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Summary. We develop a new algorithm for computing conformal maps
from regions exterior to non-overlapping disks to unbounded multiply con-
nected regions exterior to non-overlapping, smoothly bounded Jordan re-
gions. The method is an extension of Fornberg’s original Newton-like
method for mapping of the disk to simply connected regions. A Fortran
program based on the algorithm has been developed and tested for the 2 and
3 disk case. Numerical examples are reported.
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1. Introduction

Many effective numerical algorithms are available for approximating con-
formal maps of simply and doubly connected regions where the unit disk
and the annulus provide useful computational domains. In the multiply con-
nected case, parallel, radial, and circular slit domains provide useful canon-
ical domains, and there are analytic relations between various pairs of the
corresponding mapping functions; see [Ne, Chapt. 7]. The circular domain
[Go, He], that is, a domain that is the complement of a finite number of
non-overlapping disks is the canonical domain we use as the computational
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domain in our present work. The circular domain is physically, geomet-
rically, and computationally natural for many situations. In particular, the
circular boundary components facilitate the use of Fourier methods. Most
numerical conformal mapping methods for simply connected domains in-
volve solving an integral equation for the boundary correspondence between
the computational and the target domains, after some normalization of the
map to insure uniqueness. In the multiply connected case, the conformal
moduli must be computed along with the boundary correspondences.

In this paper, we develop a method for mapping a circular domain onto
a region in the extended complex plane containing the point at infinity and
bounded by a finite number of smooth Jordan curves. We will refer to this
map as thecircle map. Our work is inspired by the simply connected method
in [Fo], and like that work, ours is a quadratically convergent Newton-like
method for computing the boundary correspondences and, additionally, the
centers and radii of the disks (the conformal moduli).

In his method for the disk, Fornberg [Fo] used the fact that a function
defined on the boundary of the unit disk can be extended analytically to
the interior if and only if the negatively indexed Fourier coefficients of the
function are zero. We refer to these conditions for analytic extension asan-
alyticity conditions.By linearizing about the current guess for the boundary
correspondence, Fornberg used these analyticity conditions to develop an
inner linear system for the Newton update of the boundary correspondence.
He noted that this inner system was positive semi-definite with the eigen-
values well-grouped around 1 and that it could be solved very efficiently by
the conjugate gradient method, using the FFT to perform the matrix-vector
multiplications inO(N log N). Widlund [Wid] first explained the favorable
grouping of the eigenvalues by showing that the inner linear system was
in fact the discretization of the identity plus a compact operator. Wegmann
[Weg2] expressed this operator in terms of the conjugation operator for the
disk and gave further theoretical discussion.

For our extension of Fornberg’s method to circular domains, we need to
extend both the analyticity conditions and the linearization. The analyticity
conditions for the multi-disk case are given below in Theorem 5 in terms
of Fourier series and are considerably more complicated than the single-
disk case. In addition, for Newton’s method, we must now linearize about
both the boundary correspondences and the centers and radii of the disks.
Applying the analyticity conditions to the linearizations leads to our inner
linear system for the Newton updates.

Fornberg’s method [Fo] has been extended in a similar fashion to the
exterior disk, ellipse, cross-shaped, and annular regions in [DE, DEP, DP].
In all these cases, it has been shown that the inner linear systems are dis-
cretizations of the identity plus a compact operator involving the conjugation
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Fig. 1. Computational and target regions

operator, so that the conjugate gradient method works efficiently and FFTs
may be used. However, as the ellipse, cross, or annulus gets thinner (ρ → 1),
the operators get “less compact”, the eigenvalues spread, and the number
of conjugate gradient iterations increases. In the present case of the circle
map, as the reader will see below, it appears that both the compactness of
the underlying operators and the fast matrix-vector multiplication are lost.
The conjugate gradient method may still be used with more iterations and
a cost ofO(N2). We presently have limited theoretical explanation of our
observations. In this sense, our method is in the same state as Fornberg’s
original method was in 1980, before Widlund first explained its behaviour.
Wegmann has developed similar methods for the disk, ellipse, and annulus
in a series of papers [Weg1, Weg2, Weg3, Weg4, Weg5].

The paper begins in Sect. 2 with a description of the circle map problem
and the setting of an appropriate normalization at infinity. The analyticity
conditions that are the basis of the Fornberg-like mapping methods are ex-
plained and described for our multiply connected circle mappings in Sect. 3.
In Sect. 4, we describe explicitly the linearizations needed for constructing
circle maps for triply connected domains. In Sect. 5, we combine the lin-
earizations and analyticity conditions to form a discrete linear system for the
Newton step. We give numerical examples in Sect. 6. Additional background
information on some specific numerical conformal mapping methods related
to this work is given in remarks at the end of the paper.

2. The circle map

Figure 1 explains the geometry and notation used in this paper. We are seek-
ing a conformal mapf from the complement,D, of n closed nonintersecting
disks,Dk, 1 ≤ k ≤ n, onto a regionΩ which is exterior ton smooth Jordan
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curves,Γk, 1 ≤ k ≤ n. The curvesΓk and their interiors are nonintersecting.
n is theconnectivityof theΩ andD. We assume thatn ≥ 2. In particular,
we have

D
c = ∪k=n

k=1Dk

The circular disksDk have boundariesCk with centerszk and radiiρk,
1 ≤ k ≤ n. The boundary ofD is C = C1 + . . . + Cn, and the boundary
of Ω is Γ = Γ1 + . . . + Γn.

The existence of such a map has been known for many years. In Theo-
rem 1, we state a version of such an existence theorem taken from [He]; see
also [Go].

