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Abstract. We study fixed point sets for holomorphic automor-
phisms (and endomorphisms) on complex manifolds. The main
object of our interest is to determine the number and configura-
tion of fixed points that forces an automorphism (endomorphism)
to be the identity. These questions have been examined in a num-
ber of papers for a bounded domain in Cn. Here we resolve the case
for a general finite dimensional hyperbolic manifold. We also show
that the results for non-hyperbolic manifolds are notably different.

0. Introduction

Let M be a complex manifold. H(M,M) is the set of holomorphic
maps fromM toM , i.e., the set of endomorphisms ofM . A special case
of endomorphisms are automorphisms of M , Aut(M) ⊂ H(M,M).

Definition 0.1. A set K ⊂M is called a determining subset of M with
respect to Aut(D) (H(M,M) resp.) if, whenever g is an automorphism
(endomorphism resp.) such that g(k) = k ∀k ∈ K, then g is the identity
map of M .

The notion of a determining set was first introduced in a paper writ-
ten by the first two authors in collaboration with Steven G. Krantz
and Kang-Tae Kim [FK1]. That paper was an attempt to find a higher
dimensional analog of the following result of classical function theory
[PL]: if f : M → M is a conformal self-mapping of a plane domain M
which fixes three distinct points then f(ζ) = ζ.
This one-dimensional result is true even for endomorphisms of a bounded
domain D ⊂⊂ C. To prove this one needs to first use the well known
theorem, stating that if an endomorphism ofD fixes two distinct points,
then it is an automorphism; and then use the above [PL] theorem.
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Determining sets (for automorphisms and endomorphisms) in case of
bounded domains in Cn have been further investigated in the following
papers [FK2], [KK], [Vi1], [Vi2], [FM].

Let Ws(M) denote the set of s-tuples (x1, . . . , xs), where xj ∈ M ,
such that {x1, . . . , xs} is a determining set with respect to Aut(M).

Similarly, Ŵs(M) denotes the set of s-tuples (x1, . . . , xs) such that

{x1, . . . , xs} is a determining set with respect toH(M,M). So Ŵs(M) ⊆
Ws(M) ⊆M s. We now introduce two values s0(M) and ŝ0(M). In case
Aut(M) = id, s0(M) = 0, otherwise s0(M) is the least integer s, such
that Ws(M) 6= ∅. If Ws(M) = ∅ for all s then s0(M) = ∞. Analo-

gously symbol ŝ0(M) denotes the least integer s such that Ŵs(M) 6= ∅,
if no such integer exists (i.e. Ŵs(M) = ∅ for all s) then ŝ0(M) = ∞.
In all cases s0(M) ≤ ŝ0(M).
The main objectives of this paper are: first, to generalize the results
for bounded domains in Cn to hyperbolic manifolds, and second, to
illustrate that for the non-hyperbolic manifolds the results are quite
different.
The Bergman metric on a bounded domain in Cn proved quite useful
for the investigation related to determining sets. Such a Riemannian
metric however is not always available on a hyperbolic manifold M ; to
overcome this obstacle we construct for any point x ∈ M an invariant
(with respect to Aut(M)) Hermitian metric in a neighborhood (open
but not necessarily connected) of that point.
The paper is roughly divided into three parts. First we introduce the
Hermitian metric mentioned above. Second, we completely resolve the
case for a hyperbolic manifold. Third, we prove (two) theorems to show
that the case of non-hyperbolic manifolds is remarkably different.
Here is a brief description of the second and third parts of the paper.
In [Vi2] the estimate ŝ0(D) ≤ n + 1 was established for all bounded
domains in Cn. In Section 2 we generalize this by proving the same
inequality for hyperbolic manifolds of dimension n. This certainly im-
plies same inequality for automorphisms of a hyperbolic manifold M ,
s0(M) ≤ n + 1. However for automorphisms much more information
can be provided. s0(M) depends on how large the groupAut(M) is, and
corresponding estimates on s0(M) are given in section 3. In section 4
we show that if dim(M) = n then the general estimate (s0(M) ≤ n+1)
can be refined to s0(M) ≤ n for domains that are not biholomorphic
to the unit ball Bn ⊂ Cn (i.e. the only hyperbolic manifolds for which
s0(M) = n+ 1 are those biholomorphic to the ball).
If a positive integer s ≥ s0(M), then Ws(M) 6= ∅, so there are s points
such that if an automorphism of M fixes these points it will fix any
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point of M . Now the question arises whether the choice of these s
points is generic. The answer is positive for any hyperbolic manifold
M : Ws(M) ⊆M s is open and dense if not empty(section 5).
Similar topological properties for the determining sets of endomor-
phisms of a general hyperbolic manifold do not hold. We address re-
lated questions in the concluding part of section 5.
Section 6 is devoted to examining the situation for non-hyperbolic man-
ifolds. We first give a complete description of the value for ŝ0(M) for
a one-dimensional manifold M (theorem 6.1). Then for higher dimen-
sional manifolds we prove that ŝ0(M) = ∞ for a general Stein manifold
M that has the following property: any finite number of points lie in
a one dimensional submanifold (for the precise statement see theorem
6.2 )

