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A b s t r a c t .  A Schwarz-Christoffel mapping formula is established for polygo- 
nal domains of finite connectivity m _> 2 thereby extending the results of Christoffel 
(1867) and Schwarz (1869) for m = 1 and Komatu (1945), m = 2. A formula 
for f ,  the conformal map of the exterior of m bounded disks to the exterior of 
m bounded disjoint polygons, is derived. The derivation characterizes the global 
preSchwarzian f "  (z) I f '  (z) on the Riemann sphere in terms of its singularities 
on the sphere and its values on the m boundary circles via the reflection principle 
and then identifies a singularity function with the same boundary behavior. The 
singularity function is constructed by a "method of images" infinite sequence of 
iterations of reflecting prevertex singularities from the m boundary circles to the 
whole sphere. 

1 I n t r o d u c t i o n  

Recently, it was remarked that "It is a longstanding dream to generalize 

[Schwarz-Christoffel] to multiply connected domains...", [5], p. 7. In this paper, 

we carry out that generalization for domains of connectivity m > 2 by deriving a 

formula for the conformal map of an m-connected, unbounded circular domain f~ 

onto an unbounded polygonal domain IP. The boundary of ~ consists of m disjoint 

polygonal curves. The point at infinity is in the interior of both domains and is 

held fixed by the mapping f : f~ --+ IP, f (oo) = oe. The boundary components of P 

may be polygonal Jordan curves, simple polygonal "two-sided" slits, or polygonal 

Jordan curves with some attached simple polygonal "two-sided" slits protruding 

into P. Our construction of the mapping function is based on infinite sequences of 

iterated reflections that generate infinite products in our mapping formula 

(1.1) f (z) = H \ ~ - s~i / d~. 
*=1 k = l  j=0 

vea~ (i) 
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The Zk,uj are generated by reflections of the prevertex points on 0f~. The s,,j are 

generated by the point at infinity and its reflections, and the/3k,j~r are the turning 

angles at the vertices of 017. The u's are multiindices. We explain all of these 

matters below. Our proof of the convergence of the infinite products in (1.1), and 

hence the validity of the formula, for connectivity m > 3 is valid for domains whose 

boundary components are disjoint and satisfy an additional separation condition 

described in the proof and discussed further in the paper. It should be possible to 

prove that disjointness is sufficient for (1.1). Our technique of using an infinite 

sequence of  iterated reflections and analytic continuation by reflection to construct 

the mapping formula is related to the "method of  images" used in electrostatics; 

cf. [11. 

The problem of finding a conformal map from a simple type of canonical 

domain to a general domain has a long history and has led to much elegant 

mathematical theory. If the domains are simply connected, the canonical domain 

is usually taken to be the unit disk and the theory is that associated with the 

Riemann Mapping Theorem. For multiply connected domains, various choices 

of "canonical" domain have been identified and studied [9], [8], [17]. The one 

we have chosen is the exterior of a finite number of nonoverlapping disks, which 

seems especially appropriate with the target domain being an exterior domain. 

Furthermore, there are various classical explicit formulas relating pairs of  some 

of the canonical classes of slit domains; but the circular domains seem to stand 

apart by themselves in this respect. However, since the parallel slit canonical 

domains are unbounded polygonal domains, our S-C mapping formula provides 

an explicit formula connecting mappings in the circular class with those in the 

parallel slit class of canonical domains. Also, the circular boundary components 

are convenient for the use of Fourier analysis of boundary data in applied problems. 

For a general target domain, there is no explicit mapping formula. On the other 

hand, in the simply connected case, if the target is bounded by a polygon, then 

the Schwarz-Christoffel (S-C) formula (3.1) gives an explicit representation of 

the map in terms of  quadratures and a finite number of  parameters (which must be 

determined numerically [6]). 

The (S-C) formula for the conformal map of an annulus onto a doubly connected 

polygonal domain (3.2) has been known for more than fifty years [12]; cf. [3]. 

However, with the exception of  special configurations involving much symmetry 

allowing reduction to a simply connected mapping problem, [7], [15], no explicit 

generalization to connectivity m > 3 seems to be known; see also [13], [14]. 

In our recent paper [3], we gave a new derivation of  the annulus formula based 

on the characterization of the global preSchwarzian f " ( z ) / f ' ( z )  of the mapping 
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function in terms of  its singularities and boundary behavior, a construction of a 

global singularity function S(z)  for the analytic continuation of the preSchwarzian, 

and then a proof that f "  ( z ) / f '  (z) = S (z). The construction consists of  an infinite 

sequence of repeated reflections which generate infinite products and the theta 

functions in the final formula for the mapping function (3.2). Our present work 

for higher connectivity uses the same general strategy, but the step to connectivity 

greater than two introduces new and substantial difficulties. The principal new 

feature that distinguishes the case m _> 3 from m = 1 or 2 is an exponential increase 

of  terms by a factor of  m - 1 at each of the infinitely many levels of reflections in the 

construction of  the singularity function and the attendant difficulties in describing 

and establishing the properties of S(z) .  

The remainder of  the paper is organized as follows: In Section 2, we set 

notation and present some supporting results on reflections, moduli,  separation 

and estimates of  radii. The global preSchwarzian, its singularity function, the 

main result (Theorem 1) and its corollaries for connectivity m = 2 are in Section 

3. Convergence of  the limit defining S(z)  for a region whose separation modulus 

A satisfies the bound A < 1 / (m  - 1) 1/4 is established in Section 4. In Section 

5 we show that S (z) satisfies the boundary condition necessary for proving that 

S(z)  = f " ( z ) / f ' ( z ) .  Some elementary graphical illustrations are given in Section 

6. 

2 P re l im inar i e s  

Throughout this work, C is the complex plane and Coo = CO {co } is the Riemann 

sphere. We let f~ denote an m-connected unbounded circular domain containing 

the point at infinity which is conformally equivalent to the unbounded polygonal 

domain ]?. That is, Oft consists of m disjoint circles Cj = {z : lz  - cj[ = r3}, j = 
m 1, . . .  ,m, and ft = Coo k [-Jj=l cIDj where clDj = {z : Iz - cjl _< rj} are the m disks 

with mutually disjoint closures.The corresponding polygonal boundary compo- 

nents f (Cj) of  IP are denoted by Fj, j = 1 , . . . , m  and given the counterclock- 

wise orientation. The Kj  vertices of Fj are denoted by wk,j, k = 1 , . . . ,  Kj  num- 

bered counterclockwise around Fj. The corresponding vertex angles of the Fj at 

the vertices wk,j, measured from the interior of IP, are denoted by rcak,j, where 

0 < ak,j < 2, and/~k,jZr is the turning of  the tangent at wj,k where 13k,j = ak,j -- 1. 

The prevertices are denoted by Zk,j E Cj with f (zk , j )  = wk,j. 
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2.1 Re f l ec t ions .  Throughout this work, the reflection of z through a circle 

6 with center c and radius r is given by 

r 2 
z* = p c ( z )  := c + _ _, 

z - - e  

i.e., z and z* are s y m m e t r i c  po in t s  with respect  to the circle  C. If  C = Cr, where T 

is an index of a circle, we denote pc~ by pr. 

In order to explain the reflection process and the indexing of  reflections of  

boundary circles, prevertices and the centers sj in odr work, we first describe the 

initial steps in the triply connected case which anticipate the general situation when 

the connectivity exceeds three. We begin with the unbounded, triply connected cir- 

cular domain f~, 0f~ = C1 tJ C2 U C3, which f maps conformally onto an unbounded 

triply connected polygonal domain l?. On each circle Cj, there are Kj  prevertices 

zk,j ,  k = 1, ..., Kj ,  j = 1, 2, 3. The reflection process begins by reflecting [2 through 

C1 to form f~l := pl ([2), reflecting [2 through C2 to obtain [22 := p2 ([2) and [2 

through C3 to obtain [23 := p3 ([2). Each of the three domains flj is a bounded 

triply connected circular domain with circular boundary components Cj,  Cji ,  i 7 t J, 

1 < i < 3 :  

0121 ---- C1 U C12 I..JC13, 0[22 -- C2 U C21 U C23, 0~-~3 : C3 I.j C31 I..j C32. 

