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Abstract. Let Hn be the metric space of all bounded domains
in Cn with the metric equal to the Hausdorff distance between
boundaries of domains. We prove that the dimension of the group
of automorphisms of domains is an upper semicontinuous func-
tion on Hn. We also provide theorems and examples regarding
the change in topological structure of these groups under small
perturbation of a domain in Hn.

0. Introduction

The automorphism group Aut(D) (the group of biholomorphic self-
maps of D) of a bounded domain D in Cn is, in general, difficult to
describe and little is known about it. However, it is known (see [?, ?])
that any compact Lie group can be realized as the group of automor-
phisms of a smooth strictly pseudoconvex domain, and (see [?]) that
any linear Lie group can be realized as the group of automorphisms of
a bounded domain. So, if we consider the group Aut(D) as a function
of D, the set of values is quite large.

If one considers this function on the metric space Hn of all bounded
domains in Cn with the metric equal to the Hausdorff distance between
boundaries of domains, one can expect that small perturbation of the
boundary may only “decrease” the group, i.e., the function Aut(D) is
“upper semicontinuous”. Indeed, in [GK], [Ma] and [FP] the authors,
using topologies different from Hn, proved the upper semicontinuity

of the function Aut(D) in the sense that Aut(D̃) is isomorphic to a

subgroup of Aut(D) when D̃ is “close” to D. But, in general, this idea
is not true according to the following theorem ([?]).

Theorem 0.1. Let M be a domain in Cn. Then there exists an in-
creasing sequence of bounded domains Mk ⊂ Mk+1 ⊂⊂ M such that
M = ∪Mk and Aut(Mk) contains a subgroup isomorphic to Zk.
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This shows that domains in Cn with an automorphism group contain-
ing Zk are everywhere dense in Hn, and it is well known that domains
without non-trivial automorphisms are dense in Hn. So arbitrarily
small perturbation of a domain in Hn may create a domain with a
larger automorphism group. But, for all known examples, this group
is discrete, so it is of dimension zero. The natural question arises:
can small perturbation in Hn create domains with larger dimensions of
automorphism groups?

In this paper we answer this question in the negative. Namely, we
prove the following

Theorem 0.2. The function dim Aut(D) is upper semicontinuous on
Hn.

An immediate consequence is the following

Corollary 0.3. For each k > 0 the set of all domains in Hn whose
groups of automorphisms have dimensions greater than or equal to k is
closed and, therefore, nowhere dense.

Thus a domain cannot be approximated by domains whose automor-
phism groups have strictly larger dimensions.

To prove Theorem ?? we consider a sequence of domains Dj con-
verging in Hn to a domain D. The identity components Aut0(Dj) of
Aut(Dj) have the same dimensions as Aut(Dj). Also the dimensions
of the Lie algebras of holomorphic vector fields generated by all one-
parameter groups in Aut0(Dj) coincide with dim Aut0(Dj). Lemma ??
states that the uniform norm of such fields on a compact set is bounded
by its norm on an arbitrarily selected ball times a constant that, ba-
sically, depends on the size of the ball and the distance from the ball
and the compact set to the boundary of a domain. This allows us to
normalize bases in Lie algebras of Aut0(Dj) and apply Theorem ??,
which asserts the existence of non-trivial limits of those vector fields.
The limits belong to the Lie algebra of Aut0(D) and this gives us the
proof.

It is reasonable to ask whether Aut0(Dj) are always isomorphic to a
subgroup of Aut0(D) when j is large. An example in Section ?? shows
that the answer is negative.

If Kj is a maximal compact subgroup of Aut0(Dj), then Aut0(Dj)
is homeomorphic to Kj × Rkj (see [MZ, p. 188]). The groups Kj may
decrease or even disappear in the limit (see Example ??), while non-
compact parts never vanish (see Theorem ??).
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1. Some basic facts

Let D be a bounded domain in Cn. If the Lie group Aut(D) has
positive dimension, then it has one-parameter subgroups g(·, t), −∞ <
t < ∞, i.e., g(z, t + s) = g(g(z, t), s). Such subgroups generate vector
fields

X(z) =
∂g

∂t
(z, 0)

that are holomorphic. Also, if X is a holomorphic vector field on D
that is R-complete, i.e., the initial value problem g′(z, t) = X(g(z, t)),
g(z, 0) = z, has a solution on D × R, then g(z, t) is a one-parameter
group.