1. Construction of a locally invariant Hermitian metric

Our main effort in this section will be the construction of a locally
invariant (with respect to the automorphism group) metric in a neigh-
borhood of any point in a general hyperbolic manifold. First we present
some preliminary statements.
Throughout this section M denotes a hyperbolic manifold of finite di-
mension, Aut(M) is its group of holomorphic automorphisms.

Lemma 1.1. Aut(M) is a normal family.

Various versions of this statement have been used before. However,
we cannot find a direct reference to this result in the literature. There-
fore a brief proof is presented here.

Proof. It suffices to prove that if x0 ∈M , if fj ∈ Aut(M) is a sequence
such that the closure Q of the set {fj(x0) : j ∈ N} is compact, and if
K is a compact subset of M , then

S := ∪∞j=1fj(K) ⊂⊂M.

Let d(·, ·) denote the Kobayashi distance. For x ∈M, r > 0 let b(x, r) =
{y ∈ M : d(x, y) < r}. Let ψ(x) = sup{r > 0 : b(x, r) ⊂⊂ M}. Now
we set

m = max{d(x0, x) : x ∈ K}, δ = min{ψ(x) : x ∈ K},

and

P = {x ∈M : d(x,Q) ≤ m,ψ(x) ≥ δ}.
Then P is compact and S ⊂ P . �
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Now we note the following. Let a ∈ M , f : M → M a holo-
morphic map such that f(a) = a. Consider a small Kobayashi ball
b = b(a, ε) that is biholomorphic to a bounded domain in Cn, and
whose closure is compact in M . Since the Kobayashi distance is non-
increasing under holomorphic maps, we have f : b→ b. If f ∈ Aut(M),
then f |b∈ Aut(b). The following three statements (cf. [Vi1]) hold for
bounded domains in Cn; by using this remark one can prove them for
any hyperbolic manifold.

Lemma 1.2. Let a ∈ M , f : M → M a holomorphic map such that
f(a) = a and f ′(a) = id. Then f = id.

Lemma 1.3. Let a ∈ M , f ∈ Aut(M) and f(a) = a. Then all
the eigenvalues of f ′(a) are of modulus one, and the matrix f ′(a) is
diagonalizable.

Corollary 1.4. In the assumption of the above Lemma, if f 6= id,
one can find an appropriate power k such that the k-th iteration of f ,
fk = h ∈ Aut(M) will have the following properties: h(a) = a, h′(a)
has at least one eigenvalue with non-positive real part.

Let z ∈ M . Below we use the notion of an isotropy group Iz(M) =
{g ∈ Aut(M) : g(z) = z}.

Lemma 1.5 (H. Cartan). ([Ca1, p.80]) Let D ⊂⊂ Cn, let z ∈ D, and
let Iz = Iz(D) be the isotropy subgroup at z of the automorphism group
of D. Then there exists a holomorphic map φ : D → Cn such that
φ(z) = 0, φ′(z) = id, and for all f ∈ Iz one has φ ◦ f = f ′(z) ◦ φ.

As in [Vi1, thm 2.3], for the proof of this Lemma, we define φ : D → Cn

by

φ(ζ) =

∫
Gz

f ′(z)−1(f(ζ)− z) dµ(f),

where dµ is the Haar measure on Iz. Then φ(z) = 0, φ′(z) = id (and
therefore φ is locally biholomorphic), and φ◦g = g′(z)◦φ for each g ∈ Iz.

Let M again be a hyperbolic manifold, x ∈ M , TxM the tangent
space of M at x, Ix = Ix(M) is the isotropy subgroup fixing x. The
compact group Ix acts on T as differential maps: for g ∈ Ix , v ∈ T ,
g∗(v) = dg(x)v. Since the above Lemma can be considered in a small
neighborhood of x, and T is isomorphic to Cn the following statement
holds.

