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Abstract

There exist five families of Lipschitz curves on the unit square
such that any continuous function is uniquely defined by the values
of its integral (properly defined) along these curves. We present this
uniqueness result as a consequence of the Kolmogorov’s superposition
theorem.

1 Introduction1,2

The main intention of this article is to demonstrate a connection of results
in Linear Superpositions of functions and the uniqueness problem for a gen-
eralized Radon transform. We will actually present here one such relation,
namely, a consequence of the Kolmogorov’s superposition theorem. We will
start with a description of a general problem.

Suppose that for each α ∈ J (J is the set of indices) there is a family
(also called a spread) Ωα of non-intersecting submanifolds Γα

t , t ∈ T = Tα, of

1Key words. Radon transform, spreads, uniqueness, superposition
2AMS(MOS) subject classifications. 65R10, 44A12, 92C55, 26B40
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some manifold M =
⋃

t∈T
Γα

t and for each Γ = Γα
t there is a measure dµΓ so

one can introduce a generalized Radon transform by

Rf(Γ) =
∫
Γ

fdµΓ (1)

for an integrable function f. Typically Γα
t are smooth hypersurfaces, the

parameter set T is a one-dimensional interval, M ⊆ Rn, and f is a continuous
function with compact support. The general uniqueness (or invertibility of
R) problem we are considering here is this. If Rf(Γα

t ) = Rf(α, t) = 0 for all
α, t then f = 0. Similar problems have been addressed in a number of papers
(see [1]-[6], [9]-[10], [12]-[16]).

The question we will discuss here is the following one: how many families
(the cardinality of J) does it take to assure the uniqueness (invertibility) of R
? Intuitively it seems to be very likely that if the number of different families
is infinite the uniqueness takes place and if the number of families is finite
the uniqueness does not hold. In many cases that have been considered this
assertion is supported. One however should recall the result of J. Boman [1]
showing that the uniqueness is not necessarily assured in case Γα

t are straight
lines in R2, α ∈ J = [0, 2π] is infinite, and the measure is C∞ and positive.

Here we will be considering the case of a finite number of families. Is
it possible to find such a finite system of families that uniqueness holds for
continuous functions? Unexpectedly the answer to this question in a typical
case is positive. The main result of this paper stated below is the following
one. There exist five families of Lipschitz curves on the unit square in R2

and such a measure on each of these curves that the uniqueness property
holds for all continuous functions.

For the special case we are describing here we will have Γ = Γα
t will be

curves on the closure of the unit square ∆ ⊂ R2, we also will use the notation
IΓ(f) instead of Rf(Γ) for the corresponding integral (1). One more remark.
In many cases it is desirable to consider such natural measures dµΓ that the
Fubini’s theorem holds: ”double” integral of f over M could be presented as
a repeated integral, that is an integral of IΓα

t
(f) over Tα with some measure

dµα(t). The measure we will be introducing below is such a natural measure
(see (3)).

As stated above this result is going to be a consequence of the well-known
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theorem by A.N. Kolmogorov, theorem that presented a solution of the 13-th
problem of Hilbert. We use the notation ∆ for the closure of the unit square:
∆ = {(x, y)|0 ≤ x, y ≤ 1}.

Theorem A. (Superposition Theorem of A. N. Kolmogorov). There exist
five functions Φi(x, y) = ϕi(x)+ψi(y), i = 1, ...5, such that for any f ∈ C(∆)
there exist continuous functions χi(t) so that

f(x, y) =
5∑

i=1
χi(ϕi(x) + ψi(y)).

The functions ϕi(x), ψi(y) can be chosen to be strictly increasing and
Lip1 functions.

For proof see [11], the choice of Lipschitz functions was proved in [7].

2 Definitions and basic results

A reasonable way to introduce a family of curves is to consider them as level
sets of a function. Following a suggestion of L. Ehrenpreis such a family will
be called a spread and the corresponding function will be a spread function.
We will present the definition in two steps.

1)LetD be a domain in R2 and Φ ∈ C(D). Consider Γt = {(x, y)|Φ(x, y) =
t} ∩ D - the level curve of Φ, and [a, b] = Φ(D) the range of Φ.Clearly
Γt ∩ Γτ = ∅ if t 6= τ and D =

⋃
t∈[a,b]

Γt. The set Ω = {Γt | t ∈ [a, b]} we will

call a spread on D and Φ the spread function.
2)A spread Ω on D generated by a spread function Φ is called a proper

spread if the following holds. There exists a homeomorphism φ : D → U =
φ(D) such that the set {φ(Γc)|Γc ∈ Ω} is a set of straight parallel lines on
U : φ(Γt)‖φ(Γτ ) for any t, τ ∈ [a, b].

