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Abstract. For a domain D ⊂ Cn we construct a continuous fo-
liation of D into one real dimensional curves such that any func-
tion f ∈ C1(D) which can be extended holomorphically into some
neighborhood of each curve in the foliation will be holomorphic on
D.

This paper complements the study of the following general question.
Let f be a function on a domain D in complex n-dimensional space,
and its restrictions on each element of a given family of subsets of D is
holomorphic. When can one claim that f has to be holomorphic in D?

This is a natural question arising from the fundamental Hartogs the-
orem stating that a function f in Cn, n > 1, is holomorphic if it is
holomorphic in each variable separately, that is, f is holomorphic in
Cn if it is holomorphic on every complex line parallel to an axis. The
complex lines parallel to an axis form a continuous foliation of Cn into
two real dimensional planes. So if a function is holomorphic along each
component of these n foliations, then it is holomorphic on Cn. We are
interested in finding a one family of one real dimensional curves form-
ing a foliation such that a similar theorem will hold. There is a body
of interesting work on testing the holomorphy property on curves: see
[AG, E, G1-G4, T1, T2] and references in those articles. Some of these
results assume a holomorphic extension into the inside of each closed
curve in a given family, others a “Morera-type” property.

Below we use the following definition. Let S ⊂ Cn. We say that
f : S → C is holomorphic if f is a restriction on S of a function
holomorphic in some open neighborhood of S. We prove the following

Theorem 1.1. Let D ⊂ Cn be a domain. Then there exists a continu-
ous foliation E of D into one (real) dimensional curves, such that any
C1 function on D which is holomorphic on each of the curves of E, is
holomorphic on D.
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The needed foliation will be constructed as a homeomorphic image
of the natural continuous foliation of D by segments parallel to the
axis Rez1.

First we need the following notion (see [FM]). Let S ⊂ C, p ∈ S.
A point t in T := {z ∈ C : |z| = 1} is said to be a limit direction of
S at p if there exists a sequence (qj) in S such that limj qj = p and
limj τ(p, qj) = t, where τ(p, qj) := (qj − p)/|qj − p|.

Lemma 1.2. Let U ⊂ C be an open set, p ∈ U ∩ S and there are at
least two limit directions t1, t2 of S at p. Suppose a function f ∈ C1(U)
is holomorphic on S ∩ U . If t1 6= ±t2 then ∂f

∂z
= 0 at p.

Proof. The derivatives of f along linearly independent directions t1 and
t2 coincide with derivatives of a holomorphic function in the neigh-
borhood of p. The statement now follows from the Cauchy-Riemann
equations. �

Example 1.3. Consider a set γ ⊂ C, which is an angle (γ = ∠) in a
neighborhood of a point p ∈ γ formed by two linear segments. If this
angle θ satisfies 0 < θ < π, then at the tip of the angle p ∈ γ, γ has
two linearly independent directions.

In general if in a neighborhood of a point p ∈ γ the curve γ ⊂ Rm lies
in a two real dimensional plane M and forms an angle 0 < θ < π there,
we will say that γ has an angular point at p.

For the construction of the continuous foliation in the Theorem1.1
we also need the following general statement.

Lemma 1.4. Let M be a two-dimensional plane in Rm with m ≥ 2,
let p be a point in M , let U be a neighborhood of p in Rm, and let γ be
a C∞ curve passing through p and relatively closed in U . Then there
is a homeomorphism Φ : Rm → Rm such that (a) the function Φ is a
(C∞) diffeomorphism on Rm−{p}, (b) the restriction of Φ to Rm−U
is the identity map, (c) a neighborhood of Φ(p) in Φ(γ) lies in M , and
(d) the curve Φ(γ) has an angular point at Φ(p).

Proof. Let e1, e2, . . . , en be the standard basis of Rm, i.e., e1 = (1, 0, . . . , 0),
e2 = (0, 1, 0, . . . , 0), etc. Choose a vector v parallel to M such that v
and the tangent vector of γ at p are linearly independent. Without loss
of generality, we assume that p = 0, v = e2, and M is spanned by e1
and e2. Let S = Re2 = {te2 ∈ Rm : t ∈ R}. For r > 0 let Br denote the
open ball in Rm of center 0 and radius r. There is a neighborhood V
of 0, a δ > 0, and a diffeomorphism G : V → B3δ such that V ⊂⊂ U ,
G(γ ∩ V ) = Re1 ∩B3δ, and G(S ∩ V ) = Re2 ∩B3δ.
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Let ω : R → R be a C∞ function such that 0 ≤ ω(t) ≤ 1 for all t,
ω(t) = 0 for |t| ≥ 2, and ω(t) = 1 for |t| ≤ 1. Define a vector field
X on Rm by X(y) = ω(|y|/δ)(y1 + y2)(e2 − e1), where y =

∑n
j=1 yjej.

Let θ : R × Rm → Rm be the associated action. Define λ : Rm → Rm

by λ(y) = θ(1, y). Then λ is a diffeomorphism, and the restriction of
λ to Rm − B2δ is the identity map, since X = 0 there. We claim that
for −δ < s < δ, λ(se1) = se2. Indeed, it is straightforward to verify
that the curve τ(t) = s(1− t)e1 + ste2 satisfies τ(0) = se1, τ(1) = se2,
and τ ′(t) = X(τ(t)) for 0 ≤ t ≤ 1, and hence τ |[0,1] is a segment of an
integral curve of X.