Lemma 1.6. For any point x ∈ M there exists a small neighborhood
V 3 x, such that there is an injective holomorphic map φ : V → T
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such that g∗ ◦ φ = φ ◦ g for g ∈ Ix, and dφ(x) = id, the identity map of
T = TxM .

Finally we introduce an Hermitian invariant metric on a neighbor-
hood of any point in M .

Lemma 1.7. Let M be a hyperbolic manifold, let G = Aut(M), and
let x ∈ M . Then there is a neighborhood U of x such that G(U) = U ,
and a C∞ Hermitian metric on U that is invariant under G.

Proof. Since M is hyperbolic, the automorphism group G is a Lie group
(see [Ko]) and the isotropy group Ix is a compact subgroup of G. The
orbit G(x) is an embedded submanifold of M . Let T = TxM be the
tangent space of M at x. Then T is a complex vector space and is
isomorphic to Cn. The elements of the compact group Ix act on T as
differential maps: for g ∈ Ix, g∗(v) = dg(x)v. Let h be a Hermitian
metric on T invariant under Ix. By Lemma 1.6, there exist a small
neighborhood V of x inM and an injective holomorphic map φ : V → T
such that g∗ ◦ φ = φ ◦ g for g ∈ Ix, and dφ(x) = id, the identity map
of T = TxM . The real subspace P of T consisting of vectors tangent
to G(x) is invariant under Ix. So the orthogonal complement (with
respect to the real part of h) Q of P is also invariant under Ix. Let
S1 = {v ∈ Q : ‖v‖ < δ}, where ‖ · ‖ is the norm induced by the
Hermitian metric h, and choose δ > 0 so small that S1 ⊂⊂ φ(V ). Note
that S1 is invariant under Ix. Let S = φ−1(S1). Then Ix(S) = S.
Furthermore, for g ∈ G, g(S) ∩ S 6= ∅ iff g ∈ Ix. The tube G(S)
is diffeomorphic to the the normal bundle of G(x) in M and to the
twisted product G ×Is S. The pull-back h0 = (φ|S)∗h is a Hermitian
metric on the restriction to S of the tangent bundle TM . Now we
define a Hermitian metric h1 on U = G(S) as follows. If y ∈ U and
u, v ∈ Ty, then there is a g ∈ G such that g(y) ∈ S, and we define
h1(u, v) = h0(g∗u, g∗v). One can see that h1 is well-defined, since if
g(y), g′(y) ∈ S, then g′g−1 ∈ Ix. Now h1 is a C∞ metric on U that is
invariant under G. �

2. An estimate for ŝ0(M)

We need the following lemma (Thm. 5.2 in [Vi2])

Lemma 2.1. Let D be a bounded domain in Cn, a ∈ D. Then there
is an open U ⊂ Dn such that (a, ..., a) ∈ U and for all (z1, ..., zn) ∈ U ,

(a, z1, ..., zn) ∈ Ŵn+1(D).

Theorem 2.2. Let M be a hyperbolic manifold of complex dimension
n. Then ŝ0(M) ≤ n+ 1.
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Proof. Pick a point a ∈ M . Let f : M → M be a holomorphic map
such that f(a) = a. Consider a small Kobayashi ball b = b(a, ε) whose
closure is compact in M , and such that b is biholomorphic to a bounded
domain D in Cn; let h : b → D be such a biholomorphic map. Note
that since the Kobayashi distance is non-increasing under holomorphic
maps, we have f : b → b, and therefore g = h ◦ f ◦ h−1 : D → D. By
using the preceding lemma, one can pick n points z1, ..., zn ∈ D, such

that Z = (h(a), z1, ..., zn) ∈ Ŵn+1(D). Consider the set of n+ 1 points
h−1(Z) = (a, h−1(z1), ..., h

−1(zn)) ⊂ b. If our function f ∈ H(M,M)
(in addition to a) is also fixing all points h−1(zj), i.e. f |h−1(Z)= id,
then g |Z= id and therefore g = id. We conclude that f |b= id, and

consequently f = id. So, h−1(Z) ∈ Ŵn+1(M), and therefore ŝ0(M) ≤
n+ 1. �

3. Estimates for s0(M)

The goal of this section is to provide estimates for s0(M) for a hy-
perbolic manifold M , dim(M) = n.
Since s0(M) ≤ ŝ0(M) theorem 2.2 implies

For any hyperbolic manifold M of complex dimension n, s0(M) ≤ n+1.