The vector field X has the following group property:

X(g(z, t)) =
∂g

∂z
(z, t)X(z). (1)

For every two points z and w in D among all holomorphic mappings
of D into the unit disk ∆ we choose holomorphic functions f such that
f(w) = 0 and f(z) is real and the maximal possible. Such functions f
exist and are called Carathéodory extremal functions for z and w on
D. The quantity

ρ(0, f(z)) =
1

2
ln

1 + f(z)

1− f(z)
(2)

is called the Carathéodory distance cD(z, w) on D. (Note that the
formula for ρ(0, a) gives the Poincaré distance between 0 and a in the
unit disc.) When D is bounded this distance is non-degenerate and
invariant, i.e., cD(g(z), g(w)) = cD(z, w) for every g ∈ Aut(D) (see [?,
Ch. 5, §18]).

For a point w ∈ D and a vector Y in Cn, among all holomorphic
mappings of D into the unit disk ∆ we choose holomorphic functions
f such that f(w) = 0 and (f ′(w), Y ) is real and the maximal possible.
(Here (Z, Y ) =

∑n
j=1 zjyj.) These functions are Carathéodory extremal

functions for Y at w in D. It follows from [?, Ch. 5, §18] that if w(t)
is a smooth curve in D with w(0) = w and Y = w′(0), then

cD(w,w(t)) = CD(w, Y )t + o(t), (3)

where

CD(w, Y ) = sup{|g′(w)Y | : g(D) ⊂ ∆, g(w) = 0}

is the Carathéodory infinitesimal metric. Let B(w, r) be the ball of
radius r centered at w and let |Y | be the Euclidean norm of Y . If
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B(w, r) ⊂ D ⊂ B(w, R), then

|Y |
R

≤ CD(w, Y ) ≤ |Y |
r

. (4)

2. Proof of Theorem 0.2

Lemma 2.1. Let D be a domain in Cn and let d(z, w) be an invariant
metric on D satisfying the triangle inequality. If g(z, t) is a group
action on D, then for any w, z ∈ D

|d(g(w, t), z)− d(w, z)| ≤ d(z, g(z, t)).

Proof. Apply the identity d(w, z) = d(g(w, t), g(z, t)) and the triangle
inequality. �

Lemma 2.2. Let w ∈ B(w, r) ⊂⊂ D ⊂⊂ B(w, R) ⊂⊂ Cn. Then for
any Y ∈ Cn, |Y | = 1,

Re (∇fs(w), Y ) >
1

4R
,

where fs(z) is a Carathéodory extremal function for w and w + sY in
D, and s is a real number such that

0 < s ≤ ε =
r2

16R
.

Proof. Let us fix Y and introduce DY = {ξ ∈ C : w + ξY ∈ D}.
Clearly, ∆(0, r) ⊂⊂ DY ⊂⊂ ∆(0, R), where ∆(0, s) is the disk of
radius s centered at 0.

Let gY (z) be a Carathéodory extremal function for Y at w in D.
For ξ ∈ DY we introduce the functions u(ξ) = ReF (ξ), where F (ξ) =
fs(w + ξY ), and v(ξ) = ReG(ξ), where G(ξ) = gY (w + ξY ). All
these functions are well-defined on DY and F (0) = G(0) = 0, G′(0) =
CD(w, Y ) and u(s) = F (s) ≥ v(s). Let us prove that v(t) ≥ t/(2R)
when t ∈ [0, ε]. Since

|v(t)− v′(0)t| ≤ 1

2
sup

0≤x≤ε
|v′′(x)| · t2,

ε ≤ r2/(16R) < r/2 and by Cauchy estimate |v′′(x)| ≤ 2/(r− ε)2 when
x < ε, we see that

v(t) ≥ v′(0)t− 1

(r − ε)2
t2 ≥ v′(0)t− 4

r2
t2.