At the next level, there are six reflections: ~1 is reflected through its interior 

boundary circles C12 and C13 and similarly for [22 and [23 producing the six 

bounded, triply connected circular domains 

[212:=p12 ([21) , [213:=p13 ( f h )  , [221:=p21([22) , [223:=p23 ([22) , 

[231:=p31(f~3) , [232:=p32(fh). 

The new boundary circles are 

C121 =/o12 (61) ,  6123 = 1012 (613) , 01212 : 612 i...j C121 I..j 6123, 

C131 =/913 (C1),  6132 = 1913 (612) , 01213 = 613 [..J C131 l...j 6132 

with similar results and notation for the boundaries of  ~"~21, [223, [231,and [232. One 

sees that by continuing in this fashion the number of  new regions and new boundary 

components created by the reflections at a given level is twice that at the preceding 

level; see Figure 1. Furthermore, the general m-connected case is similar, with 

m - 1 replacing the factor 2 in the exponential rate of  increase of regions and 

boundary circles. 
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Figure 1. Circle reflection notation. 

We now describe the iterated reflection process for the general m-connected 

unbounded circular domain f~ with boundary components C1,..., Cm. Fixing an 

index Ul E {1, ..., m} ,  we reflect 12 through the circle Cv1 to form an m-connected 

bounded circular region f~v1 with outer boundary C~ 1 and m - 1 holes bounded by 

circles C~j, 

~Ul : =  P,q (~ )  , Cv, j:Pua(Cj), j7Zul,j=l,...,m. 

Similarly, reflecting f~ through each of  the other m - 1 boundary circles, Ck, k r ul, 
produces circular domains with outer boundary Ck, m - 1 holes and inner boundary 

circles 

f ~ k : = P k ( a ) ,  Ckj:=pk(Cj), j C k ,  j = l , . . . , m .  

This set of  m reflections and corresponding circular subdomains, f~k, of  the com- 

plement is the first step in the sequence of  iterations of  reflections of  domains 
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through boundary circles which leads to an exhaustion of  the complement  of  f~ 

except  for  a set o f  limit points. 

At the next level, we produce  rn(ra - 1) domains  f~kj by reflecting each ftk 

domain  through each of  its m - 1 interior boundary  circles Ckj. For each k, 

this produces the m - 1 circular domains f~kj :--- Pkj (f~k) (j r k , j  = 1, . . . ,m) of  

connectivi ty m, each with outer boundary Ckj, and the m - 1 inner boundary circles 

Ckjk : = p k j ( C k ) ,  Ckji =p~j (Ck i ) ,  i � 9  { 1 , . . . , m } \ { j , k } .  

We note that for each fixed k and j r k, the first circle Ckjk is the reflection of  the 

outer boundary  of  f~k, while each of  the other m - 2 circles is the reflection of  one 

of  the inner boundary components  of  Ftk. 

In general,  the reflected regions and circles are labeled with multi-indices 

u = ulu2 . . . u ~  with uj �9 {1, . . . ,m}, uk r U k + l ,  k = 1, . . . ,n - 1; we write lul to 

denote  the length o f  u, i.e., [u I = n. 

D e f i n i t i o n  1. The set o f  multi-indices of  length n is denoted 

a n = { u l u z ' " u ~ : l < _ u j < _ m ,  u k C u k + l , k = l , . . . , n - 1 } ,  n > O ,  

and a0 = q~, in which case ui = i. Also, 

denotes sequences in an whose  last term never equals i. 

Thus,  if  u E an, n > 1, f ~  = p ,  ( f ~  . . . . . .  1) is a circular domain with outer 

boundary  C,  and m - 1 interior boundary circles 

(2.1) 

C,,,_~ = p, (C,I...,,_I) , C, j  = p, (C,~ . . . . . .  , j)  , j E { 1 , . . . , m }  \ {u,~_t,u~}. 

Note that if  v E a,~ then for j 7~ v,~, f~,j = p , j  (f~,). Clearly an contains 

m (m - 1) n-1 elements, which is consistent with our earlier comment  that the 

number  of  circular domains f ~  at a particular level o f  reflections, say v E ~,~, is 

rn - 1 t imes the number  of  domains  f~ ,  F E an-x ,  at the preceding level. 

It will be necessary to follow the successive reflections of  el, ..., am, the centers 

o f  the boundary  circles C~,..., Gin. Each e~ is the center of  the circular domain  

f~k because  it is the reflection of  oo through C~. Clearly, none of  the successive 

iterated reflections of  ek will be the centers of  the corresponding reflected domains,  

f ~ ,  v E en. However,  we can index each of  these reflected points with the index of  

the reflected domain in which it lies, i.e., s~ = p,, (s,~ ...,,_~ ), v E ~ ,  and sk := ek, 
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k = 1 , . . . , m  (to avoid confusion with the "center"  c, of  the reflected circular 

domain). We also note that if u E an, then for j r Un, s~j = p~j (s~). 

Clearly, one should index the reflections o f  the prevertices, z~,j, with the indices 

of  the reflected circles on which they lie. Thus, if u C c~n, then zk,, is the (iterated) 

reflection of  zk,a that lies on the circle Cv, and from (2.1) 

Zk,~._~ = P. (Zk,.~....=_l) , Zk,~j = p .  (Zk,.~...~._aj) , j C { 1 , . . . ,  m} \ {un-1, u .} .  

Similarly, we let r .  denote the radius of  a circle C. ,  u E an. 

The following elementary fact about successive reflections will be useful. 

P r o p o s i t i o n  1. Reflection o f  a set  o f  po in ts  U through circle Cx f o l l o w e d  by 

reflection through circle CT is the same as its reflection through circle C~ f o l l o w e d  

by reflection through C ~  = p~ (CA), the reflection o f  Cx through C~. Symbolically,  

p ~ ( p ~ ( u ) )  = p ~ ( p ~ ( ~ ) ) .  

P r o o f .  For simplicity in visualizing the geometry, one may think o f  the case 

when the two circles are nonintersecting. Since Moebius transformations preserve 

symmetry (reflection) in circles it is enough to assume that C~ is the real axis. Thus 

pT (u) = ~, the circles C;~ and C ~  are reflections of  each other in the real axis,  

Cr~ = c--;, rr~ = r;~ and 

2 
p~ (p~ (~))  = ~ + ~ _ ~ + _ _ ~  _ p ~  (p~ (~))  . [] 

- c--; p ,  ( u )  - 

The next result is used in Section 5. 

L e m m a  1. Let  u = ul . . . un E an and  j E { 1 , . . . , m } \ { u l } .  Then 

Cjv = p j ( C . ) ,  8jv = #j (su) a n d  Zk,jv = pj (Zkw).  

P r o o f .  We first show that Cj .  = p j ( C . ) .  This follows f rom Proposit ion 1 and 

is needed to apply Proposition 1 when 7- = j and )~ = u. Our proof  is by induction 

o n  I"J. 
For lul = 1, u = ul r j, we have Cj.~ = p j ( C . l )  by the definition o f C j .  1 in 

(2.1). 

For Ivl = 2, u = Z/lU2, ul r j ,  there are two cases. First, for  u2 ~ j,  we have 

Cj~a~2 = pjv~(Cj~2) by (2.1) 

= pjv~ (pj(C,~))  by definition of  Cj~2 

= PJ(P~I (C~) )  by Proposit ion 1 with 7- = j ,  A = Ul 

= PJ (C~a ~2 ) by definition o f  C,a v~. 
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Next, for u2 = j ,  we have 

Cj~ , j  = pj~, (C j )  by (2.1) 

= Pi . ,  ( P i ( C i ) )  since p j ( C j )  = Cj  

= p j ( p . , ( C i )  ) by Prop. 1 

= p j ( C . , j )  by definition of  C . l j .  

We now use our induction hypothesis, Cj,, = p j (C~)  for [u[ < n and show that 

the result is true for ]u[ = n > 2. Thus, let u = ulu2 . . .  Un, ul r j .  First, ifu,~ r Un-'2 

we have 

C j .  = p i . , . . . . . _ , ( C i . ,  ...... 2..) by (2.1) 

=- Pj.I  "".n-i  (Pj (Cul .--u,,-2.,~ )) by the induction hypothesis 

= pj (p. , . . . . ._~ (C. t . . . . ._2~=))  by Prop. 1 and the induction hypothesis 

= p j ( C . )  by (2.1). 

