TESTING HOLOMORPHY ON CURVES

BUMA L. FRIDMAN AND DAOWEI MA

ABSTRACT. For a domain $D \subset \mathbb{C}^n$ we construct a continuous foliation of D into one real dimensional curves such that any function $f \in C^1(D)$ which can be extended holomorphically into some neighborhood of each curve in the foliation will be holomorphic on D.

This paper complements the study of the following general question. Let f be a function on a domain D in complex *n*-dimensional space, and its restrictions on each element of a given family of subsets of D is holomorphic. When can one claim that f has to be holomorphic in D?

This is a natural question arising from the fundamental Hartogs theorem stating that a function f in \mathbb{C}^n , n > 1, is holomorphic if it is holomorphic in each variable separately, that is, f is holomorphic in \mathbb{C}^n if it is holomorphic on every complex line parallel to an axis. The complex lines parallel to an axis form a continuous foliation of \mathbb{C}^n into two real dimensional planes. So if a function is holomorphic along each component of these n foliations, then it is holomorphic on \mathbb{C}^n . We are interested in finding a one family of one real dimensional curves forming a foliation such that a similar theorem will hold. There is a body of interesting work on testing the holomorphy property on curves: see [AG, E, G1-G4, T1, T2] and references in those articles. Some of these results assume a holomorphic extension into the inside of each closed curve in a given family, others a "Morera-type" property.

Below we use the following definition. Let $S \subset \mathbb{C}^n$. We say that $f : S \to \mathbb{C}$ is holomorphic if f is a restriction on S of a function holomorphic in some open neighborhood of S. We prove the following

Theorem 1.1. Let $D \subset \mathbb{C}^n$ be a domain. Then there exists a continuous foliation E of D into one (real) dimensional curves, such that any C^1 function on D which is holomorphic on each of the curves of E, is holomorphic on D.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 32A10, 32A99.

 $Key\ words\ and\ phrases.$ analytic functions, continuous foliation, Hartogs theorem.

The needed foliation will be constructed as a homeomorphic image of the natural continuous foliation of \overline{D} by segments parallel to the axis Rez_1 .

First we need the following notion (see [FM]). Let $S \subset \mathbb{C}$, $p \in S$. A point t in $T := \{z \in \mathbb{C} : |z| = 1\}$ is said to be a limit direction of S at p if there exists a sequence (q_j) in S such that $\lim_j q_j = p$ and $\lim_j \tau(p, q_j) = t$, where $\tau(p, q_j) := (q_j - p)/|q_j - p|$.

Lemma 1.2. Let $U \subset \mathbb{C}$ be an open set, $p \in U \cap S$ and there are at least two limit directions t_1, t_2 of S at p. Suppose a function $f \in C^1(U)$ is holomorphic on $S \cap U$. If $t_1 \neq \pm t_2$ then $\frac{\partial f}{\partial \overline{z}} = 0$ at p.

Proof. The derivatives of f along linearly independent directions t_1 and t_2 coincide with derivatives of a holomorphic function in the neighborhood of p. The statement now follows from the Cauchy-Riemann equations.

Example 1.3. Consider a set $\gamma \subset \mathbb{C}$, which is an angle $(\gamma = \angle)$ in a neighborhood of a point $p \in \gamma$ formed by two linear segments. If this angle θ satisfies $0 < \theta < \pi$, then at the tip of the angle $p \in \gamma$, γ has two linearly independent directions.

In general if in a neighborhood of a point $p \in \gamma$ the curve $\gamma \subset \mathbb{R}^m$ lies in a two real dimensional plane M and forms an angle $0 < \theta < \pi$ there, we will say that γ has an angular point at p.

For the construction of the continuous foliation in the Theorem1.1 we also need the following general statement.