Since t ≤ r2/(16R) and by (??)

v′(0) = G′(0) = CD(w, Y ) ≥ 1

R
,
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v(t) ≥ t

R
− t

4R
≥ t

2R
.

for 0 ≤ t ≤ ε. In particular,

v(s) = ReG(s) ≥ s

2R
.

Applying to the function u(t) the same analysis as above we obtain

u(s) ≤ u′(0)s +
4

r2
s2.

Hence

s

2R
≤ v(s) ≤ u(s) ≤ u′(0)s +

4

r2
s2 ≤ u′(0)s +

s

4R
.

Thus

Re (∇fs(w), Y ) = ReF ′(0) = u′(0) ≥ 1

4R
.

�

Lemma 2.3. Let B(0, r + a) ⊂⊂ D ⊂⊂ B(0, R), r, a > 0. Then there
exists a positive δ = δ(a, r, R) < a such that

‖X‖B(0,r+δ) ≤
32R

a
‖X‖B(0,r)

for every holomorphic vector field X generated by a one-parameter
group action g(z, t) on D.

Proof. Let w belong to B(0, r + a/2). Since

w ∈ B(w, a/2) ⊂⊂ D ⊂⊂ B(w, 2R),

by Lemma ?? there is an ε = ε(a, R) > 0 such that for every w ∈
B(0, r + a/2), every Y ∈ Cn, |Y | = 1, and every s ∈ (0, ε]

Re (∇f(w), Y ) ≥ 1

8R
, (5)

where f is a Carathéodory extremal function for w and w + sY .
Let us take a positive number δ < a/2 so small that for every w ∈

B(0, r + δ) and every unit vector V there is a unit vector Y such that
w + sY ∈ B(0, r) for some real s with |s| < ε and

|V − Y | < b =
a

32R
.

Clearly, the choice of this δ depends only on a, r and R.
The lemma needs a proof only for non-trivial group actions when

X 6≡ 0. Let w ∈ ∂B(0, r + δ), X(w) 6= 0 and let V = X(w)/|X(w)|.
We choose a vector Y and a real s satisfying the above conditions.
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Let f be a Carathéodory extremal function for w and z = w + sY .
Since B(w, a/2) ⊂⊂ D, by Schwarz inequality,

|Re (∇f(w), Y − V )| ≤ b|∇f(w)| ≤ 2b

a
.

Hence by (??),

Re (∇f(w), V ) ≥ Re (∇f(w), Y )− 2b

a
≥ 1

8R
− 1

16R
=

1

16R
.

Let ζ(t) = f(g(w, t)) and p = f(z). We introduce

m(t) =

∣∣∣∣ ζ(t)− p

1− pζ(t)

∣∣∣∣ .

If ρ(ζ, ξ) is the Poincare metric on U , then ρ(0, p) = cD(z, w) and

ρ(ζ(t), p) =
1

2
ln

1 + m(t)

1−m(t)
.

A straightforward calculation shows that

dm2

dt
(0) = −2p(1− p2)Re (∇f(w), X(w)),

and, by using this calculation, we obtain

d

dt
ρ(ζ(0), p) = −Re (∇f(w), X(w)).

Hence

ρ(ζ(−t), p) ≥ ρ(0, p) + tRe (∇f(w), X(w)) ≥ cD(z, w) +
t

16R
|X(w)|

for small positive t. Since the Carathéodory metric decreases under
the holomorphic mapping f ,

cD(z, g(w,−t)) ≥ ρ(ζ(−t), p) ≥ cD(z, w) +
t

16R
|X(w)|. (6)

By (??) and Lemma ??,

t

16R
|X(w)| ≤ cD(z, g(w,−t))− cD(z, w) ≤ cD(z, g(z,−t)).

