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Abstract: This paper considers the number of discrete fixed points
that an automorphism (biholomorphic self-map) of a complex domain or
manifold can have. Our results give a geometric formulation to the prob-
lem and its solution; they generalize classical theorems in one complex
variable.

0. Introduction

It is a result of classical function theory (see [PEL], [SUI], [FIF], [MAS], [LES])
that if f : U → U is a conformal self-mapping of a plane domain which fixes three
distinct points then f(ζ) ≡ ζ. The purpose of the present paper is to put this
result into a geometrically natural context, and to extend it to higher-dimensional
domains and manifolds. For an examination of fixed point questions from a slightly
different point of view we refer the reader to the work of Vigué (see, for instance,
[VI1], [VI2]).

The third author thanks Robert Burckel for early discussions of this topic and
for basic references.

1. A Spanning Cartan-Hadamard Subsets

In this section, we let M be a connected, complete Riemannian manifold.

1.1. Cut Points and Cut Loci. Let x ∈ M . A point y ∈ M is called a cut point
of x if there are two or more length-minimizing geodesics from x to y in M . We
further use the following basic terminology and facts from Riemannian Geometry.
A geodesic γ : [a, b] → M is called a length-minimizing geodesic (or alternatively, a
minimal geodesic, or a minimal connector) from x to y if γ(a) = x, γ(b) = y and
dis (x, y) = arc length of γ. Any two points in a complete Riemannian manifold
can be connected by a minimizing geodesic by the Hopf-Rinow Theorem. If there
is a smooth family of minimizing geodesics from x to y, then these two points are
said to be conjugate. Conjugate points are cut points. The collection of cut points
of x in M is called the cut locus of x, which we denote by Cx in this paper. It is
known that Cx is nowhere dense in M ([GKM], [KLI], e.g.).

1.2. Spanning Cartan-Hadamard sets. A subset X of M is a Cartan-Hadamard
set if there exists x0 ∈ X such that X ⊂ M \ Cx0 . We will call x0 a pole of X. A
pole of a set is in no way unique. But, for convenience, we will commonly use the
notation (X, x0) for a Cartan-Hadamard subset paired with a pole.

We now fix notation. For y ∈ M \ Cx, we denote by γxy : [0, `] → M the
unit-speed length-minimizing geodesic with γxy(0) = x and γxy(`) = y.

The research of the second named author is supported in part by KOSEF Interdisciplinary
Research Program 1999-2-102-003-5 of The Republic of Korea.
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Now we say that a Cartan-Hadamard subset (X, x0) is spanning if the pole x0

has the property that the set {γ′x0y(0) | y ∈ X \ {x0}} spans (in the sense of linear
algebra) the tangent space Tx0M .

1.3. Determining Sets for Isometries. We now can discuss the existence of
finite subsets that may determine isometries. We begin with the following lemma.

Lemma 1.1. If (X, x0) is a spanning Cartan-Hadamard subset of M , and if f :
M → M is an isometry with f(x) = x for every x ∈ X, then f coincides with the
identity map.

Proof. Since isometries preserve geodesics and arc-lengths of curves, it follows that
dfx0 must fix each γ′x0y(0) for every y ∈ X \ {x0}. Due to the spanning property of
these vectors, dfx0 thus coincides with the identity map of Tx0M . As a result, f must
fix every point in a geodesic polar coordinate neighborhood of x0 or, equivalently,
every point of M \ Cx0 . Since Cx0 is nowhere dense, we see that f = idM . �

In the case that dimRM = d ≥ 2, we see that one has great freedom in choosing
a spanning Cartan-Hadamard subset consisting of d + 1 points. This can be done
in general as follows:

Let x0 ∈ M be chosen arbitrarily. Let W0 be the largest connected open subset,
containing x0, of M \ Cx0 . Then we may find a connected open subset U of Tx0M
that is star-shaped at the origin and such that the exponential map expx0

: U → W0

is a diffeomorphism. We let
W1 ≡ W0 \ {x0}

and choose x1 to be an arbitrary point of W1. Then let

W2 = W1 \
(
expx0

(Span{γ′x0x1
(0)}) ∩W0

)
and let x2 be an arbitrary point of W2. Now Wk+1 will be then chosen inductively
to be

Wk+1 ≡ W0 \
(
expx0

(Span{γ′x0x1
(0), . . . , γ′x0xk

(0)}) ∩W0

)
for k = 2, . . .. Then of course, xk+1 is chosen from Wk+1 without any further
restrictions. Since each Wk constructed in this way is nowhere dense in M as long
as k ≤ d, we may always find d + 1 points in this fashion. Moreover, it is now
clear that such a (d + 1)-point set is a spanning Cartan-Hadamard subset of M ,
and that spanning Cartan-Hadamard subsets are generic. We may summarize this
discussion in the following proposition.