Lemma 1.4. Let M be a two-dimensional plane in \mathbb{R}^m with $m \geq 2$, let p be a point in M, let U be a neighborhood of p in \mathbb{R}^m , and let γ be a C^{∞} curve passing through p and relatively closed in U. Then there is a homeomorphism $\Phi : \mathbb{R}^m \to \mathbb{R}^m$ such that (a) the function Φ is a (C^{∞}) diffeomorphism on $\mathbb{R}^m - \{p\}$, (b) the restriction of Φ to $\mathbb{R}^m - U$ is the identity map, (c) a neighborhood of $\Phi(p)$ in $\Phi(\gamma)$ lies in M, and (d) the curve $\Phi(\gamma)$ has an angular point at $\Phi(p)$.

Proof. Let e_1, e_2, \ldots, e_n be the standard basis of \mathbb{R}^m , *i.e.*, $e_1 = (1, 0, \ldots, 0)$, $e_2 = (0, 1, 0, \ldots, 0)$, etc. Choose a vector v parallel to M such that vand the tangent vector of γ at p are linearly independent. Without loss of generality, we assume that p = 0, $v = e_2$, and M is spanned by e_1 and e_2 . Let $S = \mathbb{R}e_2 = \{te_2 \in \mathbb{R}^m : t \in \mathbb{R}\}$. For r > 0 let B_r denote the open ball in \mathbb{R}^m of center 0 and radius r. There is a neighborhood Vof 0, a $\delta > 0$, and a diffeomorphism $G : V \to B_{3\delta}$ such that $V \subset \subset U$, $G(\gamma \cap V) = \mathbb{R}e_1 \cap B_{3\delta}$, and $G(S \cap V) = \mathbb{R}e_2 \cap B_{3\delta}$. Let $\omega : \mathbb{R} \to \mathbb{R}$ be a C^{∞} function such that $0 \leq \omega(t) \leq 1$ for all t, $\omega(t) = 0$ for $|t| \geq 2$, and $\omega(t) = 1$ for $|t| \leq 1$. Define a vector field X on \mathbb{R}^m by $X(y) = \omega(|y|/\delta)(y_1 + y_2)(e_2 - e_1)$, where $y = \sum_{j=1}^n y_j e_j$. Let $\theta : \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}^m$ be the associated action. Define $\lambda : \mathbb{R}^m \to \mathbb{R}^m$ by $\lambda(y) = \theta(1, y)$. Then λ is a diffeomorphism, and the restriction of λ to $\mathbb{R}^m - B_{2\delta}$ is the identity map, since X = 0 there. We claim that for $-\delta < s < \delta$, $\lambda(se_1) = se_2$. Indeed, it is straightforward to verify that the curve $\tau(t) = s(1 - t)e_1 + ste_2$ satisfies $\tau(0) = se_1, \tau(1) = se_2$, and $\tau'(t) = X(\tau(t))$ for $0 \leq t \leq 1$, and hence $\tau|_{[0,1]}$ is a segment of an integral curve of X.

Define a diffeomorphism $g: \mathbb{R}^m \to \mathbb{R}^m$ by

$$g(x) = \begin{cases} G^{-1} \circ \lambda \circ G(x), & \text{if } x \in G^{-1}(B_{2\delta}), \\ x, & \text{if } x \notin G^{-1}(B_{2\delta}). \end{cases}$$

Then g(0) = 0, and $V_1 \cap g(\gamma) \subset S \subset M$, where $V_1 := G^{-1}(B_{\delta})$.

Choose a K > 0 so that the function $\psi(t) := K\omega(2t)(1-|t|)$ satisfies the Lipschitz condition $|\psi(t_1) - \psi(t_2)| \le |t_1 - t_2|/2$. It is clear that for each $\eta > 0$ the function $\psi_{\eta}(t) := \eta \psi(t/\eta)$ satisfies the same Lipschitz condition.

