
JOURNAL OF 
COMPUTATIONAL AND 
APPLIED MATHEMATICS 

ELSEVIER Journal of Computational and Applied Mathematics 83 (1997) 205-236 

Numerical conformal mapping methods based on Faber series 
Thomas K. DeLillo a'*'1'2, Alan R. Elcrat a'2, John A. Pfaltzgraff b 

a Department of Mathematics and Statistics, Wichita State University, Wichita, KS 67260-0033, USA 
b Department of Mathematics, The University" of North Carolina at Chapel Hill, CB 3250, Phillips Hall, Chapel Hill, 

NC 27599-3250, USA 

Abstract 

Methods are presented for approximating the conformal map from the interior of various regions to the interior of 
simply-connected target regions with a smooth boundary. The methods for the disk due to Fornberg (1980) and the 
ellipse due to DeLillo and Elcrat (1993) are reformulated so that they may be extended to other new computational 
regions. The case of a cross-shaped region is introduced and developed. These methods are used to circumvent the severe 
ill-conditioning due to the crowding phenomenon suffered by conformal maps from the unit disk to target regions with 
elongated sections while preserving the fast Fourier methods available on the disk. The methods are based on expanding 
the mapping function in the Faber series for the regions. All of these methods proceed by approximating the boundary 
correspondence of the map with a Newton-like iteration. At each Newton step, a system of linear equations is solved 
using the conjugate gradient method. The matrix-vector multiplication in this inner iteration can be implemented with 
fast Fourier transforms at a cost of O(N logN). It is shown that the linear systems are discretizations of the identity plus 
a compact operator and so the conjugate gradient method converges superlinearly. Several computational examples are 
given along with a discussion of the accuracy of the methods. 
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I .  In troduct ion  

Numerical conformal mapping has been an active area of research in recent years. The books 
by Gaier [15] and Henrici [18] give an introduction to the wide variety of methods that have 
been developed. Several such methods seek to construct the conformal map from the unit disk to 
a simply-connected target region by essentially representing the mapping function by a truncated 
Taylor series. Using the unit disk as a computational domain is attractive since it permits the use 
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of Fourier series and the fast Fourier transform (FFT) algorithm. Presentations of several algorithms 
along with numerical examples are given in [4, 5, 14, 24, 25, 27]. 

Unfortunately, conformal maps may suffer from severe distortions. The conformal map from the 
unit disk to a simply-connected region with elongated sections has distortions that may vary ex- 
ponentially with the aspect ratio of the elongated section. This severe ill-conditioning, known as 
the crowding phenomenon, limits the usefulness of numerical conformal mapping methods from 
the unit disk by requiring the use of an impractically large number of terms in the Taylor series. 
These limitations are especially inconvenient in applications; see [7, 14]. Regions with "pinched" 
sections exhibit somewhat less severe distortions which may vary algebraically with the thinness of 
the pinched section. For estimates of the crowding and a number of examples and references to the 
literature, see [4, 10, 31 ]. 

In recent years, various numerical methods have been developed which avoid the crowding problem 
in certain cases. In Howell and Trefethen [20], the crowding for the Schwarz-Christoffel map for 
elongated polygons is discussed. There a method which uses the infinite strip for the computational 
domain instead of the unit disk is developed. The domain decomposition methods of Papamichael and 
Stylianopoulos (see [22] and references therein) can be used to map more general elongated regions 
onto elongated rectangles. Applications include calculations of resistance of semiconductor circuits. 
A very recent, new method by Driscoll and Vavasis [12] handles the crowding of the prevertices in 
the Schwarz-Christoffel transformation for elongated polygons by instead using certain cross-ratios 
as the primitive variables. 

The present paper is a continuation of efforts [6] to circumvent the crowding for regions with 
smooth boundaries by choosing computational domains with elongated sections. Roughly speaking, 
we approximate the conformal map from the computational region in the z-plane to the target region 
by a finite Faber series, 

N/2 

f ( z )  = Ao + ~ AmFm(z), 
m=l 

where Fro(z) is the mth degree Faber polynomial of the computational region and Am is the mth Faber 
coefficient. For the disk, Fm(z)= z ' .  If the target region is elongated in one direction an ellipse of 
similar minor-to-major axis ratio is an appropriate computational domain. For the ellipse, Fro(z) is 
just the mth degree Chebyshev polynomial. To illustrate the advantage of our methods, consider the 
cigar-shaped target region given by the arctanh function of example 2, Section 5; see Fig. 1, top 
two maps. If the minor-to-major axis ratio is ~ = 0.29(r = 0.99), the map from the unit disk required 
N = 1024 and 6.8 CPU seconds to achieve an accuracy of 0.4- 10 -5, whereas the map from an 
ellipse of minor-to-major axis ratio ~ = 0.3 to the arctanh region required only N = 64 and 1.1 CPU 
seconds to achieve an accuracy of 0.2.10 - 6  . Moreover, much more elongated regions can be mapped 
using ellipses of similar minor-to-major axis ratio. For four-legged regions the Faber series for a 
cross-like region is used; see Fig. 1, bottom two maps. Other geometries, such as multi-legged or 
exterior domains for which the Faber series are known, are also possible. 

