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ABSTRACT. A nonlinear generalization of convergence sets of formal power
series, in the sense of Abhyankar-Moh[AM], is introduced. Given a family
y = ps(t,x) = sbi(x)t + ba(z)t? + ... of analytic curves in C x C" passing
through the origin, Conv,(f) of a formal power series f(y,t,x) € C[[y, t, z]] is
defined to be the set of all s € C for which the power series f(¢,4(t,2),t,x)
converges as a series in (¢, ). We prove that for a subset E C C there exists a
divergent formal power series f(y,t,x) € Cl[[y,t,z]] such that E = Convy(f)
if and only if FE is a F, set of zero capacity. This generalizes the results of P.
Lelong and A. Sathaye for the linear case ¢, (¢, z) = st.

We say that formal power series f(z) = ZT;)I:O aq 2% is convergent if there exists

a constant C such that |a,| < Cl°l, for all o € Z77. (Here we have used multiindex
notation: Z" denote the set of all n-tuples a := (a1, a, ..., v, ) of integers a; > 0, if
2= (21,22, ..., 2n) and a € Z7 , then 2% = 27" 25720, and |a] := ag +az + ...+,
denotes the length of a € Z'}.) A series f is called divergent if it is not convergent.
A divergent power series may still converge when restricted to a certain set of lines
or planes through the origin. For example, Abhyankar and Moh [AM] considered
the convergence set Conv(f) of a series f defined to be the set of all s € C for
which f(sz2, 29, ..., 2,) converges as a series in (za, 23, ..., 2, ). The convergence set
of divergent series can be empty or an arbitrary countable set (see examples below).
The Abhyankar-Moh paper proved that the one dimensional Hausdorff measure of
the convergence set of a divergent series is zero. In the case when n = 2, Pierre
Lelong had earlier proved that if Conv(f) is not contained in a F, set of zero
capacity then the series f is necessarily convergent, and conversely, given any set F
contained in a F,; set of zero capacity a divergent power series f can be constructed
so that £ C Conv(f). This result has been rediscovered, independently, by several
authors (see e.g. [LM], [Ne], [Sa], and see also [FM], [FM1], [Nel],[Ri], for other
related results). The optimal result was obtained by Sathaye [Sa] who strengthened
the results of Abhyankar-Moh and Lelong by proving that a necessary and sufficient
condition for a set S C C to be equal to the convergence set of a divergent power
series f(z) is that S is an Fi-set of transfinite diameter zero i.e. S = U32, E; where
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each F; is closed set of transfinite diameter zero. These results can be viewed as an
optimal and formal analogs of Hartogs’ Theorem on separate analyticity in several
complex variables.

Motivated by formal fibered diffemorphisms associated with dynamical systems,
Ribon [RI] studied holomorphic extensions of formal objects, including formal power
series, formal meromorphic functions, and formal infinitesimal diffeomorphisms.

Instigated by the above mentioned results, we are interested in the following
general problem: find “tight” conditions on a family F of formal submanifolds in
C™ so that if the restriction of a formal series to each formal submanifold in F
converges, then the formal power series converges. By “tight” we mean, vaguely
speaking, that one does not assume too much. In case n = 2, Lelong, Abhyankar-
Moh, and Sathaye’s results can be interpreted as: for the family of lines {¢; : s € E},
where ¢, = {(sz,z) : * € C}, the tight condition is that E have positive capacity.
The result of Fridman and Ma [FM] is that the tight condition on the family
{7, : s € E}, where v, = {(s7x,s"h(z))} (h(z) is a fixed convergent series), the
tight condition is again F having positive capacity. It is natural to ask, for the
family {v, : s € E'}, where v, = {(¢(s, ), 9¥(s,x))}, whether the tight condition is
that F have positive capacity. This paper deals with one of the first questions one
has to address in order to understand the general problem.

In this article, we consider ‘nonlinear’ convergence sets of formal power se-
ries f(y,t,x) € Clly,t,z]] by restricting f(y,t,z) along a one-parameter family of
‘tangential’ perturbations of a fixed analytic curve y = ¢(t, z) through the origin.

For simplicity of the notation we only consider a single variable x. If x is
replaced by a tuple (x1,...,2,), the theorem is still valid, and the proof goes
through without difficulty.

