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Abstract. A nonlinear generalization of convergence sets of formal power
series, in the sense of Abhyankar-Moh[AM], is introduced. Given a family
y = 's(t; x) = sb1(x)t + b2(x)t2 + ::: of analytic curves in C� Cn passing
through the origin, Conv'(f) of a formal power series f(y; t; x) 2 C[[y; t; x]] is
de�ned to be the set of all s 2 C for which the power series f('s(t; x); t; x)
converges as a series in (t; x): We prove that for a subset E � C there exists a
divergent formal power series f(y; t; x) 2 C[[y; t; x]] such that E = Conv'(f)

if and only if E is a F� set of zero capacity. This generalizes the results of P.
Lelong and A. Sathaye for the linear case 's(t; x) = st:

We say that formal power series f(z) =
P1

j�j=0 a�z
� is convergent if there exists

a constant C such that ja�j � C j�j; for all � 2 Zn+. (Here we have used multiindex
notation: Zn+ denote the set of all n-tuples � := (�1; �2; :::; �n) of integers �i � 0; if
z = (z1; z2; :::; zn) and � 2 Zn+; then z� = z�11 z�22 :::z�nn ; and j�j := �1+�2+ :::+�n
denotes the length of � 2 Zn+:) A series f is called divergent if it is not convergent.
A divergent power series may still converge when restricted to a certain set of lines
or planes through the origin. For example, Abhyankar and Moh [AM] considered
the convergence set Conv(f) of a series f de�ned to be the set of all s 2 C for
which f(sz2; z2; :::; zn) converges as a series in (z2; z3; :::; zn): The convergence set
of divergent series can be empty or an arbitrary countable set (see examples below).
The Abhyankar-Moh paper proved that the one dimensional Hausdor¤ measure of
the convergence set of a divergent series is zero. In the case when n = 2; Pierre
Lelong had earlier proved that if Conv(f) is not contained in a F� set of zero
capacity then the series f is necessarily convergent, and conversely, given any set E
contained in a F� set of zero capacity a divergent power series f can be constructed
so that E � Conv(f): This result has been rediscovered, independently, by several
authors (see e.g. [LM], [Ne], [Sa], and see also [FM], [FM1], [Ne1],[Ri], for other
related results). The optimal result was obtained by Sathaye [Sa] who strengthened
the results of Abhyankar-Moh and Lelong by proving that a necessary and su¢ cient
condition for a set S � C to be equal to the convergence set of a divergent power
series f(z) is that S is an F�-set of trans�nite diameter zero i.e. S = [1j=1Ej where
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each Ej is closed set of trans�nite diameter zero. These results can be viewed as an
optimal and formal analogs of Hartogs�Theorem on separate analyticity in several
complex variables.

Motivated by formal �bered di¤emorphisms associated with dynamical systems,
Ribon [RI] studied holomorphic extensions of formal objects, including formal power
series, formal meromorphic functions, and formal in�nitesimal di¤eomorphisms.

Instigated by the above mentioned results, we are interested in the following
general problem: �nd �tight�conditions on a family F of formal submanifolds in
Cn so that if the restriction of a formal series to each formal submanifold in F
converges, then the formal power series converges. By �tight�we mean, vaguely
speaking, that one does not assume too much. In case n = 2, Lelong, Abhyankar-
Moh, and Sathaye�s results can be interpreted as: for the family of lines f`s : s 2 Eg,
where `s = f(sx; x) : x 2 Cg, the tight condition is that E have positive capacity.
The result of Fridman and Ma [FM] is that the tight condition on the family
f
s : s 2 Eg, where 
s = f(s�x; s�h(x))g (h(x) is a �xed convergent series), the
tight condition is again E having positive capacity. It is natural to ask, for the
family f
s : s 2 Eg, where 
s = f('(s; x);  (s; x))g, whether the tight condition is
that E have positive capacity. This paper deals with one of the �rst questions one
has to address in order to understand the general problem.

In this article, we consider �nonlinear� convergence sets of formal power se-
ries f(y; t; x) 2 C[[y; t; x]] by restricting f(y; t; x) along a one-parameter family of
�tangential�perturbations of a �xed analytic curve y = '(t; x) through the origin.

For simplicity of the notation we only consider a single variable x. If x is
replaced by a tuple (x1; : : : ; xn), the theorem is still valid, and the proof goes
through without di¢ culty.