Theorem 1. LetΩ be a region of connectivityn ≥ 2 in the extended com-
plex plane such that∞ ∈ Ω. Then there exists a unique circular regionD of
connectivityn and a unique one-to-one analytic functiong in Ω satisfying
the normalization

g(z) = z + O(1/z)(1)

such that g(Ω)=D.

It should be stressed that we are finding the map fromD to Ω which
would bef = g−1 in the above theorem. The important point to be made
is that Theorem 1 states that regionD is uniquely determined. That is, all
centers and radii are determined. Thus the circle map problem consists of
finding the conformal map (subject to the normalization at∞) and finding the
centers and radii ofD. Finding the boundary correspondence is equivalent to
findingf . AssumeΓk is parameterized byΓk : γk(S) whereS is arclength.
The circle map problem is defined as follows:

Circle map problem

Determine the circle regionD with centerszk and radiiρk and the boundary
correspondencesSk(θ) such that

f(zk + ρkeiθ) := γk(Sk(θ))

extends as an analytic function intoD with normalization at∞ given by

f(z) = z + 0(1/z).

We find it convenient to employ a different normalization at∞ than the
one given in (1). Consider Theorem 2 taken from [Go, p. 234].

Theorem 2. Every function that maps a circular domainD univalently onto
another circular domainD′ is a linear fractional transformation.
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Thus the univalent function mapping a circle domainD to a circle domain
D′ and mapping∞ to ∞ is actually linear. Our normalization relaxes (1) to

f(z) = Az + B + O(1/z)(2)

whereA 6= 0 andB are two complex constants to be determined. We fix
centersz1 andz2 of the circle domain which then determinesA andB.

If Γ is sufficiently smooth so thatf extends smoothly to the boundary
then we may write

f(z) = Az + B +
1

2πi

∫
C

f(ζ)
ζ − z

dζ

whereC = C1 + C2 + · · · + Cn and

1
2πi

∫
Ck

f(ζ)
z − ζ

dζ =
∞∑

j=1

ak,−j

(
ρk

z − zk

)j

.

Substituting these values we obtain a useful computational form of the map:

f(z) = Az + B +
n∑

k=1

∞∑
j=1

ak,−j

(
ρk

z − zk

)j

.(3)

3. Analyticity conditions

We are concerned with finding conditions for analytically extending func-
tions from C := ∂D into D. The ideas presented are similar to [He,
Sect. 14.3, DE, DEP, DP]. Theorem 3 is a statement for general regions
D in Figure 1 and will be applied later to circle regions.

Theorem 3. LetD be a region of connectivityn ≥ 2 in the extended com-
plex plane. Also, leth ∈ Lip(C). Then the following two statements are
equivalent:

(i) h extends to an analytic functionf(z) in D/{∞} where

f(z) = Az + B + O(1/z), A 6= 0, |z| ≈ ∞.

(ii) For any z1 in D1 we have

∫
C

h(ζ)
(ζ − z1)2

dζ 6= 0 and

∫
C

h(ζ)
(ζ − z1)2(ζ − z)

dζ = 0, z ∈ D
c
.
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Proof.First we show that (i) implies (ii). By assumption we have

h(ζ) = f+(ζ) = lim
z→ζ

f(z) z ∈ D, ζ ∈ C,

wheref is analytic inD/{∞} with f(z) = Az + B + O(1/z), |z| ≈ ∞,
A 6= 0. Fix z1 ∈ D1 and defineF (z) := f(z)/(z − z1)2 for z ∈ D/{∞}.
It is easy to see that the conditions onf imply thatF is analytic inD with
a removable singularity atz = ∞. Moreover, we have

F+(ζ) =
f+(ζ)

(ζ − z1)2
=

h(ζ)
(ζ − z1)2

.

It follows that F+(ζ) represents the boundary values of a functionF (z)
which is analytic inD. Furthermore, forz ∈ D

c
, the mappingζ → (ζ −

z)−1F (ζ) is analytic in D and continuous onD ∪ C. Hence

0 =
∫
C

F+(ζ)dζ

(ζ − z)
=

∫
C

h(ζ)dζ

(ζ − z1)2(ζ − z)
, z ∈ D

c
.

This proves the second part of (ii).
The first part of (ii) requires some general derivations that we begin now.

SinceF has a removable singularity atz = ∞ we may write

F (z) =
∞∑

j=1

Fj

(z − z1)j
, |z| ≈ ∞.

Then applying Cauchy’s Theorem forz ∈ D we obtain

F (z) =
1

2πi

∫
C

F+(ζ)
(ζ − z)

dζ

=
1

2πi

∫
C

h(ζ)dζ

(ζ − z1)2(ζ − z)

= − 1
2πi

1
(z − z1)

∫
C

h(ζ)dζ

(ζ − z1)2
(
1 − ζ−z1

z−z1

)

= − 1
2πi

1
(z − z1)

∫
C

h(ζ)
(ζ − z1)2

∞∑
j=0

(
ζ − z1

z − z1

)j

dζ

=
∞∑

j=1

(z − z1)−j


− 1

2πi

∫
C

h(ζ)dζ

(ζ − z1)−j+3


 .
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Comparing coefficients shows us that

Fj = − 1
2πi

∫
C

h(ζ)dζ

(ζ − z1)−j+3 , j ≥ 1.

Finally, we obtain for|z| ≈ ∞
Az + B + O(1/z) = f(z) = (z − z1)2F (z),

which, by the assumptions onA in part (i), implies

0 6= A = F1 = − 1
2πi

∫
C

h(ζ)
(ζ − z1)2

dζ.