Throughout this paper, (t,2) := >272, bj(x)t! will denote a fixed convergent
power series where b;(z) := > .2 bjiz’,j = 1,2,3, ..., are convergent power series
in z with complex coefficients. We assume that b19 = 1.

For s € C, we put ¢, (t,x) = ¢(s,t,x) = sbi(2)t + 3272, bj(z)t!. Define the
p-convergence set of a series f(y,t,x) € C[[y,t,z]], as follows.

Convy,(f) :=={s € C: f(p(s,t,z),t,z) converges as a series in (¢, z)}.

Let K be a compact subset of C. For a probability measure p on the compact
set K, the logarithmic potential of p is

1
pu(2) = A}gnoo min(N, log m) du(¢),

and the (logarithmic) capacity (see [Ah], Chapter 2) of K is defined by
¢(K) =exp(— min su z)).
(K) = exp(= min supp,(z)

If F=UX,K,, where K,, are compact sets of zero capacity, then ¢(E) = 0. A
subset E of C is of zero capacity if and only if it is polar i.e. E C {2z : u(z) = —o0}
for some nonconstant subharmonic function u : C — [—00,00). An F, set E in C
is said to have zero capacity if E is the union of a countable collection of compact
sets of zero capacity.

THEOREM. Let o(t,z) be as above, and let E be a subset of C. There exists a
divergent formal power series f(y,t,x) € Clly, t, z]] such that E = Conv,(f) if and
only if E is an F, set of zero capacity.
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PROOF. Suppose that E is an F, set with ¢(FE) > 0. By replacing E with a
compact subset K C FE of positive capacity we can assume that E is compact. Let
flystix) =300 aijry't'z® € C[[y,t,z]] be such that g(s;t,x) := f(o(s,t,2),t, )
converges for each s € E. We need to show that f is convergent. Rewrite f as
flytw) =32 aij(z)y't?, where a;j(z) := Y oo aijra® € C[[z]], and

g(s;t,x) := Z Mgk (8)t9z" = Z dpg(x)sPtd.
¢>0,k>0 p>0,q>0
It is clear that Agx(s) is a polynomial of degree at most ¢, and thus
dpq(z) =0, forp>gq.

Let dpg(2) == 350 dpgr™, and write Agr(s) == Y1 dpgrs?-
We have -

’ i!

dpqg(z) = Z aij(z)

. ! . . . P
where the summation Y is taken over all nonnegative integers i, j,ma, ms,...
satisfying

by (2)Pba(x)2bg(x)™3 - -,

plmo!mg! .- -

j+p+2me+3Ims+---=qgandp+me+mg+ - =i
Since
dgq() = ago(z)bi(z)?,
(1) dg-1,4(z) = ag-11(2)bi(2)?,
dg-2,4(2) = ag_22(2)b1(2)77 + ag-1,0(2)(q — 1)bi ()7 ?ba(2),
dg—trq(x) = ag—kr(2)b1(2)?" + terms involving a;;(z) with i +j < g,

it follows that a;j(x) can be solved uniquely in terms of d,q(x). In particular, if
dpg(x) = 0 for all p, ¢ then all a;;(x) =0 for all ¢, 5.

For each s € E, there is a constant Cy such that [A\,x(s)| < C9T* for all g+k > 1,
since the power series ) ok Mgk (s)t92"% converges. For each positive integer n, set

E,={s€ E:|A\x(s)| <n™ Vg+k>1}.
The sets £, are closed and E = U2, E,,. There is a positive integer N such that
E':= UN_| E,, has positive capacity. It follows that [\, (s)| < N9tk for ¢+ k > 1
and for s € E'. By the Bernstein-Walsh inequality (see [FM], Lemma 1.4), there
is a constant Cr > 1 such that |dye,| < CL, NITF < (Cp N)ITF.
For some 7 > 0, g(s;t,x) represents a holomorphic function in A, x A, x A,
where A, = {z € C: |z| < 7}. Shrinking 7, if necessary, we may assume that

min{|b;(z)| : z € C, |z| <7} >1/2
and
(2) D bgrl T <00, D |dpgrltPTE29(r 4+ by |rH T < o0
q,k »,q,k

