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Abstract. We study discrete fixed point sets of holomorphic self-
maps of complex manifolds. The main attention is focused on the
cardinality of this set and its configuration. As a consequence of
one of our observations, a bounded domain in Cn with no non-
trivial holomorphic retractions is constructed.
Résumé. Nous étudions les ensembles discrets qui sont les en-
sembles de points fixes d’une application holomorphe d’une variété
complexe dans elle-même. En particulier, nous étudions le nombre
d’éléments de ces ensembles et leurs configurations. Comme appli-
cation de ces résultats, nous contruisons un domaine borné de Cn

sans rétraction holomorphe non triviale.

0. Introduction

In classical mechanics the following Euler’s theorem is well known:
the general displacement of a rigid body with one point fixed is a ro-
tation about some axis. So, if one considers an orientation-preserving
isometry of a domain in R3 fixing one point, the fixed point set of this
isometry will necessarily contain at least a segment, so the fixed point
set cannot be a discrete set. In the euclidean space Rn, one can always
find a domain which has a euclidean isometry with exactly one fixed
point, however for any n, if an isometry of a domain in Rn has two
fixed points it will force the existence of at least a segment to belong
to the fixed point set, and so this set will be at least one dimensional.

Switching to complex analysis, we remark that any holomorphic au-
tomorphism of a bounded domain in Cn (or in general, hyperbolic
manifold) is an isometry in an invariant metric, so an Euler type state-
ment is certainly meaningful, that is if this automorphism has a discrete
fixed point set one can inquire what its cardinality and structure might
be. To describe this more precisely, let f : M → M be a holomorphic
self-map of a complex manifold M . Let Fix(f) denote the set of fixed
points {x ∈ M | f(x) = x} of f . Suppose that this set is discrete.
In this paper we shall examine mostly two questions. First, how large
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this set can be for specific cases: M is a bounded domain in Cn, a
hyperbolic manifold, etc., while f is a holomorphic automorphism or
endomorphism. Second, the structure of Fix(f), namely which points
of M could form such a set for some holomorphic self-map of M . Every-
where below we consider only holomorphic self-maps (automorphisms
or endomorphisms) of various complex manifolds, and for the sake of
compactness the word holomorphic may be omitted.

In examining the cardinality of a discrete fixed point set, let’s first
consider the situation in one dimension. For a bounded domain D ⊂⊂
C the discrete fixed point set of a holomorphic map f : D → D can
have no more than two points. This follows from the following obser-
vation: any map fixing at least two points must be an automorphism
(H. Cartan), and any automorphism fixing three points must be the
identity [PL]. An annulus gives an example of a domain that has an
automorphism with exactly two fixed points.

In Cn the situation is not yet completely clear. For a convex domain
one has an Euler type theorem: the isolated fixed point set of any endo-
morphism consists of at most one point (see Prop. 1.1). For a bounded
strictly pseudoconvex domain in Cn with real analytic boundary the
number of points in a discrete fixed point set of an automorphism is
finite (see Thm 1.2). Must the cardinality of an isolated fixed point
set of an automorphism or endomorphism be bounded by a number
depending only on the dimension of the manifold under consideration?
As one can see below (in section 1) for endomorphisms of bounded
domains in Cn the answer is negative. It is also negative for automor-
phisms of a general hyperbolic manifold and the entire Cn. However,
for an automorphism of a bounded domain in Cn the answer is not yet
clear (see more discussions on that in the collection of problems at the
conclusion of this paper: section 5).

We then turn to the consideration of which single points of a domain
can form Fix(f) for a holomorphic f . In section 2 we prove that if
every point of a hyperbolic manifold is Fix(f) for some automorphism
f then the manifold must be homogeneous; we also show an example
of a one dimensional non-homogeneous domain with infinite number of
such points. In section 3 we consider pairs of points as fixed point sets,
and prove that for any domain “most” pairs of points, if fixed, force a
whole analytic set of complex dimension one to be fixed (compare to
an Euler type statement above for a domain in Rn).

An application is given in section 4: we construct a bounded domain
in Cn such that if any holomorphic endomorphism of it fixes two distinct
points, it will necessarily be the identity. As a consequence, this domain
will have no non-trivial holomorphic retractions.