This establishes the first part of (ii).
Next we show that (ii) implies (i). To this end fixz1 ∈ D1 and forz ∈ D

c

define

F (z) :=
∫

C

h(ζ)
(ζ − z1)2(ζ − z)

dζ

Also, setF (z) = 0 for z ∈ D. Fix ζ ∈ Ck for some1 ≤ k ≤ n and define

Fk(z) :=
1

2πi

∫
Ck

h(ζ)
(ζ − z1)2(ζ − z)

dζ

so that

F1(z) + F2(z) + . . . + Fn(z) = F (z) = 0, z ∈ D
c
.

Then Sokhotskyi’s formula applied toCk, and the continuity ofFj(z) on
Ck, j 6= k, gives us

h(ζ)
(ζ − z1)2

= F+
k (ζ) − F−

k (ζ)

= F+
k (ζ) + F−

1 (ζ) +. . .+ F−
k−1(ζ) + F−

k+1(ζ) +. . .+ F−
n (ζ)

= F+
k (ζ) + F+

1 (ζ) +. . .+ F+
k−1(ζ) + F+

k+1(ζ) +. . .+ F+
n (ζ)

= F+(ζ)

where

F+
k (ζ) := lim

z→ζ
z∈Dk

Fk(z) F−
k (ζ) := lim

z→ζ

z∈(D
c
k)

Fk(z)

That is, F (z) is analytic inD with boundary functionh(ζ)/(ζ − z1)2.
Moreover, it is clear thatF (∞) = 0. We may then expandF so that

F (z) =
∞∑

j=1

Fj

(z − z1)j
, |z| ≈ ∞,
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where

Fj = − 1
2πi

∫
C

h(ζ)dζ

(ζ − z1)−j+3 .

Now definef(z) := (z − z1)2F (z). Then for|z| large we have

f(z) =
∞∑

j=1

Fj

(ζ − z1)j−2 = F1(z − z1) + F2 +
F3

(z − z1)
+ · · ·

Noting that
f+(ζ) = (ζ − z1)2F+(ζ) = h(ζ)

it is easy to see thatf is the desired function satisfying all the conditions in
(i). That is,f is the analytic extension ofh to D/{∞}. �

The following corollary is an immediate consequence of Theorem 3 and
is useful in the derivation of the analyticity conditions in Theorem 5. Note
that, since the disksDk are uniquely determined by the Jordan curvesΓk

according to Theorem 1, it clearly does not matter which curve is labeled
Γ1. However, onceΓ1 is specifiedD1 andz1 are kept fixed.

Corollary 4. h ∈ Lip(C) extends to an analytic function inD satisfying
the condition in equation (2) if and only if for anyzk ∈ Dk∫

∂D

h(ζ)
(ζ − z1)2

dζ 6= 0,

∫
∂D

h(ζ)
(ζ − z1)2(ζ − zk)j

dζ = 0,

j ≥ 1, 1 ≤ k ≤ n.

Proof.Fix zk in Dk. It is enough to establish the result in a ball centered at
zk and contained inDk. Forζ ∈ Ck choose anyz ∈ D

c
such that∣∣∣∣z − zk

ζ − zk

∣∣∣∣ < 1.

Then we have

0 =
∫

C

h(ζ)
(ζ − z1)2(ζ − z)

dζ =
∫

C

h(ζ)
(ζ − z1)2

1
(ζ − zk)

∞∑
j=0

(
z − zk

ζ − zk

)j

dζ

if and only if

0 =
∫

C

h(ζ)
(ζ − z1)2(ζ − zk)j

dζ, j ≥ 1. �

We are now in a position to derive analyticity conditions for the disk
map. To avoid notational complexity, derivations will only be made for the
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3 disk case. Extensions ton disks are straight forward. We have need of the
binomial coefficientsBk given by

1
(1 − ∆)k

=
∞∑

j=0

Bkj∆
j , |∆| < 1,

Bkj =
k(k + 1) · · · (k + j − 1)

j!
, k ≥ 1, j ≥ 0.

If we now apply this to the integrals given in Corollary 4 (1 ≤ k ≤ 3), then
the following identities will result forj ≥ 1:

k = 1

∫
C1

f(ζ)dζ

(ζ − z1)j+2 =
2πi

ρj+1
1

a1,j+1

∫
C2

f(ζ)dζ

(ζ − z1)j+2 =
2πiρ2

(z2 − z1)j+2

∞∑
ν=0

Bj+2,ν

(
ρ2

z1 − z2

)ν

a2,−ν−1

∫
C3

f(ζ)dζ

(ζ − z1)j+2 =
2πiρ3

(z3 − z1)j+2

∞∑
ν=0

Bj+2,ν

(
ρ3

z1 − z3

)ν

a3,−ν−1

k = 2

∫
C1

f(ζ)dζ

(ζ − z1)2(ζ − z2)j
=

2πi
ρ1(z1 − z2)j

∞∑
ν=0

Bjν

(
ρ1

z2 − z1

)ν

a1,−ν+1

∫
C2

f(ζ)dζ

(ζ − z1)2(ζ − z2)j
=

2πiρ−j+1
2

(z2 − z1)2

∞∑
ν=0

B2ν

(
ρ2

z1 − z2

)ν

a2,j−ν−1

∫
C3

f(ζ)dζ

(ζ − z1)2(ζ − z2)j
=

2πiρ3(z3 − z1)−2

(z3 − z2)j

∞∑
ν=0

∞∑
l=0

B2ν

(
ρ3

z1 − z3

)ν

×Bjl

(
ρ3

z2 − z3

)l

a3,−ν−l−1

k = 3
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∫
C1

f(ζ)dζ

(ζ − z1)2(ζ − z3)j
=

2πi
ρ1(z1 − z3)j

∞∑
ν=0

Bjν

(
ρ1

z3 − z1

)ν

a1,−ν+1

∫
C2

f(ζ)dζ

(ζ − z1)2(ζ − z3)j
=

2πiρ2(z2 − z1)−2

(z2 − z3)j

∞∑
ν=0

∞∑
l=0

B2ν

(
ρ2

z1 − z2

)ν

×Bjl

(
ρ2

z3 − z2

)l

a2,−ν−l−1

∫
C3

f(ζ)dζ

(ζ − z1)2(ζ − z3)j
=

2πiρ−j+1
3

(z3 − z1)2

∞∑
ν=0

B2ν

(
ρ3

z1 − z3

)ν

a3,j−ν−1

Now usingC = C1 + C2 + C3 and setting
∫

C

h(ζ)
(ζ − z1)2(ζ − zk)j

dζ = 0, 1 ≤ k ≤ 3

we obtain the following theorem.