Proposition 1.2. Let M be a d-dimensional connected, complete Riemannian
manifold. There exists an open dense subset W of the product manifold M×· · ·×M
of d + 1 copies of M with the following property: if f is an isometry of M with
f(xj) = xj for every j = 0, . . . , d, and if (x0, . . . , xd) ∈ W , then f = idM .

2. Biholomorphisms and Determining Subsets

If Ω ⊂ Cn is a domain (connected open set) or M is a complex manifold then
Aut(Ω) (resp. Aut(M)) denotes the group, under composition, of biholomorphic
self-maps of Ω (resp. M). We call such mappings automorphisms of Ω (resp. M).

At this point, we remark that the study of determining sets is meaningful. It
is indeed known that most domains (or manifolds) are rigid, i.e., they have au-
tomorphism group consist of just the identity mapping; this assertion means that
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the collection of rigid, smoothly bounded, strongly pseudoconvex domains is dense
in the collection of all smoothly bounded, strongly pseudoconvex domains in the
C∞ topology (see [GRK]). A complementary fact, however, is that the collection
of bounded domains with nontrivial automorphism group is dense in the collection
of all domains in the topology induced by the Hausdorff distance (see [FP, Theo-
rem 2.1]). Moreover, every compact Lie group occurs as the automorphism group
of a bounded strongly pseudoconvex domain (see [BED]).
Definition Let K be a subset of a complex manifold M . The set K is said to be
a determining subset of M if each automorphism g of M satisfying the condition
g(x) = x ∀x ∈ K is the identity map of M .

As mentioned above, a self map of a domain in C that fixes 3 points is necessarily
the identity (see, e.g., [PEL]). So any 3-point set is a determining set for plane
domains. Note that no “general position” hypothesis need be mandated on the
points of the determining set. (However, a certain general position hypothesis is
essential even in dimension one if one considers non-planar Riemann surfaces. We
will clarify this point in a later section.)

In an attempt to extend this result to higher dimensions, one can ask the fol-
lowing question. For n ≥ 2, does there exist a positive integer k such that if S is a
set of k points in “general” position in Cn and if D ⊂ Cn is a domain containing
S then each automorphism of D fixing S is necessarily the identity? The answer
to that question is negative: no such “general” position can be defined to obtain a
positive answer, as shown by the following:

Theorem 2.1. For each finite set K = {p1, . . . , pk} ⊂ Cn, n > 1, there exists
a bounded domain D containing K, and a subgroup H ⊂ Aut(D) isomorphic to
U(n − 1) (the complex unitary group of Cn−1) such that each element of H fixes
each point of K.

Proof. Let pj = (uj , vj), uj ∈ C, vj ∈ Cn−1. Without any loss of generality we
assume that the uj ’s are all distinct and |uj | < 1. Consider the polynomial trans-
formation

F : w1 = z1, w′ = z′ + f(z1),
where f : C → Cn−1 is the Lagrange interpolation polynomial map satisfying
f(uj) = vj . Then F (uj , 0) = pj , j = 1, . . . , k. Let D = F (B), where B is the
unit ball in Cn. Let Un−1 be the unitary group acting on B in the last n − 1
coordinates, and H = F ◦ Un−1 ◦ F−1. Now the assertions of the theorem can be
verified directly. �

Though no given finite set in “general position” can be a determining subset
for all bounded domains containing the set, we will establish below that for each
given bounded pseudoconvex domain in Cn “almost any” subset of n + 1 points is
a determining subset.

Let us consider the group of biholomorphic automorphisms, Aut(M), of a com-
plex manifold M .

For the next theorem we assume that

(A) M is a connected, complete Hermitian manifold such that each automor-
phism in Aut(M) is an isometry.
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We would like to point out that these restrictions are rather mild, in the sense
that we have a broad collection of examples. Every bounded pseudoconvex do-
main in Cm admits a complete Kähler-Einstein metric ([MOY]; see also [OHS]).
Then there are an ample collection of compact complex manifolds that admit com-
plete Bergman or Kähler-Einstein metrics. See [KOB], [GRW], [YAU], and further
references therein.

The discussion in Section 1 naturally yields the following theorem.