Choose an $\eta > 0$ such that $B_{\eta} \subset V_1$. Define $h : \mathbb{R}^m \to \mathbb{R}^m$ by $h(x) = x + \psi_{\eta}(|x|)e_1$. Then h is a homeomorphism, and it is a diffeomorphism away from the origin. For $x \in \mathbb{R}^m - B_{\eta}$, h(x) = x. The set $h(g(\gamma) \cap B_{\eta/2})$ lies in M and equals $\{K(\eta - |t|)e_1 + te_2 : -\eta/2 < t < \eta/2\}$, which is the union of two line segments forming an angle $2 \tan^{-1}(1/K)$ at the point $K\eta e_1$.

Let $\Phi = h \circ g$. Then Φ has all the prescribed properties.

We now proceed with the construction of E and proof of the Theorem 1.1.

Proof. Consider E_0 a natural continuous foliation of D by segments parallel to the axis Rez_1 .

1. Pick a sequence $\{w_k\} \subset D$, such that $\overline{\{w_m\}}_{m \equiv l \pmod{n}} = \overline{D}$ for every l = 1, ..., n. We also can choose the sequence in such a way that no two points lie on the same line segment of E_0 , so we assume that each of these points w_k lies on a unique segment L_k .

2. We now proceed by induction on k.

(1). For k = 1 pick $\varepsilon_1 > 0$ so small that the ball $\overline{B}(w_1, \varepsilon_1) \subset D$. Use Lemma 1.4 to create a homeomorphism $\Phi_1 : \overline{D} \to \overline{D}$ which is a diffeomorphism on $D \setminus \{w_1\}$ with the following properties. At the point $\Phi_1(w_1)$ the image $\Phi_1(L_1)$ has an angle $0 < \alpha_1 < \pi$, and that angle (as a portion of $\Phi_1(L_1)$) lies in the plane parallel to z_1 . Let $d_1 = \min_{d(z,w) \ge 1/2} d(\Phi_1(z), \Phi_1(w))$, where d is the Euclidean distance between two points in \mathbb{C}^n .

(2). Consider now step k = s + 1. By now we have constructed a homeomorphism $\Phi_j : \overline{D} \to \overline{D}$ which is diffeomorphic on $D \setminus \{w_1, ..., w_j\}$, $\varepsilon_j > 0$, and $d_j = \min_{d(z,w) \ge 1/(j+1)} d(\Phi_j(z), \Phi_j(w))$ for all $j \le s$. Also for all $j \le s$ we assume that $\Phi_s(L_j) = \Phi_j(L_j)$, and that $\Phi_j(L_j)$ has an angular point at $\Phi_j(w_j)$ in the plane parallel to z_l , axis, where $l \equiv j$ (mod n).

Pick now $\varepsilon_{s+1} > 0$ such that the following four conditions hold:

- (a) $\varepsilon_{s+1} < \frac{1}{2}\varepsilon_s$.
- (b) $B(\Phi_s(w_{s+1}), \varepsilon_{s+1}) \subset D \setminus \{\cup_{j \le s} \Phi_s(L_j)\}.$
- (c) $\varepsilon_{s+1} < \frac{1}{16}d_s$.

(d) ε_{s+1} is so small that one can use Lemma 1.4 to create the specific perturbation $\widetilde{\Phi}_{s+1} : \overline{D} \to \overline{D}$ inside $B(\Phi_s(w_{s+1}), \varepsilon_{s+1})$ that makes an angle $0 < \alpha_{s+1} < \pi$ at the point $\widetilde{\Phi}_{s+1}(\Phi_s(w_{s+1}))$ in the plane parallel to z_l axis, where $l \equiv s+1 \pmod{n}$, and is the identity map outside $B(\Phi_s(w_{s+1}), \varepsilon_{s+1})$.