When un =/ /n-2 ,  we have 

C j .  = Pj.1 . . . . . .  , ( C i . , . . . . . - 2 )  by (2.1) 

= p j . ,  . . . . . .  , (pj (C~, ...-.-2)) by the induction hypothesis 

= pj (p.~ . . . . . .  ~ (C,,,....._2)) by Prop. 1 and the induction hypothesis 

= p j ( C j . ,  . . . . . .  , - . -2)  by (2.1) 

= p j ( C . )  since un-2 = un. 

Similar reasoning yields the result zk , j .  = pj (Zk,u) , since zk , j .  E C j . .  

We now note that S.q = puq (8u) q ~ un(by the definition of  suq) and then argue 

inductively. Recalling that s3 = pj (co), s~, = p~, (oc) and applying Proposition 1, 

we find that 

8j . ,  = Pjv, ( s j )  = p j . ,  (pj (oo)) = pj  (pu, (oo)) --- pj (By,) 

and similarly s j . , . :  = P j . , . 2  (s t . , )  = Pj . , .2  (PJ ( s . , ) )  = pj (p . , .~  (Sul))=pj (8.,v2). 
Using the induction assumption sj~l....=_ , = Pi ( s . l . . . ~ . - , ) ,  the first part of  the 

lemma, and Proposition l ,  we argue that 

s j ,  = ( s j , , . . . , . _ , )  = ( , . ,  . . . . . .  , ) )  = ( p ,  ( , , , . . . , . _ , ) )  = 
[] 
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2.2 M o d u l i  and separation. Let #jk 1 denote the conformal modulus of 

the doubly connected region bounded by the curves Fj and Fk. That is, the region 

is conformally equivalent to the annulus #jk < Izl < 1. For the region exterior 

to two mutually exterior disks with centers cj, ck, radii rj, rk and distance between 

centers dj,k = Icj - ckl, one has the elementary formula 

(2.2) # j k  = 2 r j r k  ' 

for the conformal invariant #jk obtained with the Moebius mapping of the region 

onto the annulus #jk < Izl < 1. 

The following lemmas are used in our convergence proofs. We denote the area 

enclosed by a curve F by ~(F). 

L e m m a  2. Let B be a bounded doubly connected region with finite modulus 

#o~ > 1, bounded on the outside by a Jordan curve F0 and on the inside by a 

Jordan curve El. Then 
< 

Proof .  See [10], Lemma 17.7c (a), p. 503. [] 

Note that if F0 and F1 are two circles of radii r0 and rl,  then the lemma is 

r l  _< ~01r0  �9 

It is essential to have the disjointness (separation) of the m boundary circles Cj 

expressed analytically. We do this with the nonoverlap inequalities 

sep .__ r j  q- rk  _ r j  q- rk 
(2.3) #jk "-- I C j - - C k  f dj---~k < 1, j T ~ k ,  l < _ j , k < _ m .  

We now define the separation modulus of the region 

sep (2.4) A := max #ij 
i , j ; i r  

for the m boundary circles C~, cf. [10], p. 501. Let C~ denote the circle with center 

cj and radius r~/A; then geometrically, 1/A is the smallest magnification of  the m 

radii such that at least two Ci's just touch. 
sep The quantities/~k in (2.3) are not conformally invariant, but one can express 

the nonoverlapping property in terms of  the conformally invariant quantities c~,k 

defined by 

1 1 d2 ,k-  ( r j  q- rk )  
(2 .5)   j,a := 5 + = 

The second equality follows from (2.2). Two mutually exterior circles Cj and Ca 

are nonoverlapping if and only if ~,k > (rj + ra) 2, i.e., if and only if c~j,k > 1. 
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( 8ep]2 < A 2. Propos i t ion  2. #jk < •#jk ] -- 

Proof .  To simplify notation, we consider a typical pair of circles Cj, Ck and 
sep write #8 = #j,k, a = aj,k, d = d j , k .  Thus (#sd) 2 (rj + rk) 2, and from (2.5), 

2 #~ (r~. + r~ + 2ar j rk )=  rj + r~ + 2rjrk. Further manipulation and the geometric- 
arithmetic mean inequality give 

2 

2 r j r k  -- 

with equality if and only if rj = rk. Continuing, we find that 

1 o+i 

and hence ~ < #s, since ~ < 2 ~v/-fi~- / ( # j k  3r- 1) ~ # s -  The inequality is 

strict since #jk < 1. Clearly, for many nonoverlapping circles, the result follows 
sep since A : m a x j , k ; j #  k # j k  �9 [] 

L e m m a  3 ([10], p. 505). 

~ t  

E _< E 
v E a n + l  i : 1  

2 _< A 4~ ~_~ Z ru r i �9 
2 

vE an+ l  / : 1  

Proof .  (Idea o f  proof  for m = 3.) Here (Cj)v denotes the reflection of 

C3 through C~. (This is not the magnification of C, by 1/A unless the circles 

are concentric.) By Proposition 2, Lemma 2 and the geometry of the areas, 
a(C,)  < A2a(C~). Thus, for instance, we have 

This gives the first step, and a(Cv) = 7rr~ gives the second inequality. [] 
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3 Analyt ic  continuation and the mapping  formula  

In this section, we describe the analytic continuation by reflection of the map- 

ping function, the singularities of the preSchwarzian f"  ( z ) / f '  (z) and its singu- 

larity function S (z). We give a precise statement of our mapping formula and its 

proof in Theorem 1. The convergence and boundary property of S (z) are used 

here, but the somewhat cumbersome details of these proofs are postponed to the 

following two sections of the paper. 

We begin with some general observations about Schwarz-Christoffel type map- 

ping formulas of the unit disk and the annulus that motivate our present work for 

the m-connected circular domain. In each case, the formula is an integral of a 

product function 

f (z) = P (~) a~, 

or equivalently f '  (z) = P (z). For mapping the unit disk to a polygonal domain, 

the geometry of the polygon determines that arg(f'  (e it) ie it) is constant on arcs of 

[z] = 1 with jumps r at the prevertices, zk, and hence the product has the form 

K 

(3.1) f '  (z) = P(z)  = H ( z -  Zk) - ~  . 
k = l  

Mapping the annulus # < Iz[ < 1 onto a conformally equivalent doubly connected 

polygonal domain leads to infinite products 

(3.2) f ' ( z ) = P ( z ) =  H O z 0 #___~z 
k=l  j = l  \Z l , j ] J  

involving the theta function, O (w) = l-I~__0 (1 - #2~+lw) (1 - #2~+l/w), [12], [3]. 

Although the local analysis of the boundary mapping of the annulus is driven 

by the same geometric idea as for (3.1), it is not obvious why there are infinite 

products and what they should be. One approach to this problem is to use the 

geometric properties of the mapping function f under reflections and the affine 

invariance of the preSchwarzian to generate a formula for the analytic continuation 

of a globally defined, single-valued preSchwarzian [3]. Note that in terms of the 

product function, one has f "  ( z ) / f '  (z) = P' ( z ) / P  (z). We now use this general 

strategy for the m-connected domains in the present work. 

Our derivation of the mapping formula (1.1) begins by considering the analytic 

continuation of f from f~ to a domain flj by reflection across an arc 7k,j between 

successive prevertices Zk,j, Zk+l,j on Cj. Such an extension ]k,j has the form 

]k,~(z) = f ( z ) ,  z e f~ u l'k, ]k,y(Z) = ak , j f ( cy  + r]/(~-- ~))  + b~,j, z e f~j, 



28 T. K. DELILLO,  A. R. ELCRAT A N D  J. A. P F A L T Z G R A F F  

with ak,j,bk,j determined by the line containing the edge f('Tk,j) joining Wk, j 
and Wk+l,j in the boundary of 1P. This reflection maps f~j conformally onto 

IPk,j, the unbounded, m-connected polygonal domain obtained by reflecting ]P 

across the line containing the segment f('Yk). In general, if v 6 a,~, one can 

obtain a continuation of f to the reflected m-connected circular domain f2~, = 

P- ( f~ . l  .~.-, ) by a finite number of successive reflections. By repeated application 

of the reflection process, one obtains from the initial function element (f, f~) a global 

(many-valued) analytic function f defined on Ca  \cl{zk,. ,  s~}, where Zk,. and s~ 

denote the original prevertices and centers and all of their images under sequences 

of iterated reflections and cl denotes closure of the set. Any two values fr (z) and 

fs (z) of f a t  a point z E C \ cl{zk,~, s .}  are related by the composition of an even 

number of reflections in lines, and hence fs(z) = a f r  (z) + 13 for some a,/3 E C. 