Theorem 5. Let D be the exterior circular region to the disksDk : zk +
ρkeiθ,1 ≤ k ≤ 3. Supposef ∈ Lip(C) has the Fourier series representation

f(zk + ρkeiθ) =
∞∑

j=−∞
akjeijθ, 1 ≤ k ≤ 3.

Thenf extends analytically intoD if and only if forj ≥ 1

k = 1

0 = a1,j+1 −
(

ρ1

z2 − z1

)j+1 ∞∑
ν=0

Bj+2,ν

(
ρ2

z1 − z2

)ν+1

a2,−ν−1

−
(

ρ1

z3 − z1

)j+1 ∞∑
ν=0

Bj+2,ν

(
ρ3

z1 − z3

)ν+1

a3,−ν−1

k = 2

0 = −
(

ρ2

z1 − z2

)j−1 ∞∑
ν=0

Bjν

(
ρ1

z2 − z1

)ν−1

a1,−ν+1

+
∞∑

ν=0

B2ν

(
ρ2

z1 − z2

)ν

a2,j−ν−1
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−
(

z2 − z1

z3 − z1

)2 (
ρ2

z3 − z2

)j−1 ∞∑
l,ν=0

B2νBjl

(
ρ3

z1 − z3

)ν (
ρ3

z2 − z3

)l+1

a3,−ν−l−1

k = 3

0 = −
(

ρ3

z1 − z3

)j−1 ∞∑
ν=0

Bjν

(
ρ1

z3 − z1

)ν−1

a1,−ν+1

−
(

z3 − z1

z2 − z1

)2 (
ρ3

z2 − z3

)j−1 ∞∑
l,ν=0

B2νBjl

(
ρ2

z1 − z2

)ν (
ρ2

z3 − z2

)l+1

a2,−ν−l−1

+
∞∑

ν=0

B2ν

(
ρ3

z1 − z3

)ν

a3,j−ν−1

To obtain the form given in Theorem 5 some minor scaling and index shifting
is applied to the identities fork = 1, 2, 3. This is done for convenience and
stability in computations. Also, to see the exact equations used for 2 disks
just delete any term containing az3 or aρ3. This results in deleting the last
part of the first two equations and entirely deleting the last equation. The
reader will note the symmetries for extending to arbitraryn disks. The main
complication arises in going from the 2 to 3 disks, since double sums are
needed for integration and expansion about the second and third disks when
z1 is in the first disk.

4. Linearizations

We seek linearizations for the circle map (in particular for3 circles). We
remind the reader that we are using the normalization

f(z) = Az + B + O(1/z)(4)

whereA 6= 0 andB are to be determined from fixing the centersz1 andz2.
This leaves us with the problem of finding the radiiρ1, ρ2, ρ3, and the center
z3.

Recall that, for the exact mapf , our boundary correspondence would
satisfy

f(zk + ρkeiθ) = γk(Sk(θ)) 1 ≤ k ≤ 3.
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The following process is to be applied at themth Newton step but the notation
indicating this will be suppressed to avoid confusion. As usual, we make
the guess toSk(θ) and correct with the real,2π-periodic functionUk(θ). If
Sk is arclength this leads to

γk(Sk(θ) + Uk(θ)) ≈ ξk(θ) + eiβk(θ)Uk(θ), 1 ≤ k ≤ 3

where
ξk(θ) := γk(Sk(θ)) βk(θ) := argγ′(Sk(θ)).

Linearizations for the radiiρ1, ρ2, ρ3 and the centerz3 are carried out in a
manner similar to the annulus map [LM, DP]. In fact, we use

f
(
z1 + (ρ1 + δρ1)eiθ

)
≈ f

(
z1 + ρ1eiθ

)

+f ′
(
z1 + ρ1eiθ

) (
δρ1eiθ

)

f
(
z2 + (ρ2 + δρ2)eiθ

)
≈ f

(
z2 + ρ2eiθ

)

+f ′
(
z2 + ρ2eiθ

) (
δρ2eiθ

)

f
(
z3 + δz3 + (ρ3 + δρ3)eiθ

)
≈ f

(
z3 + ρ3eiθ

)

+f ′
(
z3 + ρ3eiθ

) (
δz3 + δρ3eiθ

)
.

As in the annulus case, we also use

ζk(θ) := f ′
(
zk + ρkeiθ

)
eiθ = −iρk

−1eiβk(θ)S
′
k(θ).

In summary, equating the linearized terms we seek to find the corrections
U1, U2, U3, δρ1, δρ2, δρ3, δz3 such thatf extends as an analytic function
into the circle regionD wheref is defined onC by

f
(
z1 + ρ1eiθ

)
:= ξ1(θ) + eiβ1(θ)U1(θ) − ζ1(θ)δρ1

f
(
z2 + ρ2eiθ

)
:= ξ2(θ) + eiβ2(θ)U2(θ) − ζ2(θ)δρ2(5)

f
(
z3 + ρ3eiθ

)
:= ξ3(θ) + eiβ3(θ)U3(θ) − ζ3(θ)

(
δρ3 + δz3/eiθ

)
.