2



1. General cardinality statements.

Below we use the following notation: if f : M → M is a holomorphic
self-map of M , then Fix(f) is its fixed point set, and if such a set is
discrete then #(Fix(f)) is its cardinality. We start with two positive
statements (e.g. the cardinality #(Fix(f)) is bounded).

Proposition 1.1. Let D be a bounded convex domain in Cn, f : D →
D be a holomorphic endomorphism. Then if Fix(f) is discrete and
non-empty, it consists of one point only.

Proof. Follows from the main theorem in [Vi1]: such a set has to be
connected. �

Remark. Description of some properties of fixed point sets in convex
domains can be found in [Ab].

Theorem 1.2. For any strictly pseudoconvex domain D ⊂ Cn with real
analytic boundary, n ≥ 1, the cardinality #(Fix(f)) of the isolated fixed
point set of an automorphism f ∈ Aut(D) is finite. Moreover, there is
a number m = m(D) such that #(Fix(f)) ≤ m.

Proof. If D is biholomorphic to the ball or if n = 1, then the state-
ment is clear. Assume that n ≥ 2 and D is not biholomorphic to
the ball. By a theorem in [VEK], there is a neighborhood U1 of D
such that each automorphism of D extends to be an injective holo-
morphic map on U1. Consider a g ∈ Aut(D). Choose domains U2, U3

with smooth boundaries so that D ⊂⊂ U3 ⊂⊂ U2 ⊂⊂ U1. For every
h ∈ Aut(D) in some neighborhood of g, h(∂U2) is so close to g(∂U2)
that h(∂U2) ∩ g(U3) = ∅. Since h(U2) is a connected component of
Cn\h(∂U2) and since h(U2) ⊃ D, we see that h(U2) ⊃ g(U3) for every
h ∈ Aut(D) in some neighborhood of g. Since Aut(D) is compact, there
is a neighborhood Q of D such that Q ⊂ g(U1) for each g ∈ Aut(D).
Let U be the interior of the intersection of the sets g(U1), g ∈ Aut(D).
Then U ⊃ Q and g(U) = U for each g ∈ Aut(D). I.e., each automor-
phism of D is also an automorphism of U . There is a finite cover of
open sets {Vj : j = 1, . . . ,m} of D such that each pair of points in a Vj

is connected by a unique distance-minimizing geodesic with respect to
the Bergman metric of U . Let f ∈ Aut(D). If f fixes two points in a
Vj, f must fix each point on the unique distance-minimizing geodesic
connecting the two points. Consequently, each Vj contains at most one
isolated fixed point of f . Therefore, the number of isolated fixed points
of f is ≤ m. �

We now present counterexamples (e.g. the cardinality #(Fix(f))
can be arbitrary, even infinity).
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Proposition 1.3. For any k ⊂ N, there exists a bounded domain D ⊂
Cn, n ≥ 2, and a holomorphic endomorphism f : D → D, such that
#(Fix(f)) = k.

Proof. Without any loss of generality we can present an example for
n = 2.

Let S be the open Riemann surface in C2:

S = {(x, y) ∈ C2 | y2 = (x− a1)...(x− ak)},

where a1, ..., ak are k distinct points in C. The restriction g of (x, y) 7→
(x,−y) to S has exactly k fixed points. Following [GR, VIII, C8,
p.257] there exists a holomorphic retraction ρ : V → S of an open
neighborhood V of S onto S. Now the mapping f := g ◦ ρ : V → V
has exactly k fixed points. Of course V is not bounded, but we can
consider a bounded open set W ⊂ V , W 3 (as, 0) for all s = 1, ..., k
and such that g(W ) = W . This bounded domain will have the same
property. �

Proposition 1.4. There exists a hyperbolic manifold with a holomor-
phic automorphism whose fixed point set is discrete and consists of an
infinite number of points.

Proof. Consider the submanifold X of D2 defined by y2 = B(x), where
D is the open unit disc and B is a Blaschke product with an infinite
number of zeroes, the restriction to X of the map (x, y) → (x,−y) is
an automorphism of X and has an infinite number of isolated fixed
points. �

Proposition 1.5. For any n ≥ 2 and any k ∈ N, there exists a poly-
nomial automorphism f of Cn, such that #(Fix(f)) = k.