By (??), cD(z, g(z,−t)) = CD(z, X(z))t + o(t). Note that B(z, a) ⊂ D
and, therefore, CD(z, X(z)) ≤ 1/a. Hence

cD(z, g(z,−t)) ≤ 2CD(z, X(z))t ≤ 2

a
|X(z)|t

for small positive t. Thus

|X(w)| ≤ 32R

a
|X(z)|
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and

‖X‖B(0,r+δ) ≤
32R

a
‖X‖B(0,r).

�

Lemma 2.4. Let R > 2r > 2s > 0. Let K be a connected compact
set containing 0 in Cn. Let D be a domain in Cn such that B(0, 2r) ⊂
D ⊂ B(0, R) and such that the 3s-neighborhood of K is contained in
D. Then there exists a positive constant C = C(K, R, s) such that
‖X‖K ≤ C‖X‖B(0,r) for each holomorphic vector field X generated by
a one-parameter group action g(z, t) on D.

Proof. Let X be such a vector field on D. By the previous lemma there
exist positive numbers δ = δ(s, R) < s and c = c(s, R) such that

‖X‖B(z,s+δ) ≤ c‖X‖B(z,s)

whenever z ∈ D is at least 3s away from ∂D. There is a positive
integer N = N(K, δ) such that for each z ∈ K there is a set of N
points {z1, . . . , zN} ⊂ K with z1 = 0, zN = z, and |zk+1 − zk| < δ for
k = 1, . . . , N − 1. Since B(zk+1, s) ⊂ B(zk, s + δ), we see that

‖X‖B(zk+1,s) ≤ c‖X‖B(zk,s)

for k = 1, . . . , N − 1. Thus,

‖X‖B(z,s) ≤ cN−1‖X‖B(0,s).

In particular, |X(z)| ≤ cN−1‖X‖B(0,s) ≤ cN−1‖X‖B(0,r). Therefore,
‖X‖K ≤ cN−1‖X‖B(0,r). �

Theorem 2.5. Suppose a sequence of domains Dj converge in Hn

to a domain D and a ball B(p, r + a), r, a > 0, belongs to all Dj.
Also suppose that gj(z, t) are non-trivial one-parameter group actions
on Dj generating the holomorphic vector fields Xj. If ‖Xj‖B = 1,
B = B(p, r), then there is a subsequence of the group actions gjk

(z, t)
that converges to a non-trivial group action g(z, t) on D uniformly on
compacta in D × R and

lim
j→∞

Xj(w) = X(w)

uniformly on compacta in D, where X is the holomorphic vector field
generated by g.

Proof. Let K ⊂⊂ D. Choose δ > 0 so that the 3δ-neighborhood of
K is contained in D and in each Dj. Let K̃ and K̂ denote the 2δ-
neighborhood and the δ-neighborhood of K respectively. By Lemma
?? there exists A > 0 such that ‖Xj‖K̃ ≤ A.
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Let τ = δ/(2A). Define the mapping hj : K̂ × (−τ, τ) → Dj as the
solution of the initial value problem

∂

∂t
hj(z, t) = iXj(hj(z, t)), hj(z, 0) = z.

Since τ |Xj| < δ in K̃, it follows from the ODE’s theory that the map-
ping hj is well-defined.

For M = {ζ ∈ C : |Im ζ| < τ} we define Gj : K̂ × M → Dj by
Gj(z, t+ is) = gj(hj(z, s), t). Since Xj is holomorphic, the mapping Gj

is holomorphic in z. We now prove that it is holomorphic in ζ = t+ is.
It is clear that

∂Gj

∂t
(z, t + is) = Xj(Gj(z, t + is)). (7)

It follows immediately from the fact that the Poisson brackets [Xj, iXj] ≡
0, that

∂Gj

∂s
(z, t + is) = iXj(Gj((z, t + is)). (8)

This fact also can be proved by a straightforward reasoning:

∂Gj

∂s
(z, t + is) =

∂gj

∂z
(hj(z, s), t) · iX(hj(z, s))

= iXj(gj(hj(z, s), t)) = iXj(Gj(z, t + is));

the middle equality is by the infinitesimal group property (??). The
equations (??) and (??) are the Cauchy-Riemann equations for Gj in
ζ. So Gj is holomorphic.