5. Discretizations

For1 ≤ k ≤ 3, 1 ≤ j, l ≤ N , we define theN -vectors andN ×N matrices:

F :=
[
w−jl

]
= FFT matrix

Ek := diagj

(
eiβk(θj)

)
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Ṡk :=
N

2π
[Sk(θj+1) − Sk(θj)]

Uk := [Uk(θj)]
ξ
k

:= [γk(Sk(θj))](6)

ζ
k

:= iρ−1
k EkṠk

f
k

:=
[
f

(
zk + ρkeiθj

)]

ak :=
1
N

Ff
k

z :=
[
e−iθj

]
.

From (5) our discrete system can then be written as

Na1 = Ff1 = Fξ1 + FE1U1 + δρ1Fζ1
Na2 = Ff2 = Fξ2 + FE2U2 + δρ2Fζ2(7)

Na3 = Ff3 = Fξ3 + FE3U3 + δρ3Fζ3 + δz3F
(
z ∗ ζ3

)

where∗ denotes Hadamard product.
Now we seek a discrete version of the analyticity conditions given in

Theorem 5. Essentially, we truncate the3 analyticity conditions toN/2
terms. There are a few subtle points to be made and we will discuss them
below. Thus our discrete analyticity conditions are taken as

k = 1

0 = â1,j+1 −
(

ρ1

z2 − z1

)j+1 N/2−1∑
ν=0

Bj+2,ν

(
ρ2

z1 − z2

)ν+1

â2,−ν−1

−
(

ρ1

z3 − z1

)j+1 N/2−1∑
ν=0

Bj+2,ν

(
ρ3

z1 − z3

)ν+1

â3,−ν−1

k = 2

0 = −
(

ρ2

z1 − z2

)j−1 N/2−1∑
ν=0

Bjν

(
ρ1

z2 − z1

)ν−1

â1,−ν+1

+
N/2−1∑

ν=0

B2ν

(
ρ2

z1 − z2

)ν

â2,j−ν−1

−
(

z2 − z1

z3 − z1

)2 (
ρ2

z3 − z2

)j−1 N/4−1∑
l,ν=0

B2νBjl
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(
ρ3

z1 − z3

)ν (
ρ3

z2 − z3

)l+1

â3,−ν−l−1

k = 3

0 = −
(

ρ3

z1 − z3

)j−1 N/2−1∑
ν=0

Bjν

(
ρ1

z3 − z1

)ν−1

â1,−ν+1

−
(

z3 − z1

z2 − z1

)2 (
ρ3

z2 − z3

)j−1 N/4−1∑
l,ν=0

B2νBjl

(
ρ2

z1 − z2

)ν (
ρ2

z3 − z2

)l+1

â2,−ν−l−1

+
N/2−1∑

ν=0

B2,ν

(
ρ3

z1 − z3

)ν

â3,j−ν−1

where0 ≤ j ≤ N/2. ForN large we expect nearly negligible contributions
from higher numbered Fourier coefficients. Thus any term falling outside
of −N/2 − 1 ≤ j ≤ N/2 we assume to be0 instead of using conflicting
information between analyticity andN -periodicity of the discrete Fourier
coefficients. In particular, in the first equation we imposeâ1,N/2+1 = 0
andâ1,−N/2 = 0. Moreover, our double sums are taken to range only from
0 ≤ ν ≤ N/4 − 1 to stay within the desired range of indices.

Another important point to be made is the growth of binomial coeffi-
cients. One cannot simply compute binomial coefficients for largeN due to
overflow. Instead, we observe that each term containing binomial coefficients
has geometric decay as well. Therefore care must be taken in organizing the
computations so that geometric growth kills off binomial growth. This is the
reason for the scaling and index shifting of the equations in Theorem 5.

It is important that the sums be done efficiently, since they make up the
matrix-vector multiplications in the conjugate gradient iterations described
below. By summing with respect toν first, the double sums can be treated as
2 matrix-vector multiplications and computed inO(N2) operations. (Theν
sum can be computed inO(N log N) as a Hankel matrix multiplication, but
we have not done this. In future work, we hope to simplify the analyticity
conditions.)

We will suppress many details which can be found in [Ho]. We just note
that with appropriate3N/2 × N matricesP1, P2, P3, our discrete system
takes the form

0 = [P1 P2 P3]


 a1

a2
a3


 .(8)
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Substituting (7) into (8) and rearranging we obtain

P1

(
FE1U1 + δρ1Fζ1

)
+ P2

(
FE2U2 + δρ2Fζ2

)
(9)

+ P3

(
FE3U3 + δρ3Fζ3 + F (z ∗ ζ3)

)
(Reδz3 + iImδz3) = g

where

g := − [P1 P2 P3]


Fξ1

Fξ2
Fξ3


 .(10)

If we define the3N/2 vectors

wk = PkFζ
k
, wz3 = P3F

(
z ∗ ζ3

)
(11)

and put

P = [P1 P2 P3] , W = [w1 w2 w3 wz3 iwz3](12)

as well as

U =




U1
U2
U3
δρ1
δρ2
δρ3

Reδz3
Imδz3




then our system becomes

DU := [P W ]




F 0 0 0
0 F 0 0
0 0 F 0
0 0 0 I







E1 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 I


U = g.(13)

Taking normal equations and using the fact thatU is real gives us

2
N

Re
(
DHD

)
U =

2
N

Re
(
DHg

)
.(14)

Note that 2
N Re(DHD) is positive semi-definite so that we can use the

conjugate gradient method. Also, we observe that the eigenvalues are
grouped around 1 (but not always well grouped).
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All normalization conditions are absorbed in fixing centersz1 andz2
so that (14) need not be modified. After finding the corrections, the update
equations at themth Newton step are given by

S
(m+1)
k = S

(m)
k + U

(m)
k

ρ
(m+1)
k = ρ

(m)
k + δρ

(m)
k(15)

z
(m+1)
3 = z

(m)
3 + δz

(m)
3

for 1 ≤ k ≤ 3.