Proof. . Let a1, ..., ak be k distinct complex numbers. Consider the
map H : Cn → Cn given by
w1 = z1 + z2 + (z1 − a1)(z1 − a2)...(z1 − ak)
w2 = z2 + (z1 − a1)(z1 − a2)...(z1 − ak)
ws = izs for all s = 3, ..., n
One can easily check that this map is an automorphism [(z1, ..., zn) can
be represented as polynomials of (w1, ..., wn)], whose fixed point set is
the set of the following k points: (a1, 0, ..., 0), (a2, 0, ..., 0), ....., (ak, 0, ..., 0).

�

Corollary 1.6. Let n ≥ 2; p1, p2, ..., pk are k distinct points in Cn.
Then there exists a polynomial automorphism g ∈ Aut(Cn) such that
Fix(g) = {p1, p2, ..., pk}.
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Proof. Let pj = (aj, bj), aj ∈ C, bj ∈ Cn−1. Without any loss of
generality we assume that the aj’s are all distinct (in case they are not,
one can first use an invertible linear transformation of Cn to achieve
this). Consider the polynomial transformation F : w1 = z1, w

′ =
z′+f(z1), where f : C → Cn−1 is the Lagrange interpolation polynomial
map satisfying f(aj) = bj . Then F (aj, 0) = pj, j = 1, ..., k, and
F ∈ Aut(Cn). If H ∈ Aut(Cn) is the automorphism in the proof of the
previous proposition, then the automorphism g = F ◦H ◦ F−1 is such
that Fix(g) = {p1, p2, ..., pk}. �

2. Single points as fixed point sets

Here we consider some statements when the fixed point set of a
holomorphic automorphism is one point, specifically: which points can
be a fixed point set of an automorphism. First we show that if every
point can be a fixed point set for an automorphism of a hyperbolic
manifold then this manifold must be homogeneous. Second we provide
an example when there are infinite number of points in the domain,
each of which is a fixed point set for some holomorphic automorphism.

Theorem 2.1. If every point of a hyperbolic manifold D is a fixed point
set for some holomorphic automorphism of D, then D is a homogeneous
manifold.

For some concrete cases we have the following

Corollary 2.2. (A) If in the above theorem D ⊂⊂ C2, then D is
biholomorphic to the unit ball B2 or the polydisc U2.

(B) If in the above theorem D ⊂⊂ Cn has a smooth C2 boundary,
then D is biholomorphic to the unit ball Bn .

To prove the Corollary we note that (A) there are only two kinds of
bounded homogeneous domains in C2: the unit ball and the polydisc,
and (B) in Cn there is only one bounded homogeneous domain with a
smooth boundary: the unit ball (this is a consequence of a Wong-Rosay
theorem (see [Ro], [Wo]). We will now prove the theorem.

Proof. 1. First we note that the theorem will follow from a local state-
ment: let x ∈ D, then there exists a neighborhood Ux of x such that
for any y ∈ Ux there is a g ∈ Aut(D) such that g(y) = x.

Indeed, if this is true consider two arbitrary points a, b ∈ D, connect
them by a compact path L, cover L by a finite number of Ux, x ∈ L,
and one can obtain an f ∈ Aut(D), such that f(a) = b.

2. We now prove the local statement. Let x ∈ D. By [FMV],
for each point x ∈ D there is an invariant Hermition metric in some
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neighborhood of the orbit G(x), where G = Aut(D). Consider a small
enough ball b(x, ε) in that metric with center x and radius ε, ε > 0
will be determined by the construction later. Let y ∈ b(x, ε); consider
the orbit O(y) = {z ∈ D : ∃g ∈ Aut(D), g(y) = z}. Consider now a
point p ∈ O(y), such that d(x, p) = d(x, O(y)), where d(·, ·) denotes
the distance function induced by the local invariant metric. Clearly,
p ∈ b(x, ε). If p = x, there is nothing to prove; otherwise consider a
small ball b1 of radius < 1