All results that follow hold for many domains in R2. Without any signif-
icant loss of generality and for simplicity of exposition we will consider our
domain to be the unit square ∆ .
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Suppose we have a proper spread Ω of curves on ∆ generated by a con-
tinuous function Φ and Γ = Γt ∈ Ω . Let f ∈ C(Γ). Then f can be extended
to a continuous function on ∆ which we will still denote by f . We now will
introduce IΓ(f) the integral of f over Γ. Let Γ(ε) = {(x, y) ∈ ∆|Φ(x, y) ∈
(t− ε, t+ ε)}. Then we define

IΓ(f) =lim
ε→0

∫
Γ(ε) fdA

mes2(Γ(ε))
, (2)

where dA is the area element and mes2 is the Lebesgue area.

Example. One can check the following. If Φ ∈ C1(∆) and gradΦ 6= 0

on Γ = Γt with positive length, then IΓ(f) =

∫
Γ

f/‖gradΦ‖ds

lg(Γ)
, where ds is the

element of length and lg(Γ) is the weighted length of Γ; lg(Γ) =
∫
Γ

1
‖gradΦ‖ds.

Lemma 1. 1.Let Γ from (2) be fixed. If IΓ(f) exists for some continuous
extension of f from Γ to ∆, then it exists and has the same value for any
such continuation of f to ∆. In this case | IΓ(f) |≤max

x∈Γ
|f(x)|.

2. The set E(Γ) of continuous functions on Γ for which IΓ(f) exists,
forms a closed linear subspace in C(Γ). IΓ(f) is a linear bounded functional
on E(Γ).

3. If f = c = const. on Γ then IΓ(f) = c.
4. If χ(t) ∈ C[a, b] then IΓt(χ(Φ(x, y)) = χ(t) .

Proof. First one can check 3. It will follow from the fact that the extension
is continuous and from the mean value theorem for the Lebesgue integral on
bounded functions.

One can now check 1. The first assertion follows from the following obser-
vation. The difference between two extensions of f is zero on Γ and therefore
the integral of the difference will always exist and be equal to zero. One can
prove the inequality by using the standard inequalities for the integral of a
bounded function.

2. follows from the linear property of Lebesgue integral and the already
proved inequality in 1.
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4. follows from 3. 2

Denote by Φ∗ the push-forward induced by the function Φ : ∆ → Φ(∆) =
[a, b] = J. (The push-forward takes measures on ∆ to measures on J). We
now introduce a countably additive measure µ on J by the formula µ(dt) =
Φ∗(dA) (that is: µ(T ) = mes2(Φ

−1(T )) for T ⊆ J). One can see that
µ is a countably additive measure on J , and all Borel sets on J are µ -
measurable. Let f ∈ C(∆). We may now consider a measure νf given by
νf (dt) = Φ∗(fdA). Clearly νf must be absolutely continuous with respect
to µ. Therefore by the Radon-Nikodim theorem there exists g ∈ L1(µ) such
that νf = gµ, where

g(t) =lim
ε→0

νf (t− ε, t+ ε))

µ(t− ε, t+ ε)
=lim

ε→0

∫
Γt(ε)

fdA

mes2(Γt(ε))

and g(t) exists almost everywhere with respect to µ -measure (a.e. µ) on
J. If one compares this formula with the definition (2) of IΓ(f), one has the
proof of the first part of the following:

Lemma 2. 1. g(t) = IΓt(f) , a.e. µ, and therefore the last integral is
uniquely defined for a fixed f a.e. µ on J . This is to say that the union
of all level curves Γ for which the limit in (2) does not exist, forms a set of
Lebesgue area zero.

2. The following formula holds:

∫
∆

fdA =

b∫
a

IΓt(f)µ(dt) (3)

Proof of the last formula follows from the following observation. Consid-
ering measures as linear functionals on the space of continuous functions we
know that the push-forward Φ∗ is the adjoint of the pull-back Φ∗ : u 7−→ u◦Φ
for u ∈ C(J), that is,

〈v, u ◦ Φ〉 = 〈v,Φ∗(u)〉 = 〈Φ∗(v), u〉.

Taking u = 1 and v = fdA we obtain (3).
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Below we will say that a certain property holds for almost every Γ if
the union S of all Γ for which this property fails has Lebesgue area zero:
mes2(S) = 0. Obviously this definition does not depend on the spread func-
tion generating the set of curves; it depends on the set of curves (the spread)
only.

The space E(Γ) (see Lemma 1) is nonempty and IΓ(f) is a bounded linear
functional on this space. Obviously E(Γ) ⊆ C(Γ).

Lemma 3. E(Γ) = C(Γ) for almost every Γ ( a.e. Γ in the above defined
meaning).