The map ¢ : C"*2 — C"*+2 defined by 9(s,t,x) := (¢(s,t,2),t,2) is holomorphic
near the origin and is injective on @ = {(s,t,z) € Ay x A x A, : t # 0}. Tt follows
that there is a holomorphic function G(u, v, w) defined on (@) such that g = Gov
on Q.
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We now prove that G extends holomorphically to a neighborhood of the origin.
Choose a §, 0 < § < 7/2, sufficiently small so that the set
= {(u,v,w) € C*: |u| <6 |v]| =6, |w| <6}
is contained in 9(Q). The function G extends holomorphically to a neighborhood
of the origin, if for |ug| < 82, |wo| < 0,
1
Ik(uo,wo) =
2my/—1 |v|=6

For fixed wqy and ug, write

up — (p(t, wo) — thi (wo))\* &~ j

Jj=—p

v*G (ug, v, wp) dv = 0,Yk =0,1,2,....

By making use of (2), and substituting the above series expansion into the integrand
in Iy (up,wp), we obtain

ug — (p(t, wo) — thy (wp))

1
I - - k
% (Uo, wo) /1 |t\:6t g< tbl(wo)
= Z dpq(wo)cp;(uo, wo),

where the sum is over all p, g, j with ¢+j = —k—1and 57 > —p. Since g+j = —k—1
and j > —pimply g = —j —k —1 < —j < p, and since d,q, = 0 for ¢ < p, we see
that Ij(ug,wo) =0 for K =0,1,2,... and for all (ug,wp) with |ug| < 52, |wo| < 4.
Therefore, G extends holomorphically to a neighborhood of the origin.

Now g = Gotpon A x A, xA,. Hence g = Go as a formal power series. Since
g = foy, we see that forp := 3" dp,(z)sPt? = 0, where f := >ii ai;(z)y't! = f—G.
It follows that all d,,(z), and hence a;;(x) are all 0. This proves f is convergent as

f: 0and f=G.

Conversely, suppose F is an F, set with ¢(F) = 0. We construct a divergent
power series f(y,t,x) such that Conv,(f) = E.

By Theorem 6.1 of [Ri] , there exists an increasing sequence {q;} of posi-
tive integers and a sequence of polynomials {P;(s)} with deg(P;) < ¢, for all
j =1,2,3,..., such that the series ¥ (t) = Zj Pj(s)t% converges for each s € E,
and diverges for each s ¢ E. Set g(s;t,x) 1= ,(t) = > dpg(x)sPt?. We
solve (1) for a;;(x) in terms of dp,(z), and set f(y,t,x) = > a;j(x)y't’. Then,
f(p(s, t,z),t,z) = g(s;t,z). Therefore f(y,t,z) diverges and Conv,(f) =E. O

) t, ’wo) dt

COROLLARY 1. For any f(y,t,z) € Clly,t,z]], either ¢(Convy,(f)) = 0 or
Conv,(f) =C.

We point out that basic properties of convergence sets follow directly from the
corresponding properties of polar sets. In particular, a finite or a countable set is
a convergence set.

REMARK 1. The closure of a p-convergence set is not necessarily a ¢-convergence
set. For example, the countable set Q is a ¢-convergence set of divergent series but
its closure R being nonpolar can not be a (p-convergence set of a divergent series.

REMARK 2. The situation is quite different, as one would expect, when re-
strictions of functions are considered. For example, for any positive integer k, it is
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elementary to construct a function f : R® — R that is exactly k-times differentiable
but whose restriction to every line in R™ is real-analytic. The function

vy | @R e (=) i (5,y) # (0,0)
Fey) 0 if (2.y) = (0,0)

is in C*° (R?) and for all m # 0 the single-variable function f(mt,t) is real-
analytic. However, f is not a real-analytic function as it fails to be real-analytic
along the y-axis. Is there a C*° function f : R™ — R which is not real-analytic but
whose restriction to every line is real-analytic? The answer is negative as it was
shown by J. Bochnak [Bo] and J. Siciak [Si] that if a C'*° function f:R"™ — R is
real-analytic on every line segment through a point x, then f is real-analytic in a
neighborhood of xy. Bierstone, Milman and Parusifiski [BMP] provided an example
of a discontinuous function whose restriction to every analytic arc is analytic. (See
[Ne] and [Nel] for C*-analogs of the Bochnak-Siciak theorem.)

The authors are grateful to the referee for his helpful suggestions.
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