4
d(x, p) that lies inside b(x, d(x, p)), and such

that ∂b1 ∩ ∂b(x, d(x, p)) = p.
This construction is possible if ε is small enough, fixing such an

ε = ε(x), we denote b(x, ε) = Ux.
We observe that O(y) ∩ b(x, d(x, p)) = ∅. Let q denote the center

of the ball b1. By the assumption of the theorem there exists an h ∈
Aut(D) whose fixed point set is q. Now h(p) 6= p, and h(p) ∈ ∂b1, since
h(∂b1) = ∂b1. We now conclude that h(p) ∈ O(y)∩ b(x, d(x, p)), which
contradicts the previous observation that this intersection is empty.
Therefore x = p ∈ O(y), and the theorem has been proved. �

We now provide the following example.

Proposition 2.3. There exists a domain D in C with infinite number
of points each of which is the fixed point set for a holomorphic auto-
morphism of D.

Proof. Consider D = C\
⋃

n∈Z
∆(n, 1/3) where ∆(n, 1/3) is a disk with

center at n ∈ Z and radius 1/3. Consider fk : z 7→ (−z + (2k + 1)).
Then for any k ∈ Z , fk ∈ Aut(D), and its fixed point set consists of
one point Fix(f) = {k + 1/2}. �

3. Pairs of points as fixed point sets

Here we examine the situation when the fixed point set consists of ex-
actly two points. Though such domains exist, no domain can have too
many pairs of distinct points as a fixed point set for an automorphism.

Theorem 3.1. Let D ⊂⊂ Cn. The set N ⊂ D2 of all pairs, each of
which cannot be a fixed point set for a holomorphic automorphism of
D, contains a full measure set in D2.

It follows from the following

Lemma 3.2. Let D ⊂⊂ Cn, a ∈ D. Then there exists a complex
analytic set Z ⊂ D (dim Z < n ), such that if b ∈ D\Z then the two
points {a, b} are such that for any automorphism f fixing these two
points, the fixed point set of f is at least one (complex) dimensional.
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First we need the following

Lemma 3.3 (H. Cartan). ([Ca1, p.80]) Let D ⊂⊂ Cn, let z ∈ D, and
let Iz = Iz(D) be the isotropy subgroup at z of the automorphism group
of D. Then there exists a holomorphic map φ : D → Cn such that
φ(z) = 0, φ′(z) = id, and for all f ∈ Iz one has φ ◦ f = f ′(z) ◦ φ.

As in [Vi2, thm 2.3], for the proof of this Lemma, we define φ : D → Cn

by

φ(ζ) =

∫
Gz

f ′(z)−1(f(ζ)− z) dµ(f),

where dµ is the Haar measure on Iz. Then φ(z) = 0, φ′(z) = id (and
therefore φ is locally biholomorphic), and φ ◦ g = g′(z) ◦ φ for each
g ∈ Iz.

We are now ready to prove Lemma 3.2

Proof. Let Z = {z ∈ D|ϕ(z) = 0}̇. If b ∈ D\Z, then suppose
f ∈ Aut(D) and f fixes both points a and b. We have f ′(a) · ϕ(b) =
ϕ(f(b)) = ϕ(b). Since by choice ϕ(b) 6= 0, and ϕ is biholomorphic in
the neighborhood U of a, for a number λ, |λ| > 0, small enough, there
exists a point c ∈ U ⊂ D, c 6= a, ϕ(c) = λϕ(b), and f(c) ∈ U . Now
ϕ(f(c)) = f ′(a) · ϕ(c) = f ′(a) · λϕ(b) = λϕ(b) = ϕ(c).

Since ϕ is biholomorphic in U we have f(c) = c. �

4. Application for holomorphic retractions

Obviously any one point in a domain can be the fixed point set for
an endomorphism of this domain. The theorem below gives an example
of a domain that no two distinct points can be the fixed point set for
an endomorphism. Moreover:

Theorem 4.1. There is a domain D ⊂⊂ Cn such that for any two
distinct points p 6= q ∈ D, if a holomorphic endomorphism f : D → D
fixes these two points (f(p) = p, f(q) = q) then f = id.