Passing to a subsequence, if necessary, we may assume that the map-
pings Gj converge to a mapping G uniformly on compacta in K̂ ×M .
Consequently, the mappings gj(z, t) converge to g(z, t) uniformly on

compacta in K̂ × R, and the vector fields Xj converge to

X(z) =
∂g

∂t
(z, 0)

uniformly on compacta in K̂.
It follows that some subsequence of the sequence {gj(z, t)} converges

to a mapping g(z, t) = G(z, t) uniformly on compacta in D×R. Thus,
g(z, t) is a group action. Since ‖X‖B = 1, this group action is non-
trivial. �

Proof of Theorem ??. Let Dj be a sequence of domains converging in
Hn to a domain D. Let us choose a ball B(p, r+a), r, a > 0, belonging
to all Dj for sufficiently large j and take δ > 0 from Lemma ??. Let

B = B(p, r) and B̂ = B(p, r + δ). We may assume that the dimensions
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of all groups Gj = Aut0(Dj) are the same and equal to k. Since the
Lie algebra Aj of all holomorphic vector fields on Dj generated by
one-parameter subgroups in Gj has the same dimension as Gj, we can
choose Xm

j ∈ Aj, 1 ≤ m ≤ k, such that∫
B̂

(Xm
j , X

l

j) dV = δml,

where δml is Kronecker’s delta.
Clearly, ‖Xm

j ‖B̂ ≥ Vol(B̂)−1. On the other hand, by Cauchy esti-
mates and Lemma ??, for some constants we have

1 ≥ C1‖Xm
j ‖B ≥ C2‖Xm

j ‖B̂.

Let gm
j be the one-parameter groups generated by Xm

j . By Theorem
?? one can choose a subsequence {jk} such that gm

jk
converge, uniformly

on compacta in D × R, to a one-parameter group gm(z, t) on D, and
Xm

jk
converge to a vector field Xm uniformly on compacta in D. Since∫

B̂

(Xm, X
l
) dV = δml,

the dimension of Aut0(D) is at least k.

3. Structural theorems

By Iwasawa’s theorem (see [MZ, p. 188]) the group Aut0(D) is home-
omorphic to K × Rk, where K is a maximal compact subgroup and k
is the characteristic number of Aut(D). It is interesting to find out
what happens with K and Rk under small perturbations of domains.
Let us look at maximal compact subgroups first. The argument of
Corollary 4.1 in [?] provides the following theorem.

Theorem 3.1. Let D be a bounded domain in Cn, let z0 be a point in

D, and let W be a compact set in D. If D̃ is sufficiently close to D in

Hn and for some maximal compact subgroup K̃ in Aut0(D̃) the orbit

K̃(z0) ⊂ W , then K̃ is isomorphic to a subgroup of Aut0(D).

Next example shows that without the condition in the above theorem
of orbits being contained in a fixed compact set, it is possible that
Aut(D) does not contain a compact subgroup while close domains have

Aut0(D̃) isomorphic to S1. Let ∆ denote the unit disc in C.

Example 3.2. There is a sequence {Dj} of bounded pseudoconvex do-
mains in C2 converging to a domain D such that Aut(Dj) ∼= S1 for
each j, and Aut(D) ∼= R.
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Construction. Let Qj = {z ∈ ∆ : |z − 2−1 + 2−j| > 1/2}, Q =
{z ∈ ∆ : |z − 2−1| > 1/2}, Dj = {(z, w) : z ∈ Qj, w ∈ ∆, w 6= z},
D = {(z, w) : z ∈ Q, w ∈ ∆, w 6= z}.