Proof. Let set S be the union of all such Γ for which E(Γ) 6= C(Γ).
Consider all polynomials of two variables with rational coefficients. They
form a countable set {P1, P2, .. }. Let Sn be the union of all such Γ for
which IΓ(Pn) does not exist. By the previous Lemma 2. mes2(Sn) = 0. Since
every continuous function can be approximated uniformly on ∆ by this set

of polynomials, S ⊆
∞⋃

n=1
Sn, and therefore mes2(S) = 0. 2

Lemma 4. If f ∈ C(∆) and χ(t) ∈ C[a, b] then for almost all (relative
to the µ measure) t ∈ [a, b]

IΓt{f(x, y)χ(Φ(x, y)} = IΓt(f)χ(t). (4)

Proof follows from the linear property of the introduced integral and the
uniqueness of it from Lemma 2. 2

3 The main statement

Now we are ready to prove the following

Theorem B. There exist five proper spreads Ωi , i = 1, ..., 5 of curves on
∆ such that if f ∈ C(∆) and IΓ(f) = 0 for almost every curve Γ in any Ωi
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then f ≡ 0 .

Remark. Almost every Γ means as before: all Γ with the exception of a
set of curves whose union has zero area in ∆.

Proof. Consider Φi(x, y) = φi(x)+ψi(y) from Theorem A. As noted above
all these functions can be chosen to be strictly increasing and satisfy the
Lipschitz condition. We can also assume that φi(∆) = [0, qi], ψi(∆) = [0, pi],
so Φ(∆) = [0, qi + pi] . Consider now Γi

t = {(x, y) ∈ ∆|Φi(x, y) = t}.

1. First we prove that Ωi = {Γi
t} is a proper spread. Consider the system

t = φi(x) + ψi(y)
u = φi(x)− ψi(y)

One can show by using the monotonicity of the functions involved that
the above system provides a homeomorphism of ∆ onto the rectangle 0 ≤
t+ u ≤ 2qi, 0 ≤ t− u ≤ 2pi and therefore Ωi is in one-to-one correspondence
with parallel lines t = const.

2. Let f ∈ C(∆) be a function for which IΓi
t
(f) = 0 for almost all Γi

t.

According to Theorem A, f(x, y) =
5∑

i=1
χi(Φi(x, y)). Consider now (we use

(3) and (4))

∫∫
∆
f 2(x, y)dA =

∫∫
∆
f(x, y)

5∑
i=1

χi(Φi(x, y))dA =

5∑
i=1

qi+pi∫
0

IΓi
t
{f(x, y)χi(Φi(x, y)}µi(dt) =

=
5∑

i=1

qi+pi∫
0

IΓi
t
(f)χi(t)µi(dt) = 0

Therefore f ≡ 0. 2

Remark 1. The constructed spreads Ωi consist of Lipschitz rectifiable
curves. The IΓ(f) is not necessarily absolutely continuous for every Γ.
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Problem. Will the statement of Theorem B hold if IΓ(f) =
∫
Γ
fds, where

ds is the element of the arc length?

Remark 2. Theorem A (see [11]) was proved for a general case in Rn for
all n. Similarly one can prove a statement analogous to Theorem B in case
n > 2, replacing curves by surfaces correspondingly.

Remark 3. One can check that the construction in (2) and most that
followed can be done for f ∈ L1(∆) instead of a continuous function. This
would lead to

Theorem B′. There exist five proper spreads Ωi , i = 1, ..., 5 of curves
on ∆ such that if f ∈ L1(∆) and IΓ(f) = 0 for almost every curve Γ in any
Ωi, i = 1, ..., 5, then f = 0.

To prove this, one can repeat the proof presented above and consider∫∫
∆
fgdA , g ∈ C(∆). Then one can proceed as above to prove that this inte-

gral is zero and thus f is orthogonal to any continuous function. Therefore
f is equal to zero in L1.

The following statement shows the critical difference in the outcome if
we replace the Lipschitz condition for functions Φi generating our families of
curves, by the requirement that these functions be continuously differentiable.

Theorem C. Let spreads Ωi , i = 1, ..., s of curves on ∆ be generated by
spread functions Φi ∈ C1(∆). Then there exists a function f ∈ L2(∆), f 6= 0,
such that IΓ(f) = 0 for almost every curve Γ in any Ωi, i = 1, ..., s.

Proof follows from the result in [8], Thm.4, that proves that the set

G = {g | g(x, y) =
s∑

i=1
χi(Φi(x, y)), χi ∈ C} is nowhere dense in L2(∆). Tak-

ing now f ∈ L2(∆), f⊥G, one can check by using the same idea as above
that IΓ(f) = 0 for almost every Γ in any Ωi.
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