Proof. We will construct the example in C2; Cn with n > 2 can be
dealt with similarly.

We denote B(z, r) - the euclidean ball with center at z and of radius
r, b(z, r) ⊂ D ⊂⊂ C2 - ball in the Kobayashi metric (in D) with center
at z ∈ D and of (Kobayashi) radius r. B = B(0, 1) = B2 the unit ball
in C2.

1. Statement. Let a, b ∈ B be two distinct points, L is the complex
line through these points. Let f ∈ H(B, B) fix these two points. Then
f fixes all the points of L ∩B.
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Proof of this statement follows from Example 1, Section 4 in [Vi3].
2. Statement. If three distinct points a, b, c ∈ B do not belong to the

same complex line, then if f ∈ H(B, B) fixes these points then f = id.
Proof of this statement follows from example 1, sec. 4 in [Vi3].

3. Statement. ∀a ∈ B1 = B(0, 1/2), a 6= 0 there exists a unique
point p ∈ ∂B1 that is closest to a in the Kobayashi metric of the larger
ball B: k(a, p) = min k(a, l)

l∈∂B1

, where k(·, ·) is the Kobayashi distance in

B. Moreover, there exists a real number s such that p = s · a.
To prove this let σ be the Kobayashi distance from a to ∂B1. There
exists an r such that b(0, σ) = B(0, r). Consider now f ∈ Aut(B)
such that f(0) = a. Then f(B(0, r)) = f(b(0, σ)) = b(a, σ), and
from this construction we conclude that ∂b(a, σ) and ∂B1 have only
one common point p, moreover the vector p is the intersection of the
real line {s · a | s ∈ R} with ∂B1.

4. Example of a domain D ⊂⊂ C2 and two points {a, b} ∈ D such
that any endomorphism of D fixing those two points must be the iden-
tity.

Consider D = B\B1 and two distinct points a, b ∈ D such that for
the complex line L connecting them L ∩ B1 6= ∅ and 0 /∈ L. Suppose
f ∈ H(D, D) fixes both points a, b. By Hartogs principle f can be
extended to F ∈ H(B, B), and therefore F fixes L ∩ B. One can now
pick a point p ∈ L ∩B1 so that
(1) the boundary ∂B1 has a unique point c ∈ ∂B1 closest (in the
Kobayashi metric of B) to p, and
(2) c is not lying on L.
Since the Kobayashi metric cannot increase under holomorphic maps,
F (c) = c. Now the three points a, b, c ∈ B do not lie on the same
complex line and by the previous statement F (and therefore f) must
be the identity.

5. We are now ready to prove the theorem by providing the main
example: a domain D ⊂⊂ C2 such that an endomorphism fixing any
two given distinct points {a, b} ∈ D is the identity.

All we need to do is to take B and remove a (countable) number of
closed neighborhoods of portions of spheres, so that any complex line
intersecting B will intersect at least one of these removed spheres and
then use the approach of the previous example.

For k = 1, 2, . . . , let

εk = 1/2(4k)!, δk = 1/2(4k)!+1,

Ω2k+1 = B(0, 1− δk)\B(0, 1− εk) ∩ {Imz2 ≥ −1/2},
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and
Ω2k+2 = B(0, 1− 4δk)\B(0, 1− 4εk) ∩ {Imz2 ≤ 1/2}.

We will also need two more sets defined differently:

Ω1 = B(α, 1− δ1)\B(α, 1− ε1) ∩ {Imz2 ≥ −1/2};

Ω2 = B(β, 1− 4δ1)\B(β, 1− 4ε1) ∩ {Imz2 ≤ 1/2},

where α = (2−8!, 0), β = (0, 2−8!). And finally D = B\(
∞⋃

s=1

Ωs). Now

D is a connected open set. Let a, b ∈ D and f ∈ H(D, D) fixes a, b.
Then f can be extended to a holomorphic function F : B → B. Let
L be the complex line connecting a, b, then (see Statement 1 above)
F |L = id.

L intersects an infinite number of Ωs. If 0 /∈ L there will always be
at least one of two possibilities: either for some s = 2k + 1 there is a
point z ∈ L∩∂B(0, 1− δk), and Im(z) > −1/2, or for some s = 2k +2
there is a point z ∈ L ∩ ∂B(0, 1− 4δk), and Im(z) < 1/2.