Theorem 2.2. For a complex manifold M satisfying (A) and of dimension m =
dimCM ≥ 1, there exists an open dense subset W of the (m + 1)-fold product
M × · · · × M such that any automorphism f fixing p0, · · · , pm coincides with the
identity map of M whenever (p0, . . . , pm) ∈ W .

Proof. If one follows the proof of Proposition 1.2 line-by-line using the invariant
Hermitian metric, the only difference one encounters is in the number of points and
their choices. We therefore replace the exponentiation of the real span of vectors by
the exponentiation of the complex span of vectors given by the minimal geodesics
emanating from the pole point. We now exploit the fact that automorphisms are
isometries that preserve the complex holomorphic tangent subspaces. Then all the
arguments simply go through. �

Suppose that K is a determining subset of a bounded domain D in Cn. Below we
prove a “stability” theorem: K is also a determining subset for a small perturbation
D̃ of D.

Theorem 2.3. If D is a bounded domain in Cn and K is a non-empty determining
subset of D, then each domain D̃, containing K, and for which ∂D̃ is sufficiently
close to ∂D in the Hausdorff metric, also has K as a determining subset.

Proof. Seeking a contradiction, we assume that there exists a sequence {Dj} of
domains converging to D such that for each j, Dj contains K and some gj ∈
Aut(Dj) satisfies gj 6= id and gj fixes each point of K. Choose z ∈ K and an r > 0
so that the closure Q = B(z, r) of the ball with center z and radius r is contained
in D and in all Dj . Let

Hj = {g ∈ Aut(Dj) : g fixes each point of K}.
By the assumption, Hj 6= {id}. It is clear that Hj is a compact Lie subgroup of
Aut(Dj). By Theorem 2.4 in [MA], for each j, there exists a point xj ∈ Q and an
hj ∈ Hj such that |hj(xj) − xj | ≥ r/2. Passing to a subsequence if necessary, we
can assume that xj → x, hj(xj) → y. Using a normal families argument (passing
to a subsequence again if necessary) and the fact that hj(z) = z, one can show that
the sequence hj converges in the compact-open topology to an h ∈ Aut(D). It is
clear that h(x) = y 6= x and h fixes each point of K, contradicting the hypothesis
that K is a determining subset of D. �

3. Automorphisms, Isometries, Fixed Points and Cut Loci

We now would like to address the fact that if the fixed points of isometries
actually lie in a cut locus then the number of fixed points can be arbitrarily large,
making it impossible to relate them to the complex dimension of the manifold.

If the dimension is ≥ 2, this claim was exhibited above in Theorem 2.1. The
next two examples show the validity of our claim in dimension one.
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Example 3.1. Consider the complex, one-dimensional torus T generated from the
lattice {1, i}. Let π : C → T be the standard covering map. Then z → −z on
the complex plane generates an automorphism, say τ , on T . Now τ has four fixed
points, which are

π(0), π(1/2 + i/2), π(1/2), π(i/2).
Yet τ does not fix π( 1

4 ), and so it is not the identity map.

Example 3.2. We now consider a two-holed torus. This manifold can be generated
by a regular octagon centered at the origin of the Poincaré disc together with its
reflections. Again, z → −z generates a non-trivial automorphism of this Riemann
surface. The number of fixed points is now six, coming from the center (the origin),
the vertices, and the corresponding pairs of midpoints of the sides of the octagon.

It is now clear that one can obtain arbitrarily large numbers of fixed points just
from among the compact Riemann surfaces. By standard embedding and thickening
processes, one can construct examples of this nature for bounded domains as well.

4. The Plane Domain Case

For the sake of completeness of this exposition, we now consider the follow-
ing well-known theorem that follows from work of Maskit [MAS], Peschl/Lehtinen
[PEL], Leschinger [LES], et al.

Theorem 4.1. Let Ω be a domain in C. If an automorphism of Ω fixes 3 distinct
points, then it is the identity.

Here, we would like to give a slightly more geometric rephrasing of the proof of
[PEL] in order to demonstrate our geometric methods. Planar domains are rather
special among the Riemann surfaces. Indeed, the reason why one does not have
to take the cut loci into consideration for planar domains is this topological fact:
every Jordan curve in the plane bounds a cell. Our arguments here concentrate
more upon Ω itself and on its geometry, especially emphasizing the role of our
topological fact.

First of all, the case of Ω = C or C\{0} or a topological annulus is simple. Thus,
let us assume that Ω is a plane domain that has at least three boundary components.
Then, by the uniformization theorem for instance, it admits a complete Hermitian
(automatically Kähler) metric with negative constant curvature, for which every
holomorphic mapping is an isometry.