Throughout this paper, '(t; x) :=
P1

j=1 bj(x)t
j will denote a �xed convergent

power series where bj(x) :=
P1

i=0 bjix
i; j = 1; 2; 3; :::; are convergent power series

in x with complex coe¢ cients. We assume that b10 = 1.
For s 2 C; we put 's(t; x) = '(s; t; x) = sb1(x)t +

P1
j=2 bj(x)t

j . De�ne the
'-convergence set of a series f(y; t; x) 2 C[[y; t; x]]; as follows.

Conv'(f) := fs 2 C : f('(s; t; x); t; x) converges as a series in (t; x)g:
Let K be a compact subset of C. For a probability measure � on the compact

set K, the logarithmic potential of � is

p�(z) = lim
N!1

Z
min(N; log

1

jz � �j ) d�(�);

and the (logarithmic) capacity (see [Ah], Chapter 2) of K is de�ned by

c(K) = exp(� min
�(K)=1

sup
z2C

p�(z)):

If E = [1n=1Kn, where Kn are compact sets of zero capacity, then c(E) = 0: A
subset E of C is of zero capacity if and only if it is polar i.e. E � fz : u(z) = �1g
for some nonconstant subharmonic function u : C ! [�1;1). An F� set E in C
is said to have zero capacity if E is the union of a countable collection of compact
sets of zero capacity.

Theorem. Let '(t; x) be as above, and let E be a subset of C. There exists a
divergent formal power series f(y; t; x) 2 C[[y; t; x]] such that E = Conv'(f) if and
only if E is an F� set of zero capacity.
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Proof. Suppose that E is an F� set with c(E) > 0. By replacing E with a
compact subset K � E of positive capacity we can assume that E is compact. Let
f(y; t; x) :=

P
i;j;k aijky

itjxk 2 C[[y; t; x]] be such that g(s; t; x) := f('(s; t; x); t; x)
converges for each s 2 E. We need to show that f is convergent. Rewrite f as
f(y; t; x) =

P
i;j aij(x)y

itj ; where aij(x) :=
P1

k=0 aijkx
k 2 C[[x]]; and

g(s; t; x) :=
X

q�0;k�0
�qk(s)t

qxk :=
X

p�0;q�0
dpq(x)s

ptq:

It is clear that �qk(s) is a polynomial of degree at most q, and thus

dpq(x) = 0; for p > q:

Let dpq(x) :=
P

k�0 dpqkx
k, and write �qk(s) :=

Pq
p=0 dpqks

p.
We have

dpq(x) =
X0

aij(x)
i!

p!m2!m3! � � �
b1(x)

pb2(x)
m2b3(x)

m3 � � � ;

where the summation
P0 is taken over all nonnegative integers i; j;m2;m3; : : :

satisfying

j + p+ 2m2 + 3m3 + � � � = q and p+m2 +m3 + � � � = i:

Since

(1)

dqq(x) = aq;0(x)b1(x)
q;

dq�1;q(x) = aq�1;1(x)b1(x)
q�1;

dq�2;q(x) = aq�2;2(x)b1(x)
q�2 + aq�1;0(x)(q � 1)b1(x)q�2b2(x);

dq�k;q(x) = aq�k;k(x)b1(x)
q�k + terms involving aij(x) with i+ j < q,

it follows that aij(x) can be solved uniquely in terms of dpq(x). In particular, if
dpq(x) = 0 for all p; q then all aij(x) = 0 for all i; j.

For each s 2 E, there is a constant Cs such that j�qk(s)j � Cq+ks for all q+k � 1,
since the power series

P
q;k �qk(s)t

qxk converges. For each positive integer n, set

En = fs 2 E : j�qk(s)j � nq+k 8q + k � 1g:

The sets En are closed and E = [1n=1En. There is a positive integer N such that
E0 := [Nn=1En has positive capacity. It follows that j�qk(s)j � Nq+k for q + k � 1
and for s 2 E0. By the Bernstein-Walsh inequality (see [FM], Lemma 1.4), there
is a constant CE0 � 1 such that jdpqkj � CqE0Nq+k � (CE0N)q+k.