Remark. In the next section we prove a refined inequality s0(M) ≤ n
for M not biholomorphic to the unit ball in Cn.

If H is (isomorphic to) a subgroup of the unitary group U(n), let k(H)
denote the least number k of vectors u1, . . . , uk such that if h ∈ H and
if h(uj) = uj for j = 1, . . . , k then h = id. For x ∈ M the isotropy
group Ix(M) is isomorphic to the group of its differentials at x, and
these differentials are unitary with respect to the locally defined Her-
mitian inner product (the existence of which was proved in Lemma 1.7)
on the tangent space Tx(M). So Ix(M) is isomorphic to a subgroup of
U(n).

Theorem 3.1. s0(M) ≤ 1 + min{k(Ix(M)) : x ∈M}.

Proof. Choose x ∈ M so that k(Ix(M)) = min{k(Ix(M)) : x ∈ M}.
Denote that number by k. Let u1, . . . , uk be vectors in TxM such that
if h ∈ Ix(M) and if dh(x)(uj) = uj for j = 1, . . . , k then dh = id (hence
h = id). For each uj, let xj be a point on the geodesic through x in
the direction uj, so close to x that the geodesic is the unique length
minimizing geodesic from x to xj. Let f be an automorphism of M
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fixing x, x1, . . . , xk. Then df(x) fixes u1, . . . , uk. It follows that df(z) =
id and f = id. Therefore, s0(M) ≤ 1 + min{k(Ix(M)) : x ∈M}. �

Let G be a subgroup of Aut(M). By s0(M,G) we denote the min-
imum number of distinct points in M such that if g ∈ G, and g fixes
all these points, then g = id. So, s0(M) = s0(M,Aut(M)).

Lemma 3.2. Let M be a hyperbolic manifold, let G be a subgroup of
Aut(M), and let q = dimG. If q ≥ 1, then s0(M,G) ≤ q. If q = 0,
then s0(M,G) ≤ 1.

Proof. First we consider the case where q ≤ 1. Let e denote the identity
element of G, and let Q = G\{e}. For each g ∈ Q, the set {x ∈ M :
g(x) = x} is an analytic set of M of dimension ≤ 2n − 2. The set
W1 := {(g, x) ∈ Q ×M : g(x) = x} is an analytic set of Q ×M of
dimension ≤ (2n − 2) + q ≤ 2n − 1 < dimM . Let W denote the set
of fixed points of nontrivial elements of G. Since W = π(W1), where
π : Q×M → M is the projection, and since dimW1 < dimM , we see
that W 6= M . Therefore, s0(M,G) ≤ 1.

Now we assume that q ≥ 2. There must be an orbit Q of G of
positive dimension. Let x ∈ Q, and let H := Gx be the subgroup of G
consisting of elements g satisfying g(x) = x. Then dimH < dimG. By
induction hypothesis, s0(M,H) ≤ dimG − 1. Therefore, s0(M,G) ≤
1 + s0(M,H) ≤ dimG. �

As a corollary we get

Theorem 3.3. If dim(Aut(M)) ≥ 1, then s0(M) ≤ dim(Aut(M)). If
dim(Aut(M)) = 0, then s0(M) ≤ 1.

4. A characterization of the ball in Cn

This section is devoted to the proof of the following statement (which
is a generalization of Theorem 1.1 in [FM]).

Theorem 4.1. Let M be a hyperbolic manifold of dimension n. s0(M) =
n+ 1 if and only if M is biholomorphic to the unit ball Bn in Cn.

The estimate s0(B
n) = n+ 1 can be easily verified (see for example

[FM]).
The rest of this section will be devoted to the proof that s0(M) =

n + 1 implies that M is biholomorphic to the unit ball. To prove this
we need the following two lemmas.

Lemma 4.2. Let M be a hyperbolic manifold and x ∈M . Suppose that
the isotropy group Ix is transitive on the (real) directions at x. Then
M is biholomorphic to the unit ball in Cn.
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Proof. Since Ix is transitive on the directions at x, the group Aut(M)
is not finite. Since the automorphism group of a compact hyperbolic
manifold must be finite (see [Ko, p. 70]), we see that M is noncompact.
By the main theorem in [GK], M is biholomorphic to Cn. �

For a subgroup H of the unitary group U(n) we use the notion k(H)
introduced at the beginning of section 3. The following Lemma was
proved in ([FM], Lemma 1.4).