The preSchwarzian f " ( z ) / f ' ( z )  is invariant under affine maps w ~-+ aw + b, i.e., 

(af(z)  +b)"/(af(z)  +b)' = f " ( z ) / f ' ( z ) .  Thus, if one begins with the preSchwarzian 

of the mapping in f~, the reflection process yielding the many-valued f a l so  defines 

a global analytic preSchwarzian, f " ( z ) / f ' ( z ) ,  which is defined and single-valued 
on C\cl{zk,~, s ,} .  

As we shall see, the preSchwarzian is determined by its behaviour on the singu- 
larity set {Zk,~, s~}. Since f extends analytically by reflection across each boundary 

circle except at the prevertices, it maps a circular arc containing a prevertex zk,i 
onto a pair of line segments meeting at the vertex Wk,i with angle ak,i~r. Hence the 

function ( f  (z) - Wk,i) 1/~'~ maps the circular arc onto a straight segment, so by 

the reflection principle is analytic in a neighborhood of Zk,i with a local expansion 

(3.3) ( f (z)  -- f ( Z k , i ) )  1/ak'i = (Z -- Zk,i) hk, i (Z ) ,  

where hk,i (z) is analytic and nonvanishing near zk. This gives the local expansion 

f l !  (Z) / f '  (Z) = /3k, i /  (Z -- Zk,i) "[- Hk ,  i ( Z ) ,  ]~k,i = ak,i -- 1, 

where Hk,i (z) is analytic in a neighborhood of Zk,i, and/3k,iTr is the jump in the 

tangent angle at the vertex wk,i. Recall that elementary geometry of the turning 

tangent shows that -1 </~k,i _< 1 and ~"]~kml/3k,i = 2. 

The point at oo and its iterated reflections are singularities of the preSchwarzian. 

This is a departure from the behavior of S-C maps of the disk and annulus to 

bounded polygonal domains. This feature is common to exterior maps and intro- 

duces double poles 1/(z - p)2 in the integral formula for the S-C mapping formula, 

[16], p. 329, Thm. 9.9. Since f(oc) = oo, there is a simple pole o f f ( z )  at infinity 

and an expansion 

f ( z )  = az  + ao + al  + a2 z Z + a # O  
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at oo. This gives 

f t t ( z )  - -  2z~'q-'''2a __ 2al + [~4] 
f ' ( z )  a -  ~ + . . .  a z 3  

at ~ .  Here and elsewhere in the context of  a series expansion, we use the standard 

notation [ ( z -  ~)k] to denote a series in powers of  (z - ~) that has a factor of  (z - ~)k. 

If ](z) is an analytic continuation by reflection of  f across an arc of  a circle 

with center c and radius r, then oo reflects to c and 

A f (_sr2 ( -_ar 2_ z - c ) ] ( z ) =  ~ + c ) + B = A  + ~--6 + ~o + ~ 1 ~  + . . .  + B  
- \ z - c  

for z near c. This gives 

]"(z) A ( ~ + - - ' )  2 
- - -  - -  + b 0 + [ ( z - c ) ] .  

]'(z) A ( - ~  + . . . )  z - c  

A similar calculation shows that the extension of  f by reflection through interior 

circles leads to the same behavior near the reflections s .  of  the centers of  the circles 

cj, 

] ( z ) -  ";~ + ~ + [ ( z - s ~ ) ] ,  ]"(z___)) _ ~ + ~ + [ ( z - s ~ ) ] .  
z - ~ ] , ( z )  z - s v  

This can be seen by considering reflections through a circle of  radius r and center 

c, replacing pc(Z) - pc(s.) by its conjugate in the expansion of  f near pc(s~) and 

using 
r2 r 2 r 2 ( z  - ~) 

- -  - = [ ( z  - ~ ) ]  
z - c  ~ v - c  ( c - s ~ ) ( z - c )  

for z near s~. This gives the desired expansion around the simple pole pc(S~). 

D e f i n i t i o n  2. The singularity function S (z) of  the global preSchwarzian is 

the infinite sum of  the singular parts of  the local expansions of  f"(z)/f~(z) at all 

o f  its singularities, zk,~ and sv. 

Thus one should think that 

slzl=E E 
j=0  i : 1  v E a j ( i )  

and with more care formulate the 

k=l  Z - -  Z k , v i  Z - -  8 v i  

D e f i n i t i o n  3 .  W e  h a v e  

S ( z ) - -  lim SN(Z) 
N---+~ 
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where 

N ~ ~:' Zk,,(zk,.i - s. ,)  
s,, (z) = E E E : s.,) 

j=O  i---1 v E a j ( i )  k = l  

~ Ki N (Zk,vi -- Svi) 
: E k,, E 

i : l  k = l  i=0 
v6aj(i) 

Note the equivalent forms of  the summand 

( z - ~ ( z  :~,) z - z . , . ,  z - s . , ,  z - z ~ , . ,  z - s . ,  
k : l  : k : l  

since the flk,i sum to 2. We defer  to a later Section the convergence proof  of  the 

sequence {SN (z)}. 

The principal idea in our work is that the singularity structure and the following 

boundary behavior of  the preSchwarzian which is shared by S (z) (see Section 

5 below) enable one to deduce that f "  ( z ) / f '  (z) = S (z) and hence its complete 

characterization. 

L e m m a  4. Re {(z - cj) f "  (z) / f '  (Z)}lz_c~l:r j = -1 ,  j = 1, ...,m. 

Proof .  The tangent angle r  = arg{irjei t f ' (cj  + rjeit)} of  the bound- 

ary Cj is constant on each of  the arcs between prevertices. Hence r  = 

Re{(z  - c j ) y " ( z ) / y ' ( z )  + 1} = O, Iz - eel = r i , z  r Zk,j. [] 

We now present our main result. 

T h e o r e m  1. Let ~ be an unbounded m-connected polygonal region, oo E IP 

and f~ a conformally equivalent circular domain. Further, suppose IP satisfies the 

separation property A < (m - 1) -V4 for  m > 1. Then f~ is mapped conformally 

onto ~ by a function o f  the f o rm  A f  (z) + B, where 

SZfigi[ fi ({Z---'''vi~] ]~k'i (3.4) f (z) = H \ ( - s.i / d;. 
i=1  k = l  j=o 

v~aj  (i) 

Here, the turning parameters satisfy - 1  < flk,i <_ 1 and E k < l  flk,i = 2. The 

separation parameter  A is given (2.4) explicitly in terms o f  the radii and centers 

o f  the circular boundary components  o f  fh 

P r o o f .  The central idea is to prove that f "  ( z ) / f '  (z) = S (z) by means of  the 

argument principle. We use the following two results, whose proofs are postponed 
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to the following two sections of  the paper in order to keep the essence o f  the present 

proof  from being obscured by details of  the calculation. 

(i) Convergence: S (z )  = l imN+~ SN (z) uniformly on closed subsets of 

cl (12) \ {PV}, where {PV)  denotes the set ofprevert ices  on the m circular boundary 

components of  12 and cl denotes closure of  a set. 

(ii) B.C.: Re{(z  - 8j)S(z)}zcCj = - 1 ,  j = 1, . . . ,m. 

For z E (c112)\ {PV} ,  we define the functions 

f" H(z) := S(()d(,  HN(Z) := SN(()d(, P(z) := e H(~). 

