\nu \equiv 0
$$
\n
$$
\text{and } 1+\phi > 0.
$$

Key ingredients of the proof:

 $($ \Box \rightarrow $($ \Box \rightarrow $($ \Box \rightarrow \Box \rightarrow \Box \rightarrow

Goal: To find a conformal metric $\tilde{g} = (1 + \phi)^{\frac{4}{n-4}} g_{a,b}$ s.t. $Q_{\tilde{g}} \equiv \nu \equiv \text{const.}$

$$
\iff \text{ solving } \mathcal{N}_{g_{a,b}}[1+\phi] := (1+\phi)^{-\frac{n+4}{n-4}} P_{g_{a,b}}^n(1+\phi) - \frac{n-4}{2}\nu \equiv 0
$$
\n
$$
\text{and } 1+\phi > 0.
$$

Key ingredients of the proof:

 (1) Find an appropriate function spaces to work with: weighted Hölder spaces.

K □ ▶ K @ ▶ K □ ▶ K □ ▶

 2990

Goal: To find a conformal metric $\tilde{g} = (1 + \phi)^{\frac{4}{n-4}} g_{a,b}$ s.t. $Q_{\tilde{g}} \equiv \nu \equiv \text{const.}$

$$
\iff \text{ solving } \mathcal{N}_{g_{a,b}}[1+\phi] := (1+\phi)^{-\frac{n+4}{n-4}} P_{g_{a,b}}^n(1+\phi) - \frac{n-4}{2}\nu \equiv 0
$$
\n
$$
\text{and } 1+\phi > 0.
$$

Key ingredients of the proof:

- (1) Find an appropriate function spaces to work with: weighted Hölder spaces.
- (2) Understand the linearized operator:

$$
\mathcal{L}_g[\phi] := \frac{d}{ds}\mathcal{N}_g[1+s\phi]\big|_{s=0} = P_g^n(\phi) - \frac{n+4}{2}Q_g^n\phi.
$$

イロト 不優 トメ 君 トメ 君 トー

Goal: To find a conformal metric $\tilde{g} = (1 + \phi)^{\frac{4}{n-4}} g_{a,b}$ s.t. $Q_{\tilde{g}} \equiv \nu \equiv \text{const.}$

$$
\iff \text{ solving } \mathcal{N}_{g_{a,b}}[1+\phi] := (1+\phi)^{-\frac{n+4}{n-4}} P_{g_{a,b}}^n(1+\phi) - \frac{n-4}{2}\nu \equiv 0
$$
\n
$$
\text{and } 1+\phi > 0.
$$

Key ingredients of the proof:

- (1) Find an appropriate function spaces to work with: weighted Hölder spaces.
- (2) Understand the linearized operator:

$$
\mathcal{L}_g[\phi] := \frac{d}{ds}\mathcal{N}_g[1+s\phi]\big|_{s=0} = P_g^n(\phi) - \frac{n+4}{2}Q_g^n\phi.
$$

(3) Fixed point argument.

イロト イ押ト イヨト イヨト

Recall the assumptions of the main theorem:

(i) (M, g_2) satisfies the nondegeneracy condition.

(ii) The Paneitz operator $P_{g_1}^n$ has positive Green's function $G(x, y)$ on N.

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ⊁

Recall the assumptions of the main theorem:

(i) (M, g_2) satisfies the nondegeneracy condition.

(ii) The Paneitz operator $P_{g_1}^n$ has positive Green's function $G(x, y)$ on N.

Proposition 1

Given a compact manifold (M, q_2) of dimension $n > 6$ with positive scalar curvature $R_{g_2}>0$ and negative constant *Q*-curvature $Q_{g_2}^n< 0$, then (M,g_2) satisfies the nondegeneracy condition.

(□) (何) (∃) (∃)

Recall the assumptions of the main theorem:

- (i) (M, g_2) satisfies the nondegeneracy condition.
- (ii) The Paneitz operator $P_{g_1}^n$ has positive Green's function $G(x, y)$ on N.

Proposition 1

Given a compact manifold (M, q_2) of dimension $n > 6$ with positive scalar curvature $R_{g_2}>0$ and negative constant *Q*-curvature $Q_{g_2}^n< 0$, then (M,g_2) satisfies the nondegeneracy condition.

Example

For *P* a compact positive Einstein manifold, *N* a compact negative Einstein manifold, and *F* a compact flat manifold, the manifold

$$
M^n = \underbrace{P \times P \times \cdots \times P}_{k-copies} \times \underbrace{N \times N \times \cdots \times N}_{k-copies} \times \underbrace{F \times F \times \cdots \times F}_{l-copies}.
$$

has negative constant *Q*-curvature and positive scalar curvature.

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト .

Proposition 1

Given a compact manifold (M, g_2) of dimension $n \geq 6$ with positive scalar curvature $R_{g_2}>0$ and negative constant *Q*-curvature $Q_{g_2}^n< 0$, then (M,g_2) satisfies the nondegeneracy condition.

イロト イ押ト イヨト イヨト

Proposition 1

Given a compact manifold (M, g_2) of dimension $n > 6$ with positive scalar curvature $R_{g_2}>0$ and negative constant *Q*-curvature $Q_{g_2}^n< 0$, then (M,g_2) satisfies the nondegeneracy condition.

Proposition 2

Let (N, g_1) be a compact positive Einstein manifold of dimension $n > 6$. Then the Paneitz operator $P_{g_1}^n$ has positive Green's function.

イロト イ押ト イヨト イヨト

Proposition 1

Given a compact manifold (M, g_2) of dimension $n > 6$ with positive scalar curvature $R_{g_2}>0$ and negative constant *Q*-curvature $Q_{g_2}^n< 0$, then (M,g_2) satisfies the nondegeneracy condition.

Proposition 2

Let (N, g_1) be a compact positive Einstein manifold of dimension $n > 6$. Then the Paneitz operator $P_{g_1}^n$ has positive Green's function.

Corollary

Suppose the dimension n ≥ 6*. Assume* (*M*, *g*2) *has negative constant Q-curvature* ν *and positive scalar curvature. Let* (*N*, *g*1) *be a compact positive Einstein manifold. Then there exists a metric with negative constant Q*-curvature ν on the connected sum $\widetilde{M} = N \# M$.

イロト イ押 トイヨ トイヨト

 209