Lemma 4.3. If H is a subgroup of U(n) with n ≥ 2 and if H is not
transitive on S2n−1 then k(H) ≤ n− 1.

We are now ready to prove the remaining portion of Theorem 4.1
(i.e., s0(M) = n+ 1 implies that M is biholomorphic to the unit ball).

Proof. So, let s0(M) = n+ 1. If n = 1 the statement (M is biholomor-
phic to the unit disc B1) is true. Indeed, if M is not biholomorphic to
the disc or the annulus, its automorphism group is discrete. For each
element g ∈ Aut(M), g 6= id the set of fixed points is discrete. There-
fore there is a point x ∈ M that is not a fixed point of any nontrivial
automorphism. This point will then form a determining set, and so,
s0(M) ≤ 1. For the annulus s0(M) = 1. Therefore if s0(M) = 2, M is
biholomorphic to the unit disc.

Consider now the case where n ≥ 2. Let z ∈M . Suppose that M is
not biholomorphic to Bn. Then Iz(M) is not transitive on the direc-
tions at z, by Lemma 4.2. Since Iz(M) is (isomorphic to) a subgroup
of U(n), by Lemma 4.3, k(Iz(M)) ≤ n−1. It follows (see Theorem 3.1)
that s0(M) ≤ 1 + k(Iz(M)) ≤ n if M is not biholomorphic to Bn. �

5. Determining sets Ws(M) are open and dense

Our aim in this section is to prove the following theorem.

Theorem 5.1. Let M be a hyperbolic manifold and s ≥ 1. Then
Ws(M) ⊂M s is open; if in addition Ws(M) 6= ∅, then Ws(M) is dense
in M s.

Denote W = Ws(M). First we prove that W ⊂M s is open.

Proof. SupposeW is not open. Then one can find a sequence of s-tuples
Zj = (x1, ..., x

j
s) ∈M s that converges to Z = (x1, ..., xs) ∈M s and such

that Zj is not a determining set for M , and Z is. For each j there is an
fj ∈ Aut(M), fj |Zj

= id, but fj 6= id. By Corollary 1.4 (replacing fj by
an appropriate iteration of fj if needed) we may assume that the real

part of at least one eigenvalue of f ′j(x
j
1) is non-positive. Switching again

to a subsequence, if necessary, we find a sequence of automorphisms
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whose limit (see Lemma 1.1) is g ∈ Aut(M), such that g |Z= id ,
and one of the eigenvalues of g′(x1) is non-positive. Therefore g 6= id
which contradicts the original assumption that Z is a determining set
for M . �

Remark. The above proof of the theorem for a bounded domain is
given in [Vi1, Thm 3.1]. One can also prove Theorem 5.1 by using the
idea of [FM, Lemma 2.3].

Now suppose that W 6= ∅. We need to prove that W is dense in
M s.
First we introduce some notation. If G is a subgroup of Aut(M),
Ws(M,G) denotes the set of s-tuples (x1, . . . , xs), where xj ∈M , such
that each element g ∈ M satisfying g(xj) = xj for j = 1, . . . , s has to
be the identity.
Let ρx(·, ·) denote the metric introduced in Lemma 1.7 for a point
x ∈ M . Let b(x, r) denote the ball with center x and radius r in that
metric. Let b(x, r) be the closure of b(z, r) in M .

Lemma 5.2. Suppose that G is a subgroup of Aut(M). If W1(M,G) 6=
∅ then W1(M,G) is dense in M .

Proof. In this proof, let W = W1(M,G). Suppose that W is not dense
in M . Then the closure K of W in M is not equal to M . Let p be a
boundary point of K in M . Denote ρ(·, ·) = ρp(·, ·). Choose r > 0 such
that the closure of b(p, 4r) in U is compact, where U is a neighborhood
from Lemma 1.7 (chosen for the point p), and such that each pair of
points of b(p, 4r) is connected by a unique length-minimizing geodesic
segment in that metric. There exist points z, w such that ρ(z, p) < r,
ρ(w, p) < r, w ∈ W , and z 6∈ K. Note that the orbit of w, G(w) ⊂ W .
Let Q = G(w) ∩ b(p, 4r). Then Q is compact and Q ⊂ W . Let u be
a point of Q nearest to z. Then u is also a point of G(w) nearest to
z, and R := ρ(z, u) ≤ ρ(z, w) < 2r. Choose a point y on the unique
length-minimizing geodesic segment from z to u such that y 6∈ K and
y 6= z. For each point x of G(w), we see that