We first note that 

HN (z) = SN(()d( = E flk,, 1 1 
j=O i=* .e.j(i) ~=] ( -- Zk,~., ( -- S.i 

m d (  

is defined and analytic in 12 since its periods are zero. Indeed, fc~+ SN (z) dz = 
O, r = 1, ...,m, where C~+ is a circle concentric with the boundary circle C~ with 

radius slightly larger than that of  C~, since the residues add out in pairs, and for 

the "point at infinity" limN_,~ z2SN (z) = O, which eliminates any period over 

large circles enclosing all of  the boundary components  of  12. Furthermore,  H (z) 

is analytic in f~, since 

f" f" H ( z )  = lim HN (z) = lim Sg(( )d(  = S(()d(, z E cl (12) \ {PV} 
N--+cx) N--+oo 

with Sg(z)  --+ S(z) uniformly on closed subsets of  cl (~) \ {PV}.  

The next step is to develop a formula for the antiderivative (up to an additive 

constant) 

j z  ~ o / z m  K' ( I  1 1 
HN(Z) = S N ( ( ) d ( =  E E E ~k,, ( -  z, , . ,  ( z-s . ,  d( 

' =  / = i  vEai(i ) k = l  

N m Ki f z  1 

F EEF  j = ~k, i  ( - z k , . i  j=o i=1 vea~(i) k=l 
N m Ki ( ) 

: E E  E E,k,log z:zk,. 
\ Z -- 8.i j=O i = 1  .Eaj(i) k = l  

= ~k,, log z_-- zk,.i , 

i = 1  k = l  2=0 \ Z -- 8.i ] 
.eai (') 

1 
m d (  
( -- 8vi 
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where each logarithm is the branch that vanishes at z = ee, i.e., log i = 0. From 

the preceding formula, one has 

P ( z ) :  lira exp{HN(z)}= lim f i  KH N ~ i = l k = l  fij=0 

and hence the product formula for P (z), 

i = 1  k--1 j=0  
veaj (i) 

Our theorem, 

quotient 

~c~j (i) 

f (z) = A f Z p  (~)d~ + B, is equivalent to showing that the 

To accomplish this, we apply the argument principle to Q(z). First, observe that 

P'(z) = H'(z)e H(z) = S(z)P(z), that is, P'(z) /P (z) = S (z), and 

= - - ~ \ f ,  = O \ f ,  - S  . 

Then, for z = cj + rje i~ E Cj, the boundary conditions of  Lemma 4 and Theorem 5 

on f " / f '  and S, respectively, give 

--00 arg Q(z) = Im{log Q(z)} = Re{(z - cj)--Q-~]" Q'(z) l 

By our construction of S(z), f" (z) / f ' ( z )  -S(z )  is continuous on all of  Cj, including 

at the prevertices. Therefore, arg Q is constant on each of the m boundary circles 

Cj. Equivalently Q(Cj), the image of Cj, lies on a half-ray emanating from the 

origin. It is clear by the local behavior (3.3) and formula (3.5) that Q = f ' / P  is 

continuous on each Cj and not equal to 0 or c~ there, since f ' ,  P 7~ 0. Thus for any 

WO E C\Q (Cj), j = 1,. . . ,  m, the winding number of  Q(Cj) around Wo satisfies 

n(Q(Cj), wo) = 0 for all j .  Let  CR be a large circle of  radius R centered at the 

origin containing w0 and all the Cj's in its interior, and write C = C1 U. . .  t3 Cm t3 CR 

with the curves oriented so that the region interior to CR and exterior to the Cj 's  

is on the left. Since Q has no poles in the region, by the argument principle (for 

bounded regions), the number of  times Q(z) assumes the value w0 is 

n(Q(C), wo) = n(q(c1), +. . .  + n(Q(Cm), wo) + n(Q( CR), = 

z - svi ] 

~k,i 

f'(z) 
Q(z )  . -  P ( z )  =- constant .  
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We now show that n(Q(Cn, w0) = 0. First, 

l /  Q'(z) d z =  l /  Q'(z)/Q(Z) d 
n(Q(C~), wo) = 2rci Q(z) - wo 27ri 1 :  wo---7~) z. 

Izl=n M=n 

Recall that Q'(z)/Q(z) = f " ( z ) / f ' ( z )  - S(z) = [ 1 / z  3] - [ 1 / z  2] = O(1/z 2) for z 

near oo, and that Q(oo) = f'(oo)/P(oo) is a finite constant. It suffices to assume 

w0 r Q(oo). Then W o r  Q(z) for R sufficiently large, and there are constants 

A, B > 0 such that 

as R ~ co. 

q'(z) /Q(z)  
i : dz 

27r 

Izl=n o 

Therefore n(Q(C),wo) = 0, and Q(z) 7k wo for wo r Q(Cj) and 

w0 r Q(oo). Thus, Q assumes values only on the radial segments Q(Cj) (or Q(oo)) 

and hence, by the open mapping property of analytic functions, Q must be constant 

on ~. [] 

In the special case when m = 2, there is no restrictive separation hypothesis, 

since then A < (m - 1 )  - 1 / 4  = 1 is equivalent to the requirement that the two 

boundary components be nonoverlapping, an obvious necessity for double con- 

nectivity of ft. Clearly, the doubly connected case is easier because there is no 

exponential doubling of singularities in the reflection process. We conjecture that 

the result is true for the general case m > 2 when A < 1, i.e., when the boundary 

components are disjoint with no additional separation restriction. Note also the 

remark following the proof of Theorem 3. 

The following corollaries show the relative simplicity of the mapping formula 

for doubly connected unbounded polygonal regions. The second corollary shows 

that with appropriate normalization of the circular domain, the thcta function in 

Komatu's result (3.2) appears in the formula, and hence removes some of the 

mystery about the nature of the infinite products. 

C o r o l l a r y  1. Let ~ be an unbounded doubly connected polygonal region, 

oo E P and f~ a conformally equivalent circular domain. Then l~ is mapped 

conformally onto IP by a function of  the form A f + B, where 

SZ /'t'knl [ (~--Zk,va~ ]"~'1 n [ ) } <3.6) f (z) = fi fi ( (--z,,.9. B,.,, 
vE~3 (I) vEc~j (2) 

The multi-indices contain only the integers I and 2; hence in the first product, 

there is only one v in each aj(1), i.e., as j runs through the integers 1, 2, 3, 4 , . . .  
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the corresponding sequence o f  subscripts vl  is 1, 21,121, 2121,. . . ,  respectively. 

Similarly, in the second product  the subscripts v2 run 2, 12,212, 1212, etc. With 

some inspired rearranging and intricate manipulations it is possible to get an 

interesting formula with theta functions which is equivalent to (3.6) and related to 

(3.2). There  is no loss o f  generality in letting the two boundary circles of  f~ be the 

unit circle C1 and a circle C2 with center c > 1 and radius r. 

Corollary 2. Let P be an unbounded doubly connected polygonal region, 

oo E IP and f~ a conformally equivalent circular domain with boundary components 

the unit circle C1 and C2 a circle of  radius r and center e > 1. Then f~ is mapped 

conformally onto I? by a function o f  the form A/+ B, where 

(3.7) 

where # is the conformal modulus (2.2) o f  f~ (and ~ ), 

c 

T (~) - - and p =  l + r#" 

4 Convergence of S(z) 

In this section, we prove that 

S ( z ) =  lim S g ( z )  
N--re<) 

uniformly on closed subsets of  (clf~)\ { P V }  when the regions satisfy the separation 

condit ion A < (m - 1) -1/4. 

4 .1  Convergence for m = 2. To illustrate our technique, we first construct 

the singularity function by a reflection argument for  the case m = 2. Here i = 1, 2 

and v = 121- . .  or u = 2 1 2 . . . .  For the map w = f ( z )  f rom the exterior o f  two 

disks to the exterior of  two polygons,  the singularity function is 

\ k = l  Z Z k , v l  Z " - - 8 v l  "at" - " - -  Z - -  Z k , v 2  Z - -  8 v 2  

Our next  task is to establish convergence of  this expression. 
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T h e o r e m  2. For the exterior 2-disk c a s e ,  S N ( Z )  converges to S(z) uniformly 

on closed subsets of  (clQ)\ {PV} by the following estimate: 

IS(z) - SN(Z)I = o(uN). 

g i  P r o o f .  Using ~k :a /3k , i  = 2, we can write the partial sums SN(Z) of  the series 

for S(z) in a fo rm suitable for establishing convergence of  

oo 

S(z)=F.,A,(z), 
j=O 

where 

Aj(z) = Z Z - -  Z k , v l  Z - -  S v 1  Z - -  Z k , v 2  Z uEaj(i) \k=l uEa~(2) \k=i 

K, Zk,l(Zk,~i - ~1 )  us Zk,2(zk,v~ -- ~ v ~ )  

Z Z (Z'~Zk,-~I)(Z._--8-Z1) q- Z Z (; '~ Zk---~u2)(Z----8--uu2)" 
.c,~j(1) k=l ~e,~j(2) k=l 

Letting G be a c losed subset o f  (clf~)\ {PV},  z E G and applying L e m m a  2, we 

obtain 

l A y ( z ) [  <_ C([Zk,~,l - 81,1[ -+- [ zk , t / 2  - -  s~,21) _~ c~J2(rl q r2). 