For some � > 0, g(s; t; x) represents a holomorphic function in �� ��� ��� ,
where �� = fz 2 C : jzj < �g. Shrinking � ; if necessary, we may assume that

minfjb1(x)j : x 2 C; jxj � �g � 1=2

and

(2)
X
q;k

jbqkj� q+k <1;
X
p;q;k

jdpqkj�p+k2q(� +
X

jbij j� i+j�1)q <1:

The map  : Cn+2 ! Cn+2 de�ned by  (s; t; x) := ('(s; t; x); t; x) is holomorphic
near the origin and is injective on Q = f(s; t; x) 2 �� ��� ��� : t 6= 0g. It follows
that there is a holomorphic function G(u; v; w) de�ned on  (Q) such that g = G� 
on Q.
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We now prove that G extends holomorphically to a neighborhood of the origin.
Choose a �; 0 < � < �=2, su¢ ciently small so that the set

� := f(u; v; w) 2 C3 : juj � �2; jvj = �; jwj � �g
is contained in  (Q): The function G extends holomorphically to a neighborhood
of the origin, if for ju0j < �2, jw0j < �,

Ik(u0; w0) :=
1

2�
p
�1

Z
jvj=�

vkG(u0; v; w0) dv = 0;8k = 0; 1; 2; : : : :

For �xed w0 and u0, write�
u0 � ('(t; w0)� tb1(w0))

tb1(w0)

�p
:=

1X
j=�p

cpj(u0; w0)t
j :

By making use of (2), and substituting the above series expansion into the integrand
in Ik(u0; w0), we obtain

Ik(u0; w0) =
1

2�
p
�1

Z
jtj=�

tkg

�
u0 � ('(t; w0)� tb1(w0))

tb1(w0)
; t; w0

�
dt

=
X

dpq(w0)cpj(u0; w0);

where the sum is over all p; q; j with q+j = �k�1 and j � �p. Since q+j = �k�1
and j � �p imply q = �j � k � 1 < �j � p, and since dpq = 0 for q < p, we see
that Ik(u0; w0) = 0 for k = 0; 1; 2; : : : and for all (u0; w0) with ju0j < �2, jw0j < �.
Therefore, G extends holomorphically to a neighborhood of the origin.

Now g = G� on�������� . Hence g = G� as a formal power series. Since
g = f� , we see that f̂� :=

P
d̂pq(x)s

ptq = 0, where f̂ :=
P

i;j âij(x)y
itj = f�G.

It follows that all d̂pq(x), and hence âij(x) are all 0. This proves f is convergent as
f̂ = 0 and f � G.

Conversely, suppose E is an F� set with c(E) = 0. We construct a divergent
power series f(y; t; x) such that Conv'(f) = E.

By Theorem 6.1 of [Ri] , there exists an increasing sequence fqjg of posi-
tive integers and a sequence of polynomials fPj(s)g with deg(Pj) � qj , for all
j = 1; 2; 3; :::; such that the series  s(t) =

P
j Pj(s)t

qj converges for each s 2 E,
and diverges for each s 62 E. Set g(s; t; x) :=  s(t) :=

P
p;q dpq(x)s

ptq. We
solve (1) for aij(x) in terms of dpq(x), and set f(y; t; x) =

P
aij(x)y

itj . Then,
f('(s; t; x); t; x) = g(s; t; x). Therefore f(y; t; x) diverges and Conv'(f) = E. �

Corollary 1. For any f(y; t; x) 2 C[[y; t; x]]; either c(Conv'(f)) = 0 or
Conv'(f) = C.

We point out that basic properties of convergence sets follow directly from the
corresponding properties of polar sets. In particular, a �nite or a countable set is
a convergence set.

Remark 1. The closure of a '-convergence set is not necessarily a '-convergence
set. For example, the countable set Q is a '-convergence set of divergent series but
its closure R being nonpolar can not be a '-convergence set of a divergent series.

Remark 2. The situation is quite di¤erent, as one would expect, when re-
strictions of functions are considered. For example, for any positive integer k; it is
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elementary to construct a function f : Rn ! R that is exactly k-times di¤erentiable
but whose restriction to every line in Rn is real-analytic. The function

f(x; y) :=

(
(x2 + y2) exp

�
� y2

x2+y4

�
if (x; y) 6= (0; 0)

0 if (x; y) = (0; 0)

is in C1
�
R2
�
and for all m 6= 0 the single-variable function f(mt; t) is real-

analytic. However, f is not a real-analytic function as it fails to be real-analytic
along the y-axis. Is there a C1 function f : Rn ! R which is not real-analytic but
whose restriction to every line is real-analytic? The answer is negative as it was
shown by J. Bochnak [Bo] and J. Siciak [Si] that if a C1 function f : Rn ! R is
real-analytic on every line segment through a point x0; then f is real-analytic in a
neighborhood of x0. Bierstone, Milman and Parusiński [BMP] provided an example
of a discontinuous function whose restriction to every analytic arc is analytic. (See
[Ne] and [Ne1] for C1-analogs of the Bochnak-Siciak theorem.)

The authors are grateful to the referee for his helpful suggestions.
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