ρ(z, y) + ρ(y, x) ≥ ρ(z, x) ≥ ρ(z, u),

and that the two equalities hold simultaneously only if x = u. Hence,
ρ(z, y)+ρ(y, x) > ρ(z, u) = R for each x ∈ G(w), x 6= u. It follows that
ρ(y, x) > R−ρ(z, y) = ρ(y, u) for each x ∈ G(w), x 6= u. Therefore, u is
the unique point of G(w) nearest to y. Since y 6∈ K, there is a nontriv-
ial g ∈ G such that g(y) = y. Now ρ(y, u) = ρ(g(y), g(u)) = ρ(y, g(u))
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forces g(u) = u. Since u ∈ W , the map g must be the identity, contra-
dicting the fact that g is not trivial. Therefore, W1(M,G) is dense in
M . �

Proof of Theorem 5.1. We have already proved that Ws(M) is open in
M s. Suppose now that Ws(M) 6= ∅. For g ∈ Aut(M) let Qs(g) denote
the mapping

Qs(g) : M s →M s, Qs(g)(z1, . . . , zs) = (g(z1), . . . , g(zs)).

LetG = {Qs(g) : g ∈ Aut(M)}. ThenG ⊂ Aut(M s), andW1(M
s, G) =

Ws(M). By the previous lemma, Ws(M) is dense in M s.

By using the same approach as in Theorem 5.1 in [Vi2] one can es-
tablish the following

Theorem 5.3. If M is a taut manifold then Ŵs(M) is open in M s for
all s ≥ 1.

In general Ŵs(M) does not have to be open in M s (see [FM]), nor be
dense in M s (cf. [Vi2],[FM]).

6. Results concerning the non-hyperbolic case

6.1. One dimensional manifolds.

Theorem 6.1. For a one dimensional complex manifold M , ŝ0(M) = 2
or ∞. More precisely, if M is holomorphically equivalent to the complex
plane C, the truncated complex plane C∗, or the Riemann sphere P,
then ŝ0(M) = ∞; otherwise ŝ0(M) = 2.

Proof. It is well known that either M is biholomorphic to C, C∗, P, or
a torus, or else it is a hyperbolic manifold.

Suppose S = {x1, . . . , xk} is a finite set in C. Choose y ∈ C \S. Let
f be a polynomial such that f(xj) = xj and f(y) = y + 1. Then f
is a nonidentity holomorphic self map of C fixing each point of S. So
ŝ0(C) = ∞.

We now consider P. Note that the map f in the last paragraph is
also a holomorphic self map of P fixing the point at infinity. We see
that ŝ0(P) = ∞.

Suppose S = {x1, . . . , xk} is a finite set in C∗. Choose yj so that
xj = exp yj. Let g be a polynomial such that g(xj) = yj and let
f(z) = exp g(z). Then f is a nonidentity holomorphic self map of C∗

fixing each point of S. So ŝ0(C∗) = ∞.
Consider a torus T corresponding to a lattice L in the complex plane.

Let π : C → T be the projection. It is well known that each holomor-
phic self map of T has the form f(π(z)) = π(λz + b), where b ∈ C and
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λ ∈ Λ := {x ∈ C : xL ⊂ L}. Clearly f is the identity iff λ = 1 and
b ∈ L. Let F be the field generated by L ∪ Λ. Then F is countable.
Choose r ∈ C \F . Let x = π(0), y = π(r). Suppose that f(x) = x and
f(y) = y. Then

λ · 0 + b = 0 + p, λr + b = r + q,

for some p, q ∈ L. It follows that b ∈ L and

(λ− 1)r = q − p.

Now (λ − 1) ∈ F , (q − p) ∈ F , but r 6∈ F . It follows that λ − 1 = 0
and f = id. Therefore, ŝ0(T ) = 2.

If M is a hyperbolic manifold M of dimension one, then ŝ0(M) = 2
by Theorem 2.2. �

6.2. Higher dimensional manifolds. The main statement in this
section is the following

Theorem 6.2. Let M be a Stein manifold, dim(M) ≥ 2, and such that
for any k distinct points {x1, ..., xk} ∈ M there is a holomorphic map
g : C →M , such that g(C) ⊃ {x1, ..., xk}.