6. Numerical examples

In this section we will discuss several numerical examples for the2 and3 disk
cases. The quadratic convergence of the outer (Newton) steps, the number
of conjugate gradient steps and the eigenvalue clustering of the inner linear
system, and the discretization error are studied. Eigenvalue computations
were performed on an IBM ES9121 Model 440 mainframe computer while
other table data was taken from a Pentium PC using Fortran and Matlab.

In the tables, NFFT denotes the number of Fourier points, NN denotes
the current outer Newton step, and NCGM denotes the number of conjugate
gradient (CGM) steps taken. Often it is not beneficial to let CGM run until
some tolerance is reached. Instead we implement a type of restart CGM in
which 20 to 40 CGM steps are taken for each Newton step. In most examples,
the algorithm converges to a discrete solution in less than20 Newton steps.
To study quadratic convergence we need data for||Uk||∞ = maxj |Uk(θj)|,
|δρk|, and|δz3| (3 disk case).

In each example we will state the initial guess taken to start the procedure.
Generally NS=1000 points on the boundaries are fitted with a periodic cubic
spline parametrized by (chordal) arc length [HK]. The initial guess for the
boundary correspondences is given by NFFT points along each curve equally
distributed in arc length. We also need to initializeρk andz3 (3 disk case).
As is typical for Fornberg-like methods, a sufficiently good initial guess is
required.z1 andz2 are fixed in both the2 and3 disk case. We fixz1 = 0 for
all examples and only state thez2 chosen.

From [DP] we know that the conformal modulus of the annulusρ plays
a key role in the algorithm. In particular, the governing equations have a
tighter spectrum clustering for smallerρ so that CGM converges rapidly.
We will see in the examples to follow that the radiiρk and centerszk for the
circle map also play a key role in convergence. This can be expected from
the equations given in Theorem 5. Smaller radii and farther separated disks
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make the geometric decay better. In fact, as∣∣∣∣ ρk

zj − zk

∣∣∣∣ → 1

the eigenvalues of 2
NFFTRe(DHD) are less well grouped around 1. This

means more CGM iterations are required to reach a fixed tolerance in the
inner linear systems.

For the graphics, we plot images of equally spaced horizontal and vertical
lines from thez−plane.

Example (i).This is a2 circle test. Here we construct an exact unbounded
doubly connected exterior conformal map that satisfies∞ → ∞. This will
allow us to study discrete errors and quadratic convergence for a nontrivial
map. Our exact map is a composition of well-known maps. We explain all
of the preliminary maps since this could be a rich source of test cases. The
first mapf1 is the fractional linear map

f1(z) =
z − a

az − 1

which is illustrated in [Gr, p. 1279]. It maps a2 circle region to the annulus
where

a =
x1x2 + 1 +

√(
x2

1 − 1
) (

x2
2 − 1

)
x1 + x2

R =
x1x2 − 1 −

√(
x2

1 − 1
) (

x2
2 − 1

)
x1 − x2

and1 < x2 < x1. The second mapf2 is a scaling map

f2(z) = βz.

The goal is to makeβR >> 1 so that the region is not so extreme. The next
map is the familiar Joukowski map

f3(z) = z + 1/z

which takes the annulus fromf2 onto another bounded, doubly connected
region. The fourth mapf4 is another scaling

f4(z) =
β

β2 + 1
z.

The final mapf5 is the fractional linear map

f5(z) =
z − C

Cz − 1
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Table 1. Discretization error for example (i)

NFFT DISC1 DISC2

32 0.2e-08 0.3e-04
64 0.4e-11 0.1e-06
128 0.4e-11 0.6e-10

whereC := a(β2+1)
a2+β2 . f5 takes the region fromf4 onto the final region in

Fig. 2. A simple check shows that

∞ → 1
a

→ β

a
→ a2 + β2

aβ
→ a2 + β2

a(β2 + 1)
→ ∞

The exact map is thus

f(z) = f5(f4(f3(f2(f1(z))))).

We now solve the circle map problem with exact geometryz1 = 0,
z2 = 2.5, ρ1 = 1.0, ρ2 = 0.5. The parameterβ = 25. Recall that in the2
disk case only initializations forρ1 andρ2 are needed. The centersz1 and
z2 are free parameters and so we assign them the exact values. We take the
initializationsρ1 = 0.9, ρ2 = 0.4. In Table 1, we list discretization errors
DISC1, DISC2 at the NFFT Fourier points around each disk for NFFT=32,
64, 128. Note thatΓ2 is the more distorted curve and hence the discretization
error DISC2 is expected to be greater than DISC1 for fixed NFFT. Table 2
gives data for the outer Newton steps for NFFT = 128. We took NCGM
= 25 in solving the inner linear correction system. The corrections decay
quadratically until the level of discretization for this value of NFFT = 128.
This is typical for Fornberg-like methods. The middle half of the 2·NFFT +
2 eigenvalues of the matrix in equation (14) are nearly equal to 1 and the first
and last quarter of the eigenvalues decrease and increase, respectively, from 1
by about 0.5. This distribution seems to be independent of NFFT, indicating
that the matrix is not the discretization of the identity plus a compact operator
as in the other Fornberg-like methods. See Fig. 2 for graphics of the final
map. Discrete errors are not available for the remaining examples since exact
maps are not known in general.