Similarly , if 0 ∈ L there will always be at least one of two possi-
bilities: either for s = 1 there is a point z ∈ L ∩ ∂B(α, 1 − δ1), and
Im(z) > −1/2, or for s = 2 there is a point z ∈ L ∩ ∂B(β, 1 − 4δ1),
and Im(z) < 1/2. The above choice of s is restricted in the following
two cases: if α ∈ L, we pick s = 2, if β ∈ L, we pick s = 1. In any
case we fix this point z ∈ L ∩ ∂Ωs. If a point p ∈ L is close enough
to z, then the closest (in Kobayashi metric of the ball B) point to p
in the boundary ∂Ωs is a unique point c ∈ ∂Ωs that does not lie on L.
Since F (p) = p, F is a continuous non-increasing map in the Kobayashi
metric, and F (D) ⊂ D, we conclude that F (c) = c.

Now F fixes three points in B that do not lie on the same complex
line, and therefore F = id, so f = id. �

A map D → D is a retraction, if f ◦ f = f . A trivial retraction is
either a constant map, or the identity.

Corollary 4.2. The domain in the above theorem has no non-trivial
holomorphic retraction.

5. Final remarks, unsolved problems

5.1. Some problems. The main question that remains open is this.
1. Let D be a bounded domain in Cn, f ∈ Aut(D), and Fix(f) is a
discrete set. Can #(Fix(f)) = ∞?

If one considers the domain D ⊂ Cn which is a direct product of n
annuli, one can then find an f ∈ Aut(D) with #(Fix(f)) = 2n. So,
the next natural unsolved question is
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2. Let n ≥ 2, D be a bounded domain in Cn , with a piecewise
smooth boundary, f ∈ Aut(D), and Fix(f) is a set of isolated points.
Can #(Fix(f)) ≥ 2n + 1? (As noted earlier, for n = 1 the answer is
negative [PL]).

A more restricted version of the above question is a generalization
of Theorem 1.2.

3. Is there a number m such that for any strongly pseudoconvex
domain D ⊂⊂ Cn, ∂D ∈ C∞, and f ∈ Aut(D), if Fix(f) is a set
of isolated points, then #(Fix(f)) ≤ m, where m = m(n) (i.e. m
depends on the dimension only)?

The next question, in case of a positive answer, would be a general-
ization of Proposition 1.1.

4. Let D be a bounded contractible domain in Cn, f ∈ Aut(D), and
Fix(f) is a non-empty set of isolated points. Is #(Fix(f)) = 1?

5.2. A (long) Remark. We now turn to a connection of this paper
with the notion introduced and studied in papers [FK1, FK2, FM, KK,
FMV, Vi2, Vi3]: determining sets.

Let M be a complex manifold. Let H(M, M) denote the set of holo-
morphic endomorphisms of M , and Aut(M) the set of automorphisms
of M .

Definition 5.1. A set K ⊂ M is called a determining subset of M with
respect to Aut(D) (H(M, M) resp.) if, whenever g is an automorphism
(endomorphism resp.) such that Fix(g) ⊇ K, then Fix(g) = M (e.g.
g is the identity map of M).

One can now introduce a generalized notion of quasi-determining set
for a complex manifold M :

Definition 5.2. A set K ⊂ M is called a quasi-determining subset
of M with respect to Aut(D) (H(M, M) resp.) if, whenever g is an
automorphism (endomorphism resp.) such that Fix(g) ⊇ K, then K
is a proper subset of Fix(g).

Another way to state this definition: A set K ⊂ M is called a quasi-
determining subset of M with respect to Aut(D) (H(M, M) resp.) if
it cannot be the fixed point set of any automorphism (endomorphism
resp.) of M .

There is an obvious reformulation of a number of results in our paper
by using this notion. For example, Proposition 1.1 means that any two
points in a convex domain form a quasi-determining set; Theorem 1.2
states that any m + 1 points in D form a quasi-determining set, etc.

This definition obviously leads to a number of other open questions,
which will be addressed in the future.
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