Then ŝ0(M) = ∞.

To prove this we need the following two lemmas.

Lemma 6.3. Suppose M is a complex manifold, dim(M) ≥ 2. Suppose
also that for any distinct k points {x1, ..., xk} ∈M the following is true:

1. there is a holomorphic map f : M → C, such that f(xi) 6= f(xj)
if i 6= j.

2. there is a holomorphic map g : C → M , such that g(C) ⊃
{x1, ..., xk}.

Then ŝ0(M) = ∞.

Proof. For any given k points {x1, ..., xk} ∈ M , fix wj ∈ g−1(xj). Now
consider Ψ = g ◦ ϕ ◦ f : M → M , where ϕ : C → C is the Lagrange
polynomial, such that ϕ(f(xj)) = wj. Then Ψ 6= id is a holomorphic
endomorphism of M fixing the given points. �

Lemma 6.4. Let M be a complex manifold such that for any two points
p 6= q ∈ M there exists a holomorphic function h : M → C, such that
h(p) 6= h(q). Then for any finite number of distinct points {x1, ..., xk} ∈
M there exists a holomorphic function f : M → C , that separates these
points: f(xi) 6= f(xj) for i 6= j.

Proof. Induction: suppose for k ≥ 2 the statement holds. We note here
that without any loss of generality we may assume that if a function
separates k given points, its values at these points can be preassigned
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as we please. Now let the points {x1, ..., xk+1} ∈ M be given. For
m = 1, ..., k + 1 consider functions fm : M → C such that fm(xs) = s
for s 6= m. If no fm separates all k + 1 points, then for all m the value
fm(xm) must be an integer (moreover fm(xm) ∈ {1, ..., k + 1}\{m}).
Let α1, ...αk+1 be a set of linearly independent numbers over Z, the

ring of integers. Consider f =
k+1∑
m=1

αmfm. We claim that f does the

trick. Indeed for i 6= j, f(xi) − f(xj) =
∑

m6=i,j

αm(i − j) + αi(fi(xi) −

j) +αj(i− fj(xj)) 6= 0 since the number of non-zero coefficients (equal
to (i− j)) is at least k − 1 ≥ 1. �

By the definition of a Stein manifold any two points can be separated
by a holomorphic function. Therefore by the above lemma any finite
number of points in such a manifold can be separated. The proof of
Theorem 6.2 follows now from Lemma 6.3.

Remark. The property described in the above theorem leads to a nat-
ural question that seems to be open: find the necessary and sufficient
conditions for a complex manifold M to have the following geometric
property: any finite number of points can be connected by an analytic
curve on M .
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[FF] S. D. Fisher and J. Franks, The fixed points of an analytic self-mapping, Proc.

AMS, 99(1987), 76–78.
[FK1] B. L. Fridman, K. T. Kim, S. G. Krantz, & D. Ma, On fixed points and de-

termining sets for holomorphic automorphisms, Michigan Math. J. 50(2002),
507–515.

[FK2] B. L. Fridman, K. T. Kim, S. G. Krantz, & D. Ma, On Determining Sets for
Holomorphic Automorphisms, to appear in Rocky Mountain J. of Math.

[FM] B. L. Fridman, D. Ma, Properties of Fixed Point Sets and a Characterization
of the Ball in Cn , to appear in Proc. AMS.

[GK] R. E. Greene and S. G. Krantz, Characterization of complex manifolds by
the isotropy subgroups of their automorphism groups, Indiana Univ. Math.
J. 34 (1985), no. 4, 865-879.

[GKM] D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrie im
Grossen, 2nd ed., Lecture Notes in Mathematics, v. 55, Springer-Verlag, New
York, 1975.

[GR] R. C. Gunning, H. Rossi, Analytic Functions of Several Complex Variables,
Prentice-Hall, Inc., Englewood Cliffs, N.J. 1965

12



[KK] K. T. Kim, S. G. Krantz, Determining Sets and Fixed Points for Holomorphic
Endomorphisms, Contemporary Math. 328 (2003), 239-246.

[K1] W. Klingenberg, Riemannian Geometry, 2nd ed., de Gruyter Studies in Math-
ematics, Berlin, 1995.

[Ko] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Marcel
dekker, New York, 1970.
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d’un domaine borné, C. R. Acad. Sci. Paris, Ser. I 336(2003), 589–592.
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