Define a diffeomorphism g : Rm → Rm by

g(x) =

{
G−1 ◦ λ ◦G(x), if x ∈ G−1(B2δ),
x, if x 6∈ G−1(B2δ).

Then g(0) = 0, and V1 ∩ g(γ) ⊂ S ⊂M , where V1 := G−1(Bδ).
Choose a K > 0 so that the function ψ(t) := Kω(2t)(1−|t|) satisfies

the Lipschitz condition |ψ(t1)−ψ(t2)| ≤ |t1− t2|/2. It is clear that for
each η > 0 the function ψη(t) := ηψ(t/η) satisfies the same Lipschitz
condition.

Choose an η > 0 such that Bη ⊂⊂ V1. Define h : Rm → Rm

by h(x) = x + ψη(|x|)e1. Then h is a homeomorphism, and it is a
diffeomorphism away from the origin. For x ∈ Rm−Bη, h(x) = x. The
set h(g(γ) ∩ Bη/2) lies in M and equals {K(η − |t|)e1 + te2 : −η/2 <
t < η/2}, which is the union of two line segments forming an angle
2 tan−1(1/K) at the point Kηe1.

Let Φ = h ◦ g. Then Φ has all the prescribed properties. �

We now proceed with the construction of E and proof of the Theo-
rem 1.1.

Proof. Consider E0 a natural continuous foliation of D by segments
parallel to the axis Rez1.

1. Pick a sequence {wk} ⊂ D, such that {wm}m≡l (mod n) = D for
every l = 1, ..., n. We also can choose the sequence in such a way that
no two points lie on the same line segment of E0, so we assume that
each of these points wk lies on a unique segment Lk.

2. We now proceed by induction on k.
(1). For k = 1 pick ε1 > 0 so small that the ball B(w1, ε1) ⊂ D.

Use Lemma 1.4 to create a homeomorphism Φ1 : D → D which is
a diffeomorphism on D\{w1} with the following properties. At the
point Φ1(w1) the image Φ1(L1) has an angle 0 < α1 < π, and that
angle (as a portion of Φ1(L1)) lies in the plane parallel to z1. Let
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d1 = mind(z,w)≥1/2d(Φ1(z),Φ1(w)), where d is the Euclidean distance
between two points in Cn.

(2). Consider now step k = s + 1. By now we have constructed a
homeomorphism Φj : D → D which is diffeomorphic on D\{w1, ..., wj},
εj > 0, and dj = mind(z,w)≥1/(j+1)d(Φj(z),Φj(w)) for all j ≤ s. Also
for all j ≤ s we assume that Φs(Lj) = Φj(Lj), and that Φj(Lj) has an
angular point at Φj(wj) in the plane parallel to zl, axis, where l ≡ j
(mod n).

Pick now εs+1 > 0 such that the following four conditions hold:
(a) εs+1 <

1
2
εs.

(b)B(Φs(ws+1), εs+1) ⊂ D\{∪j≤sΦs(Lj)}.
(c) εs+1 <

1
16
ds.

(d) εs+1 is so small that one can use Lemma 1.4 to create the specific

perturbation Φ̃s+1 : D → D inside B(Φs(ws+1), εs+1) that makes an

angle 0 < αs+1 < π at the point Φ̃s+1(Φs(ws+1)) in the plane parallel
to zl axis, where l ≡ s + 1 (mod n), and is the identity map outside
B(Φs(ws+1), εs+1).

Consider now Φs+1 : D → D , which is defined the following way:

Φs+1 = Φ̃s+1 ◦ Φs.
One can see that Φs+1(z) is a well defined homeomorphism which is

diffeomorphic onD\{w1, w2, ..., ws+1}. Also for all j ≤ s+1, Φs+1(Lj) =
Φj(Lj). Let ds+1 = mind(z,w)≥1/(s+2)d(Φs+1(z),Φs+1(w)).

Consider now Φ0 = limjΦj. The limit exists since ‖Φs+1 − Φs‖ <
1

2s−1 ε1 for all s. We shall prove that Φ0 is a homeomorphism from

D onto D. All we need to check is that for two points z 6= w in D,
Φ0(z) 6= Φ0(w). Indeed, find the smallest s, such that d(z, w) ≥ 1

s+1
.

By the construction d(Φs(z),Φs(w)) ≥ ds , ‖Φj+1−Φj‖ ≤ 2εj+1 for all
j; considering the last inequality for j ≥ s, we have d(Φs(z),Φ0(z)) ≤
2
∑

j≥s+1εj <
∑

j≥0
1

2j−1 εs+1 = 4εs+1 <
1
4
ds. Same inequality holds for

the point w. So, d(Φ0(z),Φ0(w)) > 1
2
ds > 0, and therefore Φ0(z) 6=

Φ0(w).
We now check that the continuous foliation E = Φ0(E0) satisfies

the theorem. First we notice that for all j by construction Φ0(Lj) =
Φj(Lj), and therefore Φ0(Lj) has an angular point at Φ0(wj) in the
plane parallel to zl axis, where l ≡ j (mod n).

If a function f ∈ C1(D) is holomorphic on each of the curves in
E, then by Lemma 1.2, ∂f

∂zl
= 0 at an everywhere dense set in D,

and therefore on all of D, and for each l. By Hartogs theorem, f is
holomorphic on D. �
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