Example (ii).This is a3 circle test. Examples (ii) and (iii) should be con-
sidered together. In these examples we demonstrate the effect that the sep-
arations of the disks and the disk radii has on the numerics. Each target
boundary is an ellipse generated by

Γk : wk + (cos(θ), αk sin(θ)), 1 ≤ k ≤ 3, 0 ≤ θ ≤ 2π,

wherew1 = (0.0, 0.0), w2 = (10.0, 0.0), w3 = (−10.0, 0.0), α1 = α2 =
α3 = 0.6. Note that each ellipse is well separated from the others. This,
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Fig. 2. Circle map for example (i)

Table 2. Newton steps for example (i). NFFT=128

NN |δρ1| |δρ2| ||U1||∞ ||U2||∞
1 0.9e-01 0.8e-01 0.3e-02 0.2e-01
2 0.1e-01 0.2e-01 0.2e-02 0.3e-01
3 0.6e-03 0.1e-02 0.3e-03 0.5e-02
4 0.2e-05 0.5e-05 0.3e-05 0.9e-04
5 0.1e-08 0.2e-08 0.1e-07 0.7e-07
6 0.1e-12 0.9e-13 0.3e-11 0.2e-10
7 0.3e-17 0.1e-15 0.4e-15 0.3e-15

along with the relatively small circle map disk radii, make example (ii) the
easier problem numerically.

We now solve the circle map problem. Herez1 andz2 are fixed to the
valuesz1 = (0.0, 0.0), z2 = (10.0, 0.0). We take the initializationsρ1 =
ρ2 = ρ3 = 0.7 andz3 = (−9.9, 0.0). Compare to the final result ofρ1 ≈
0.804540, ρ2 ≈ 0.803569, ρ3 ≈ 0.803569, andz3 ≈ (−10.0, 0.0). In
Table 3 we give data for NFFT=256. The convergence is now affected by the
linearizations forz3. Nevertheless, nearly quadratic convergence is obtained
for beginning Newton steps. We took NCGM=40 per Newton step. In Fig. 3
we show an eigenvalue plot for the Newton step NN=4 corresponding to
Table 3. The eigenvalues are not as well grouped as in examples (i) for the
2 disk case but CGM still converges fast. See Fig. 4 for graphics of the final
map.

Example (iii).This is a3 circle test to be compared to example (ii). We
make the changesw2 = (3.0, 0.0), w3 = (−3.0, 0.0), and the initializations
ρ1 = ρ2 = ρ3 = 0.75, z3 = (−2.9, 0.0). Compare to the final valuesρ1 ≈
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Table 3. Newton steps for example (ii). NFFT=256.

NN |δρ1| |δρ2| |δρ3| ||U1||∞ ||U2||∞ ||U3||∞ |δz3|
1 0.5e-01 0.5e-01 0.5e-01 0.8e-01 0.8e-01 0.1e-00 0.8e-01
2 0.4e-02 0.4e-02 0.3e-02 0.2e-01 0.2e-01 0.4e-01 0.2e-01
3 0.1e-03 0.1e-03 0.7e-03 0.5e-03 0.5e-03 0.4e-02 0.7e-03
4 0.2e-07 0.2e-06 0.2e-06 0.2e-05 0.2e-05 0.4e-04 0.2e-05
5 0.8e-10 0.6e-10 0.2e-09 0.8e-09 0.5e-08 0.2e-07 0.7e-08
6 0.9e-13 0.4e-12 0.9e-12 0.3e-11 0.1e-10 0.8e-10 0.2e-10
7 0.1e-15 0.1e-15 0.1e-15 0.9e-15 0.8e-14 0.2e-12 0.8e-13

Fig. 3. Spectrum for example (ii). NFFT=64, NN=4

Fig. 4. Circle map for example (ii)
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Table 4. Newton steps for example (iii). NFFT=256

NN |δρ1| |δρ2| |δρ3| ||U1||∞ ||U2||∞ ||U3||∞ |δz3|
1 0.1e-00 0.1e-00 0.1e-00 0.5e-01 0.6e-01 0.9e-01 0.7e-01
2 0.2e-01 0.2e-01 0.2e-01 0.4e-01 0.3e-01 0.5e-01 0.3e-01
3 0.3e-03 0.2e-03 0.2e-03 0.4e-02 0.6e-02 0.1e-01 0.1e-02
4 0.5e-04 0.3e-04 0.4e-04 0.8e-03 0.5e-03 0.8e-03 0.2e-03
5 0.6e-06 0.7e-06 0.1e-05 0.1e-04 0.4e-04 0.3e-04 0.9e-05
6 0.2e-07 0.4e-07 0.8e-07 0.8e-06 0.1e-05 0.8e-05 0.8e-06
7 0.6e-08 0.2e-07 0.2e-07 0.5e-07 0.1e-06 0.2e-06 0.4e-07

Fig. 5. Spectrum for example (iii). NFFT=64, NN=4

0.85986, ρ2 ≈ 0.84701, ρ3 ≈ 0.84701, andz3 ≈ (−3.0, 0.0). Since the
disks are not as well separated and the radii are larger than example (ii), this is
the harder problem. Table 4 shows data for NFFT=256. We took NCGM=40
per Newton step. Notice that quadratic convergence is lost. In Fig. 5 we show
an eigenvalue plot for the Newton step NN=4 corresponding to Table 4. The
eigenvalues are clearly smeared out and CGM made considerably smaller
progress. See Fig. 6 for graphics of the final map.