This estimate establishes the convergence S(z) = l img~o~ Sg(z) as claimed. [] 

4.2 Convergence for general m. We let 

H = cl(f~) \ {Zk,i : k = 1 , . . . , m , i  = 1 , . . . , K i } .  

F o r j  = 0 , 1 , 2 , . . . ,  we write 

A J ( Z ) = E  E - -  
i=l~Eaj(i) \k=l 

~ ~' /3~#(zk,~i - s~ )  2. : E E  . . . . . .  ; 

Z - -  Z k , v i  Z - -  8 v i  i = l  v e ~ r j ( i )  k = l  ( Z  - -  Z k , v i ) ( Z  - -  8 v i )  

hence, in br ief  notation, 

N 
SN(Z) = ~-'~ Aj(z), S(z) = iim SN(z). 

N---i. oo j=0 

I f  G is a closed subset  o f  H, and 

- - ~ a =  inf {[Z-- Zk,~[,[z-- s~[ : k =  l , . . . , m ,  u E a} 
zEG 

= inf {[z - z k , i l : k  = 1 , . . . , m , i  = 1 , . . . , K i } ,  
z E G  
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then 3 > 0 and the second expression for ~ holds since the zk,~'s and the s , ' s  lie 

inside the circles. 

We have the following 

T h e o r e m  3. For connectivity m > 2, SN(Z) converges to S(z)  uniformly on 

closed sets G C H by the fol lowing estimate: 

IS(z) - SN(Z)I = O((A2~)N+I), 

f o r  regions satisfying the separation condition 

A < 1 / ( m -  1) l/a. 

P r o o f .  Note that the number of terms in the Aj(z )  sum is O((m - 1)J). This 

exponential increase in the number of terms is the principal difficulty in establishing 

convergence. Recall that r~i is the radius of circle C,i. We bound Aj (z) for z E H, 

using the facts -1  < 13k,i <_ 1, izk,.i - s~ii < 2rvi, Kmax := maxi Ki, and the 

Cauchy-Schwarz inequality, as follows: 

IA~(z)l--I Y~ Y~ ( z - - ~ ( z - 7 ~ )  I 
vEaj(i) i : 1  k= l  

K ,  ifik_,d izk,___~!_ s .  d < 
" - "  " - "  Iz - z k , ~ l l z  - s.~l vEou(i  ) i----1 k = l  

vEcrj(i) i=i k=l 

2 K m a x  m 

vEo~(i) i=1 

2 K m a x  r2" -<-7-  Z E 1 
\ vfiaj(i) i=1 vEaj(i) i=1 

( E E< 
vEaj(i) i = l  / 

5 CA2J(m - 1) j/2 

1/2 

by Lemma 3, where 5 = 6a. Therefore, the series converges if A2~/-m - -  1 < 1. [] 
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R e m a r k .  For rn = 2, by Proposition 2, we have #12 < A 2, so the results for 

Theorem 2 are sharper  than those of  Theo rem 3. This suggests the convergence 

results can be improved  for the general case. Our current convergence estimates 

based on A indicate that convergence is fast  if the circles are wel l-separated and 

slow if some of  them are very close to each other. 

5 S(z) s a t i s f i e s  t h e  b o u n d a r y  c o n d i t i o n  

Here we prove that S (z) satisfies the boundary  condition 

Re {(z - sj)  S (z)}zcc,  = - 1  

as claimed in the p roof  of  the main theorem. We use the formulas  

R e { w - - ~ }  : 1 / 2  f o r ] w l : l  (5.1) 

and 

(5.2) {~-i w* } Re w + w* - 1 

where w and w* = 1 / ~  are symmetr ic  points with respect  to the unit circle�9 

5.1 T h e  b o u n d a r y  c o n d i t i o n  f o r  m = 2 

T h e o r e m  4. For the unbounded, doubly connected case 

Re {(z - c i )Sg(z)}  = --1 + 0 ( #  N) 

f o r z  E Ci, i.e., [ z - c i l  =r i .  

P r o o f .  To illustrate our proof, we write o u t  S N ( Z )  for N = 2: 

K, Z&,A 
s~.(z) = ~ z - zk,~ 

V "  + 
Z - -  Zk,12 

k = l  

K2 ffk,_22 V" + 
A...r Z - -  Zk,212 
k = l  

K2 /~k,2 2 K1 /~kl 

Z - -  8 1  = Z - -  Z k ,  2 Z - -  8 2  = Z - -  Zk,21 

K ,  ]~k,1 2 

Z --  812 = Z - -  Zk,121 

2 

Z - -  8212 

Z - - 8 1 2 1  

Z - -  821 
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N e x t  w e  rearrange S2(z)  in a f o r m  c o n v e n i e n t  for  the ref lect ion ca lcu lat ion  o n  the 

c irc le  Iz - s l l  = r , ,  

Kl  K2 K2 

k = l  Z - -  Z k ,  1 Z - -  "~1 = Z - -  Z k ,  2 Z - -  8 2  = Z - -  Z k , 1 2  Z - -  812 

K, 13k,1 2 K, /3k,1 2 
+ Z  - - - + Z  - Z Z k , 2 1  Z - -  821 Z Z k , 1 2 1  Z - -  8121 

k = l  k = l  

K2 ~k,2 2 
+ Z  - - -  

k=l z - zk,212 z - s212 

K2 /~k,2 K2 /3k,2 2 2 Ks ,5'k,1 2 + k . ~ l  + , ~  

Z - -  Z k ,  1 Z - -  81  Z - -  Z k ,  2 Z - -  Z k , 1 2  Z - -  8 2  Z - -  812 
k = l  = k = l  

K, /:Tk,1 K, ,Sk,1 2 2 + Z  - -  + Z  - 

Z - -  Z k , 2 1  Z Zk,121 Z --  821 Z --  8121 
k = l  k = l  

h ' 2  ~ k , 2  2 

+ E  - ' k = l  Z --  Zk,212 Z --  8212 

so  that 
K1 K2 

(z  - ~,)S2(z) : ~ ~,~_,,(z 2_~,1 2 + ~ ~'k'3(z---~') 
k = l  Z i Z k ' l  k = l  Z - -  Z k ,  2 

+ E '~k"--'2(-'-'Z" -- 8--11 2 --  81 + Z : 81 

k = l  Z - -  Z k , 1 2  8 2  Z - -  812 ] 

K1 s l~k,i(Z--81) ( Z--81 Z--81 ) + , _ _ ,  ~ k , ~ ( Z : ~ l )  + . . . . .  2 - - - + 

k = l  Z - -  Z k , 2 1  k = l  Z - -  Z k , 1 2 1  \ Z - -  821 Z --  8121 

( Z  - -  81 )  Z - -  Z k , 2 1 2  Z - -  8212 
+ 

\ k = l  

= s f l k , l ( Z  - -  8 1 ) / ( Z k , 1  - -  81)  

~:, F : ;, ~-/52,1 : ; , 7  : i  - 2 

K2 ( (z - Sl)/(za,2 - sl) 
+ ~ _ , Z k . 2  \ (z  _ s x ) l ( z k . :  - s . )  - 1 

k = l  

( Z  - -  8 1 ) l ( Z k , 1 2  - -  81 )  "~ 

+ (z - Sl)l(Zk,12 - s,) - 1 ) 
( + ) - 2  ( z : 2 , ) - 7 ~ - - ~ : 1  ( z - -~57( - ;S :7 ,7 :  
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K1 ( (Z -- ~,)/(Zk,21 -- 8,) 
q - E  ilk" (Z --~'S-,~ : 8,) -- 1 

k=, 

(z- si)l(zk,:2: - 8:) ) 

+ (/: ~,~ -: ;,7-: 1 

-2{'  _(::8,1/(~:-~,) + (Z-sl)l(s,2:-si)) 
\(z - 8,)/(~, -Y:~:- : ( z : 7 , ~  -::j-: 1 

K2 
q- (Z -- 81) E f l k ' 2 ( Z k ' 2 1 2  - -  8212) 

~=, ( z : ~ ( z - - ; ~ , 2 )  

In the first term of  the expression above, I(z --81 ) / ( Z k ,  1 - - 8 1  )l = 1 for [ z - s : [  = rl .  