Now let f be a holomorphic automorphism of Ω with 3 distinct fixed points, say
a, b and c. We are to show that f is the identity map.

If b is not a cut point of a, then there is one and only one length-minimizing
geodesic joining a and b. In such a case, every point on this geodesic must be fixed
by f . Then, by the uniqueness theorem for analytic functions, f is in fact the
identity map.

Hence we may assume now that there are at least two length-minimizing geodesics
joining any pair of fixed points. At this juncture, we might note that the negativity
of the curvature eliminates the possibility of conjugate points, due to the second
variation formula of arc length.

We now suppose that f ∈ Aut (Ω) is not an identity map, but has 3 distinct
fixed points in Ω. To reach a contradiction, let us start with the fixed point a. If
the set of fixed points accumulates at a, we are done. So we may replace the second
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fixed point b by the closest (with respect to the Hermitian metric) one to a apart
from a itself. This choice may not be unique, and hence we simply choose one.

As mentioned above, we need to consider only the case when b is a cut point
(not conjugate) of a. Then there will be several unit-speed minimal connectors (all
of which have the same length, of course), say γ1, γ2, . . ., joining a to b. First notice
that no minimal connector can have a self-intersection. Then the automorphism f
maps any one of the minimal connectors to another such, as the endpoints a and
b are fixed. Note that f ◦ γ1 cannot intersect γ1 except at the endpoints. For, if
they do intersect at a point other than the endpoints, then they have to intersect at
the same time; otherwise one may find an even shorter connector between a and b
than the minimal connector, which is a contradiction. Then the intersection point
becomes a fixed point of f closer to a than b, which is again not allowed.

Now, γ1 and f ◦ γ1 join to form a piecewise smooth Jordan curve in the plane.
Thus it bounds a cell, say E, in the plane C. Now consider the 3rd fixed point c
which is distinct from a and b. Notice that we may assume that c is not on any of
the minimal connectors for a and b. Suppose that c is inside the cell E. Now join
c to a by an arc ξ in E ∩ Ω which does not intersect with either γ1 or f ◦ γ1, or in
fact with any minimal geodesics joining a and b. Notice that the conformality of f
at the fixed point a shows that there is a sufficiently small open ball neighborhood
U of a on which f must map U ∩ ξ to the outside of the cell E. This results in
the conclusion that f ◦ ξ must cross γ1 or f ◦ γ1. But this is impossible, since a
point not on any minimal connector from a to b cannot be mapped to a point on a
minimal connector from a to b.

If c is outside the cell E then the arguments are similar. Since there are only
finitely many minimal connectors between a and b (since a and b are not conjugate
to each other, and the quotient from the universal covering space is formed by a
properly discontinuous group action), some iterate fm of f will move ξ so that
its image has points inside E. Then, fm ◦ ξ again crosses one of these minimal
geodesics joining a and b, which leads us to another contradiction.

5. Some Examples

We now present some elementary examples that will put our results into per-
spective.

Example 5.1. Let A = {z ∈ C : 1/2 < |z| < 2}. This is an annulus in the plane.
The map τ(z) = 1/z has two fixed points (i.e., 1 and −1), yet τ is not the identity
mapping.

Example 5.2. Let U = C2. Consider a shear of the form τ(z, w) = (z, w + φ(z)),
where φ is any entire function on the plane. Then τ is a biholomorphic map of C2.
If φ has infinitely many distinct zeros then τ will have infinitely many fixed points,
even though τ is not the identity.

By contrast, any biholomorphic (conformal) map of C that fixes two points must
be the identity.

Example 5.3. It can be shown from first principles that a biholomorphic map of
the unit ball in Cn that fixes n + 1 points in general position (in the usual sense
of topology) must in fact be the identity. We leave the details to the interested
reader.
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Example 5.4. Consider the domain Um ≡ {(z1, z2) ∈ C2 : |z1|2m + |z2|2m < 1},
any integer m ≥ 2. Then any automorphism of Um that fixes two points in general
position must be the identity. This result follows because the automorphism group
of Um is well-known to consist only of rotations in each variable separately.

Contrast this example with the result from the last example (for the unit ball in
C2).

Example 5.5. Let Um be one of the domains from the last example. Let V be any
rigid domain in Cn (here rigid means that the domain has no automorphisms except
the identity). Then, for an adroitly chosen pair of points z ∈ Um, w ∈ Um, and an
arbitrary x ∈ V , any automorphism of Um × V which fixes both (z, x) and (w, x)
will be the identity. For instance, the points z = ((1/2, 0), x) and w = ((0, 1/2), x)
will do.
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