Example (iv).This is a3 circle test, Fig. 7. In the previous examples our
geometry had a lot of built in symmetry. The purpose of this example is to
remove any type of symmetry and to take a mixture of different boundary
curves. Boundary curveΓ1 is an ellipse with minor-to-major axis ratioα1 =
0.6 - the middle object in Fig. 7. Boundary curveΓ2 is an inverted ellipse
with α2 = 0.7 - the top most object in Fig. 7. Boundary curveΓ3 is also an
inverted ellipse withα3 = 0.5 - the bottom most object in Fig. 7. Table 5 is
the data for NFFT=256. We took initializationsρ2 = 0.80, ρ1 = ρ3 = 0.75,
z3 = (0.1,−3.1). Compare to final valuesρ1 ≈ 0.808633, ρ2 ≈ 0.872268,
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Fig. 6. Circle map for example (iii)

Fig. 7. Circle map for example (iv)

ρ3 ≈ 0.8060864, z3 ≈ (−0.005833,−2.98478). As in example (iii) we
expect this to be a difficult problem due to close circles and relatively large
radii.

Example (v). Multielement airfoil,Fig. 8. The target boundaries are gener-
ated using lemniscates,a cos bθ, and meant to simulate airfoils. To use the



Numerical conformal mapping 227

Table 5. Newton steps for example (iv). NFFT=256

NN |δρ1| |δρ2| |δρ3| ||U1||∞ ||U2||∞ ||U3||∞ |δz3|
1 0.6e-01 0.7e-01 0.6e-01 0.1e-00 0.1e-00 0.2e-00 0.1e-00
2 0.3e-02 0.6e-02 0.1e-02 0.3e-01 0.4e-01 0.3e-00 0.4e-01
3 0.4e-03 0.4e-03 0.4e-04 0.4e-02 0.7e-02 0.2e-00 0.5e-02
4 0.3e-03 0.1e-03 0.1e-02 0.2e-02 0.3e-02 0.5e-01 0.4e-02
5 0.6e-05 0.4e-05 0.6e-04 0.2e-03 0.8e-03 0.1e-01 0.9e-04
6 0.2e-06 0.4e-06 0.7e-06 0.4e-04 0.2e-03 0.5e-03 0.1e-05
7 0.4e-07 0.1e-05 0.1e-05 0.3e-05 0.1e-04 0.6e-04 0.3e-05

Fig. 8. Circle map for example (v)

circle map, we first remove the corners of each blade by applying 3 succes-
sive Karman-Trefftz maps producing 3 nearly circular curves. The final map
to the target airfoil domain is found by composing the circle map with the
inverse Karman-Trefftz maps. The circle map has been used in the aircraft
industry to compute flow around multielement airfoils [Ha]. More generally,
a succession of explicit maps, such as the osculation maps of Grassmann
described in [He], could be used to create nearly circular regions cheaply.
The centers and average radii of the near-circles would then provide a good
initial guess for our method.

Example (vi). 3 Limacons,Fig. 9. This example is self explanatory. We sim-
ply have a clustering of limacons. This example illustrates the conformal
behavior of our circle map near the target boundaries. We take concentric
circles and radial rays about each circle as the computational grid. This grid
is not as global in nature as the xy orthogonal grid but in some sense it is
more informative.
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Fig. 9. Circle map for example (vi)

Remarks.(1) For regions of connectivity greater than 2, it is not always clear
what the appropriate computational regions should be. The choice of a model
or canonical domain may depend on both the problem one wishes to solve
and the geometry of the target “physical” domain. Such questions, in fact,
arise already for simply connected geometries, where, for instance, comput-
ing flow in a channel and resistances of elongated circuits, or handling the ill-
conditioning of the mapping problem due to crowding for elongated regions
require mapping from a rectangle or an ellipse; see the papers by DeLillo,
Elcrat, and Pfaltzgraff [De, DE, DEP] for a discussion of these matters in
the present context of Fourier series methods and for references to work
of Driscoll, Gaier, Howell, Trefethen, Papamichael, Stylianopoulis, Weg-
mann and others on related questions for Schwarz-Christoffel and Riemann-
Hilbert methods.

(2) The first algorithm developed to find the circle map is known as
Koebe’s algorithm [He, notes at end of Chap. 17]. This algorithm was tested
by Halsey in [Ha]. Koebe’s algorithm uses an iterative method which finds
the normalized map from the exterior of some fixed boundary component
to the exterior of the disk (thus perturbing the other components) and then
alternates from component to component so that the computational domain
becomes gradually more circular. The centers and radii of the circles are
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found automatically in the process. A convergence proof for Koebe’s al-
gorithm due to Gaier can be found in [He]. The convergence is linear, but
generally quite rapid. We are exploring more efficient formulations of our
method to reduce the cost of the matrix-vector multiplications. Also, our ma-
trices have a block structure determined by the connectivity which could be
used to parallelize the matrix-vector multiplications. The Koebe algorithm
apparently cannot be parallelized in this fashion.

General introductions to numerical conformal mapping are given in
[Ga1] and [He]. A survey of the multiply connected case is given in [Ga2].
[Ell] computes the map to an annulus with circular slits using an expansion
method and finding a minimax solution to a linear approximation problem.
[KPS] use an orthonormalization method to compute the map to a disk or
annulus with circular slits. Modifications of Symm’s integral equation for
single layer potentials are used by [Re] to compute the maps to an annulus
with circular slits. [Ma] uses an integral equation formulation of Mikhlin
to map to a disk with circular slits. [Am1, Am2, Am3] uses a method of
fundamental solutions to map onto circular and radial slit domains. [Har1,
Har2] uses a method involving matching potentials to map onto a region
with arbitrarily specified boundary shapes such as rectangles with parallel
sides. [Vol] uses a “block method” for the Laplace equation to map to regions
with various geometries, including parallel slit and circular slit domains and
infinite domains with periodic structure. An additional method which uses
the circle geometry is given in [Pros].
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