Also, we have paired each zk,. and s~ with their reflections in C:. Thus, for instance, 

with [z - 811 = r I we have zk,:2 - s: = r~/(-2~,2 - ~ 1 ) ,  and so (z - s l ) / ( z k , 2  - Sx) 

is the reflection of  (z  - s:) /(Zk,12 -- 81) in the unit circle. Note also that, with 

< IZ -- Zk,212[, [Z -- 8212[, we have for the last term that [Zk,212 -- s2121 < 2r212 = 

O(#~2), since r212 < #12r2: < #~2r2 by Lemma 2. The remaining terms are 

treated similarly. Therefore,  using (5.1) and (5.2), the expression above gives for 

Iz - 8 ,  I = r ,  

R e { ( z -  s : ) S 2 ( z ) }  : 1 - 2 + 2 -  2 + 2 -  2 + 0(#~2 ) : - 1 +  O(#~2 ). 

For the reflection calculation on the circle [z - s2] = r2, we use the form 

K2 K: 
S2(Z) E ~k,2 2 E ilk,1 2 ---- - -  - -  -t- . . - - t -  - - -  

Z Zk ,  2 Z - -  82  Z - -  Zk,121 Z -- 8121 k=l k=l 

It is clear that the general case for S N ( z )  follows by arranging terms as above. [] 

5.2 T h e  b o u n d a r y  c o n d i t i o n  f o r  g e n e r a l  m. The following Theorem 

shows, for general m, that S ( z )  satisfies the boundary condition for f " ( z ) / f ' ( z ) .  

T h e o r e m  5.  l f  A < ( m  - 1) -1/4 then,  f o r  z E Ci, z :~ Zk,i, 

Re {(z - s i ) S g ( z ) }  = --1 + O((A2v/-m-: l )  N) 

a n d  

Re {(z - s i ) S ( z ) }  = - 1 .  

P r o o f .  First, we illustrate the idea of  the proof  for connectivity m = 3. The 

map w = f ( z )  f rom the exterior of  three disks to the exterior of  three polygons has 
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the singularity function 

\ k = l  Z --  Zk,~, 1 

Z - -  Z k , v 3  

--  JI- 

Z - -  8 v l  Z - -  Z k , v 2  

Z - -  8u3 

2) 
Z --  8v2  

where  the s~i's are the iterated reflections o f  the centers ci o f  the m boundary 

circles. We now write out $1 (z) to illustrate our derivation: 

K, ~k,1 2 K2 ~k,2 2 
Sl(z) = ~ ,  - -  - - + ~ .  

k=l Z - -  Zk,1 Z - -  81 ~1= Z - -  Zk,  2 Z - -  82 

K~ ~k,2 2 g~ ~k,3 2 
+ S ,  - - 

k=l Z Zk,12 Z - -  812 k=l Z Zk ,13  Z - -  813 

gx ilk,1 2 K3 ilk,3 2 

k=l Z Zk,21 Z - -  821 = Z - -  Zk,23 Z -- 823 

g l  i lk ,1  2 K 2  i l k ,2  2 + E - -  - - + E  - 
Z -- Z~,31 Z -- 831 Z Zk ,32  Z - -  832 k=l k=l 

K3 /~k,3 2 

= Z - -  Zk ,  3 Z - -  83 

Arranging the expressions in a manner similar to the two-disk case,  w e  have 

~' Zk,l(z--81)/(zk,1 --81) 
(Z -- 81)S l ( z )  : ~ ~-:717//(---~k,1.:~1- ~ : 7  -- 2 

k=l 

~ ( ( z _ - 8 1 ) / ( z ~ - 8 1 )  
t(z-81)/(~k,~ - ~ ) -  1 k=l 

(z - ~,)/(z~,,2 - 81) "~ 
) 

-2 { ~s "') + ( z -  ~ , ) / ( . ,2 -  s,) 
t ( Z - - S l ) / ( S 2  --~$---7- 1 ( Z = 7 1 ) / - 7 ~ 1 2 = ~ 1 ) =  1 ) 

'~' [ (_z : ~l)/(z,~ :_~ 
+ ~ . n k , 3  \ ( z  - ~,)l(z~,~ - ~,1 - 1 k=l 

(Z- . l ) l ( zk , ,3  -s~)  ) 
+ (z-s l ) l (zk ,13 - s l )  - 1  

-2 [ ~ - ~ ' ) / ( ~ - ~ ' )  + (~ -  s 1 ) l ( s 1 3 -  81) 
t(z-~,)/(~ -7,7:-~ (z-7,)/-7~1~7-7,7:-1 ] 

s ~ k ' l ( Z k ' 2 1  --821)  
" ~ ( Z - - S l )  ( Z _ _ Z k , 2 1 ) ( Z _ _ 8 2 1 )  

\ k = l  

s Z k , ~ ( z ~ , ~  - ~3~) 
+ ( Z - - 8 1 )  ( Z _ _ Z k , 3 1 ) ( Z _ _ 8 3 1 )  

kk=l  

-I- 

-I- 

~ ( z  - z.,~)(z - ~ ) )  

~ ( z  - :~,~)(z - ~ ) )  
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K 1  ]~k,l( z - -  Sl)/(Zk, 1 - -  81 ) 
= Z 77 -- ; ,  7-/ (-777~ , ~ : ; 5 :  7 - 2  k=l 

K~ f ( z  - s t ) l ( z k , 2  - st) 
+ ~ 3k,2 

k=t ~ (z ~ ~ -  s ~ - -  1 
(Z -- 81)l(Pl(Zk,2) -- 81) 1~ ) 

+ (z-- ; t ~ ~  : ; 1 7 -  

-2 ( _(z : 8t)/(8~- 81) + ( z -  8,)/(p,(s~)- 8,) "~ 
\ ( z  - 8,)/(s~ - Z ] :  1 ( z :  s , ~ - -  Sl) -2 1 ) 

K3 ( (Z - -  8l)/(Zk,3 - -  81) 
+Z9~,3 ( z : ~ , ~ : U :  1 k=l 

+ ( Z - Z S l ~ ( Z  - s t ) / ( p l ( z k , 3 ) _  -s1~_81) 1 ~) 

(z - 8t)/(8~ - 81) q- (Z - -  Sl)/(fll(83) - -  81) ) 
- 2  ( z -  st)/-/-~s-- ~ ) - -  1 (z- 2 1 ~ 3 - 7  ~-- ~ 1 ) :  1 

s Zk,t(z~,2t  - 8 ~ , )  
"[-(Z--81) (Z__Zk,21)(Z__S2,) \k=l + = (z  - z ~ , ~ ) ( z  - = ~ ) )  

( s  flk,1(Zk,31--831) q_ K? ]~k,2(Zk,32__832) 
+ ( z  81) (~ - z~,~,)(z - ~ , )  (z-~z---g~)) \k=l = 

The truncation error will be given by the terms in the last two lines. The real part 

of the initial terms can be calculated with a reflection argument as in the doubly 

connected case. For the first term, let w = ( z  - s t ) / ( z k , 1  - s t ) .  Note that Iwt = 1 

for z E Ci. Then by (5.1), we have 

1 
1} = ( z  - s , ) / ( z k , 1  - 81) - -  

For the second group of terms, we have, for instance, w = ( z  - s l ) / ( z k , 2  - s l )  a n d  

w* = ( z  - s l ) / ( p l ( z k , 2 )  - s l ) .  Using (5.2), this gives 

(Z--81)/(Zk,2 --81) -l- 
Re ( ; = ; 1 ~ = 8 1 " ) = 1  

=Re{w___ ~ _ _ w *  } + w * - i  =1 .  