Consider now $\Phi_{s+1}: \overline{D} \to \overline{D}$, which is defined the following way: $\Phi_{s+1} = \widetilde{\Phi}_{s+1} \circ \Phi_s.$

One can see that $\Phi_{s+1}(z)$ is a well defined homeomorphism which is diffeomorphic on $D \setminus \{w_1, w_2, ..., w_{s+1}\}$. Also for all $j \leq s+1$, $\Phi_{s+1}(L_j) = \Phi_j(L_j)$. Let $d_{s+1} = \min_{d(z,w) \geq 1/(s+2)} d(\Phi_{s+1}(z), \Phi_{s+1}(w))$.

Consider now $\Phi_0 = \lim_j \Phi_j$. The limit exists since $\|\Phi_{s+1} - \Phi_s\| < \frac{1}{2^{s-1}}\varepsilon_1$ for all s. We shall prove that Φ_0 is a homeomorphism from \overline{D} onto \overline{D} . All we need to check is that for two points $z \neq w$ in D, $\Phi_0(z) \neq \Phi_0(w)$. Indeed, find the smallest s, such that $d(z,w) \geq \frac{1}{s+1}$. By the construction $d(\Phi_s(z), \Phi_s(w)) \geq d_s$, $\|\Phi_{j+1} - \Phi_j\| \leq 2\varepsilon_{j+1}$ for all j; considering the last inequality for $j \geq s$, we have $d(\Phi_s(z), \Phi_0(z)) \leq 2\sum_{j\geq s+1}\varepsilon_j < \sum_{j\geq 0}\frac{1}{2^{j-1}}\varepsilon_{s+1} = 4\varepsilon_{s+1} < \frac{1}{4}d_s$. Same inequality holds for the point w. So, $d(\Phi_0(z), \Phi_0(w)) > \frac{1}{2}d_s > 0$, and therefore $\Phi_0(z) \neq \Phi_0(w)$.

We now check that the continuous foliation $E = \Phi_0(E_0)$ satisfies the theorem. First we notice that for all j by construction $\Phi_0(L_j) = \Phi_j(L_j)$, and therefore $\Phi_0(L_j)$ has an angular point at $\Phi_0(w_j)$ in the plane parallel to z_l axis, where $l \equiv j \pmod{n}$.

If a function $f \in C^1(D)$ is holomorphic on each of the curves in E, then by Lemma 1.2, $\frac{\partial f}{\partial \overline{z}_l} = 0$ at an everywhere dense set in D, and therefore on all of D, and for each l. By Hartogs theorem, f is holomorphic on D.

References

- [AG] M. L. Agranovsky and J. Globevnik, Analyticity on circles for rational and real analytic functions of two real variables, J. d'Analyse Math. 91 (2003) 31–65.
- [E] L. Ehrenpreis, Three problems at Mount Holyoke, Contemp. Math. 278 (2001) 123–130.
- [FM] B. Fridman, D. Ma, Holomorphic functions on subsets of C, preprint, arXiv:1006.3105v3.
- [G1] J. Globevnik, Holomorphic extensions from open families of circles, Trans. Amer. Math. Soc. 355 (2003) 1921–1931.
- [G2] J. Globevnik, Analyticity on families of circles. Israel J. Math. 142 (2004), 29-45.
- [G3] J. Globevnik, Analyticity on translates of a Jordan curve, Trans. Amer. Math. Soc. 359 (2007), 5555–5565.
- [G4] J. Globevnik, Analyticity of functions analytic on circles. J. Math. Anal. Appl. 360 (2009), no. 2, 363-368.
- [T1] A. Tumanov, A Morera type theorem in the strip, Math. Res. Lett. 11 (2004) 23–29.
- [T2] A. Tumanov, Testing analyticity on circles, Amer. J. Math. 129 (2007), no. 3, 785-790.

BUMA.FRIDMAN@WICHITA.EDU, DEPARTMENT OF MATHEMATICS, WICHITA STATE UNIVERSITY, WICHITA, KS 67260-0033, USA

DMA@MATH.WICHITA.EDU, DEPARTMENT OF MATHEMATICS, WICHITA STATE UNIVERSITY, WICHITA, KS 67260-0033, USA