1. One can see that Dj → D.
2. The domains Dj and D are bounded and pseudoconvex.
3. We now prove that Aut(D) ∼= R. Let F ∈ Aut(D). On each

fiber (z, ·), F is bounded and has an isolated singularity, so F extends
to be an automorphism of Q × ∆. Thus, F has the form F (z, w) =
(f(z), g(w)), or F (z, w) = (g(w), f(z)). For both cases, one has, by the
definition of D, that

f(z) = g(z), z ∈ Q. (9)

The second case is impossible, since implies that f(Q) = ∆, g(∆) = Q,
and f(Q) = g(Q), which leads to a contradiction that ∆ coincides
with a subset of Q. Therefore, F has the form F (z, w) = (f(z), g(w)),
where f ∈ Aut(Q), g ∈ Aut(∆). By (??), f = g|Q. Let φ(w) =
−i(w + 1)/(w − 1). Then φ is a biholomorphic map from ∆ to the
upper half-plane Π = {ζ ∈ C : Im ζ > 0}, and φ(Q) = Λ ≡ {ζ ∈ C :
0 < Im ζ < 1}. Now φ ◦ g ◦ φ−1 is an automorphism of Π, and its
restriction to Λ is an automorphism of Λ. Thus φ ◦ g ◦ φ−1(ζ) = ζ + t
for some t ∈ R. It follows that Aut(D) = {Ft : t ∈ R} ∼= R, where
Ft(z, w) = (gt(z), gt(w)), and

gt(w) = φ−1(φ(w) + t) =
2w + i(w − 1)t

2 + i(w − 1)t
.

4. In a way very similar to the above argument, one can prove that
Aut(Dj) ∼= S1 for each j.

By Theorem ?? the creation of compact subgroups with larger di-
mensions by small perturbations must be compensated by an elimina-
tion of some non-compact subgroups so that the total dimension will
not go up. It seems to us that the other way around is impossible: char-
acteristic numbers are upper semicontinuous on Hn. While we cannot
prove this statement, the following theorem certifies that non-compact
parts cannot be created from nothing.

Theorem 3.3. Let D ⊂ Cn be a bounded domain such that Aut0(D)

is compact. Then for all D̃ sufficiently close in Hn to D the group

Aut0(D̃) is also compact.

Proof. If the statement is not true, then there is a sequence {Dj} of
domains converging to D such that for each j the identity component
Gj = Aut0(Dj) is noncompact. Write G = Aut0(D). Fix a z0 ∈ D.
The orbit G(z0) is compact. We may assume that G(z0) ⊂ Dj for
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each j. For each connected component H of Aut(D), either the set
H(z0) coincides with G(z0) or G(z0) ∩ H(z0) = ∅. Indeed, if h ∈
H and h(z0) ∈ G(z0), then H(z0) = Gh(z0) = G(z0), since H =
Gh. Now we claim that there exists a positive number a such that
a < d(H(z0), G(z0)) for each component H of Aut(D) with H(z0) 6=
G(z0), where d is the euclidean distance. Otherwise, there is a sequence
{Hk} of distinct components of Aut(D) with Hk(z0) 6= G(z0) such
that d(Hk(z0), G(z0)) → 0. Passing to a subsequence if necessary, we
may assume that there are hk ∈ Hk such that hk(z0) tends to a point
in G(z0). It follows that some subsequence of {hk} converges in the
compact-open topology to a g ∈ Aut(D); but this is impossible because
hk belong to different components of the Lie group Aut(D). Therefore,
such an a exists. Decreasing a if necessary, we see that the open set

V = {z ∈ D : d(z, G(z0)) < a}

is relatively compact in D and in each Dj, and satisfies V ∩Aut(D)(z0) =
G(z0). This implies that ∂V ∩ Aut(D)(z0) = ∅. Since Gj is noncom-
pact, Gj(z0) is noncompact, hence Gj(z0)∩ ∂V 6= ∅. It follows that for
each j there is a gj ∈ Gj with gj(z0) ∈ ∂V . Some subsequence of the
sequence {gj} converges uniformly on compacta to a g ∈ Aut(D). It is
clear that g(z0) ∈ ∂V , contradicting ∂V ∩ Aut(D)(z0) = ∅. �
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