(z-sl)l(pl(z~,2) -81)  } 
(Z--81)/(p1(Zk,2) --Sl) -- 1 

To bound the error in the final terms, note that [z~,ij - sij[ <_ 2r i j .  Then using 

Lemma 3 for [z - sl[ = rl,  we obtain the error bound 

2/- 1 
~z} (r21L -[- r23 q- r31-b r32)~ Cqr21 -1-r23 n u r321 ~-r22 V/~ 

<_ C q r  2 + r~v/4A 2 = O(x/3 - 1(3 - 1)1/2A2). 
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Therefore, 

Re{(z - sl)Sl(Z)} = 1 - 2 + 2 ( 2 -  2) + O ( v ~ -  1 ( 3 -  1)U2A 2) 

= -1 + O ( v f - m ~ ( A 2 N ( m  -- 1) N/2) 

when m = 3 and N = 1. The general case is similar, using Proposition 1 to group 

terms related by reflection pp through Cp with z E C. as follows: 

gp 
(Z - -  8p)SN(Z) : E ~k,p(Z - -  8p)/(Zk,p - -  8p) 

+ E E B k , i  ( Z : T p ~ 7 7 p ~ :  1 
j--0 i : 1  u6o'j (i), k----1 

+ (z-L  =g7=1 ) 
N - 1  m 

-2EE E 
j=0  i= l  vEaj(i) 

(z - Sp)/(s~i-_Sp)_ + ( z -  Sp)/(pp(S.i) - Sp) 1) 
( ( z - - s p ~ -  sp) - 1 ( z - - s p ~ -  s ~ -  

+(z 8p) O 

j : l ,  i : 1  jvEaN(i) \ k = l  
J#p 

The first term and the terms grouped by reflection through Cp are handled as before. 

The final rn - 1 terms, all lying inside circles Ci, i # p, approximate the truncation 

error and are estimated by 

m 
2 < A4N E r/2" rv 

YEar,+1 i : 1  

This gives our final result 

R e { ( z -  Sp)SN(z)} = 1 - 2 + ( m -  1 ) ( 2 -  2) + ( m -  1)2(2-  2) 

+ . . - +  (m - 1)N-1(2 -- 2) + O(x/m--  l (m -- 1)N/2A 2N) 

= -1  + O(x/--m-z~(A2N(rn -- 1)N/2). [] 

6 Examples 

In this section, we give some graphical examples of  specific mappings com- 

puted with our formula. These examples are done with a primitive computational 
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procedure and are intended only to give a preliminary indication of  what can be 

obtained by computing with our mapping formula. In particular, our computatonal 

work here does not yield the conformal invariants of a given polygonal region. 

This will be an automatic byproduct of a complete numerical implementation that 

is in progress. In this work, the polygonal domain is specified and the side lengths 

of the polygons are used as constraints that force the numerical implementation to 

produce the conformally equivalent circle domain along with the mapping. 

For the present paper, we have developed an initial MATLAB code to demon- 

strate computationally the feasibility and correctnegs of our formula for some 

simple examples. One such example is given (for ra = 3) of the mapping of the 

exterior of three circles, Figure 3, to the exterior of two oblique slits and a rectangle 

(the solid lines) in Figure 2. For this example, we have put the parameters into 

the product formula and performed two levels of reflections, i.e., truncating the 

products after N = 2. Since the computational circles are well-separated, the sum 

of the squares of the radii decrease very rapidly, as seen in Table 1 and illustrated 

in Figure 3. The trapezoidal rule is used for the numerical integration. This gives 

rough accuracy for the turning angles we have chosen. The map is evaluated on the 

boundary circles, 3 concentric circles and on Cartesian grid lines (dashed lines in 

Figure 2). Note that integrating around closed curves in the computational region 

results in (approximately) closed curves in the image plane, confirming the (near) 

single-valuedness of  our truncated mapping formula. A quick "reality check" of 

the accuracy of our approximation can be made by looking at a typical factor in 

the infinite product 
( - Zk,v_________~i _ 1 + s~,i -- Zk,vi  

and the extremely rapid shrinking of the circles in the first reflection as shown 

in Figure 3 and realizing that ]s~i - zk,,d is bounded by the diameter of the ui  

circle. This supports the belief that the factors for N > 2 must be near 1 to very 

high precision and also explains why the sides of the approximate image polygons 

appear (to the eye) to be straight rather than somewhat "wavy". 

The parameters for the example in Figure 2 are 

C 1 = 1 + 2i, rl = 0.5, /~1,1 =/~2,1 = 1, z 1,1 = cl q- t i e  i3~/4,  

z 2 , 1 = c l + r l e  ~7~/4, c2 = 3 + i ,  r2 =0.4,  /31,2=/32,2=/~u,2=/~4,2=0.5, 

Zl,2 = C2 -{- r2ei37r/8~ z2,2 ~ c2 -{- r2g i57r/8, z3,2 ~ c2 q- r2 e i l l ~ / 8 ,  

z4 ,2=c2+r2e  i13~/s ,  c 3 = 3 + 3 i ,  r3=0 .2 ,  /~1,3=/~2,3=1, 

Zl,3 = C3 -~- r3 c i~ /8 ,  z2,3 = C3 -{- r3 e i9~/8 .  
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Figure 2. Triply connected S-C image of  Figure 3 domain. 

Figure 3 illustrates the extremely rapid rate of decrease in the size of the circles 

due to the (visually) large separation of the three original boundary circles. This 

rapid change is confirmed by the numerical results in Table 1 showing that the 

decrease in the areas of the reflected circles is much faster than predicted by our 

theoretical estimate with A. 

N A4N ~'-~3 r2 2 z-,i=i i ~ l d = g + l  rv 
0 .45 .45 

1 .12 �9 10 -1 .91 �9 10 -3 

2 .31 �9 10 -3 .19.10 -5 

Table 1. Rapid decrease of areas of  reflected circles. 
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Figure 3. Reflected circles in the exterior of the 

preimage of Figure 2. 

R e m a r k .  Since our main theorem shows that f " / f '  = S, we have S (z) = 

[1/z 3] at ~ .  As a consequence, the coefficient of 1/z  ~ in the expansion at cc of 

S (z) must be zero. Thus, from the series expansion in Definition 3, one has the 

necessary side condition on the prevertex and turning parameters 

m Ki ~ m Ki N 

~ Z  Z f lk ' i (Zk 'v i - -8v i )"~  lim ~--'~.~--~. Z f l k , i (Zk ' v i - -Sv i )=O"  
N--+ ac 

i=1 k=l j=o i=1 k=l j=o 

This side condition is necessary to complete the system of equations for the numer- 

ical solution of the parameter problem. The simpler, well-known side condition 

~ flkzk = 0 appears in the S-C mapping of the exterior of the unit disk to the 

exterior of a single polygon for the same reason. In our numerical example, the 

side condition has not been imposed but is satisfied with an error of about 0.01. 

This is roughly the level at which plots of the images of the circles fail to close, 

indicating a "small lack of single-valuedness". 

R e m a r k s ,  Conformal mappings between general multiply connected un- 

bounded regions can be obtained by combining the methods of this paper with 
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those of  [4]. We mentioned earlier that parallel slit domains are a natural type of  

polygonal  domain to use in conjunction with our results. For example, if one has 

a parallel slit domain (in the w-plane) with slits parallel to the real axis, then a 

uniform potential flow parallel to the real axis can be transplanted back to a confor- 

mally equivalent circle domain with our S -C  mapping w = f (z). The streamlines 

of  the corresponding flow around the preimage circles in the z-plane are the curves 

Irn { f  (z)}  = constant. Combining this with the numerical methods of  [4], one then 

has the streamlines of  uniform flow around a finite set of  rather general obstacles 

in the plane. This is just one primitive example of  many applications of  the S - C  

conformal map of  multiply connected domains. Other areas of  application include 

problems in electrostatic fields, cf. [1 ], and the complex analysis problem of  (nu- 

merically) determining the conformal invariants of  a multiply connected polygonal  

domain (since one can read the invariants of  a circular domain from the center and 

radius values). 
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