Our numerical approach is an extension of Fornberg's method [14] for the disk and proceeds by 
approximating the boundary correspondence of the map with a Newton-like iteration. Conditions that 
the mapping f is analytic are transplanted to an annulus with an explicit map, if, as illustrated in 
Figs. 7 and 8 and discussed in Section 3. The resulting conditions on the Laurent coefficients of the 
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Computational region Target region 

Unit disk 

arctanh region c~ = .29 

ellipse ~ = .3 arctanh region a = .29 

207 

Unit disk 

cross a = 6 

I~oebe region a = .4 

Koebe region a = .4 

Fig. 1. Top two maps: arctanh region c~ = 0 . 2 9  with disk map with N = 1024 and ellipse map with ~ellipse = 0.3,N = 64. 

Bot tom two maps: 4-leaf Koebe region ~ = 0.4 with disk map with N = 1024 and cross map with across = 0 .6 ,N = 256. 
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transplanted function give a system of linear equations for the Newton update of the boundary corre- 
spondence. This system is solved by the conjugate gradient method. The matrix-vector multiplication 
can be performed in O(NlogN)  using FFTs. We have reformulated the original methods for the 
disk [14] and the ellipse [6] here, so that they extend in a straightforward way to new geometries. 
We also show how to revise our methods so that 3 boundary points can be fixed (Figs. 4 and 6), 
instead of 1 boundary point and an interior point as in [6]. 

Our basic idea of combining analyticity conditions for the computational region with extensions 
of Fornberg's method to yield a Newton-like method has been generalized to multiply connected 
regions [11, 9]. These multiply connected cases give a Newton iteration for finding both the boundary 
correspondences and the conformal moduli. 

Applications of these methods include computational problems in potential theory. For instance, 
it is well known that the Dirichlet problem can be conformally transplanted to the disk and solved 
efficiently with FFTs. Similar formulas are available for the ellipse [18, p. 231, Problem 3] and 
the cross. Calculations currently under way demonstrate that this procedure compares favorably with 
integral equation methods for elongated regions [8]. In addition, Muskhelishvili's method for solving 
the biharmonic equation using conformal mapping from the disk [1] can be extended to the ellipse 
case. 

The paper is organized as follows. In Section 2, we state some known preliminary results that 
will be used in our later development. In Section 3, we derive the linearized equations for the disk, 
ellipse, and cross method and show that they are equal to the identity plus a compact operator, so that 
conjugate-gradient-like methods are expected to converge superlinearly. In Section 4, discretization 
of the equations by trigonometric interpolation, the application of the normalization conditions, and 
the solution of the discrete equations by the conjugate gradient method are developed and discussed. 
The numerical evaluation of the mapping function is also explained. In Section 5, our methods are 
applied to several examples. Section 6 discusses the features of the methods which influence the 
accuracy of the numerical approximations. 

2. Preliminaries 

Suppose that f is a conformal map from the domain D in the z-plane, bounded by the Jordan 
curve C, to the domain (2 in the w-plane, bounded by the Jordan curve F. Assume that both D 
and ~ contain the origin. Suppose further that C is described by a function z(0), 0~<0~<2r~, and 
F by 7(S), S being arc length along F, and that z,~ are H61der continuously differentiable with 
nonvanishing derivatives. The normalizations f ( 0 ) =  0 and f ( z (O) )=  7(0) uniquely determine f ;  
further, finding f is equivalent to finding the function S(O) such that f(z(O))=7(S(O)). This function 
is called the boundary correspondence. Most methods for constructing f are methods for finding 
S(O) (or its inverse); we will use a Newton-like method for the nonlinear singular integral equation 

= z c C ,  

for S(z)=S(z(O))=S(O). More precisely, if S(k)(O) is known we determine U(k)(O)=S(k+l)(O)--S(k)(O) 
by the condition that ~(O)+ei~(°)U(k)(O), where ~(0):= 7(S(k)(O)) and ~(0) := arg 7'(S(k)(O)), extends 
into D as an analytic function continuous on D U C which vanishes at the origin. This function is 
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a conformal map onto a neighboring domain d. The function S@+‘)(Q) is then taken to be the 
new approximation to the boundary correspondence; the boundary normalizations of the approximate 
maps are guaranteed by choosing @j(O) = 0. Wegmann [24] has proven that this “equation” for U 
always has a unique solution, and that if the curves are twice Lipschitz continuously differentiable 
this iteration converges for an initial guess which is close enough in a Holder norm. 

If D is the unit disk, computing the Newton update is a problem in Fourier analysis. Fornberg 
[14] and Wegmann [24-291, have given (closely related) algorithms for solving this problem. In 
this work we will study a generalization of Fomberg’s work designed to deal with domains which 
are elongated in one or more directions. We assume our computational domain D is bounded by a 
curve C,, and that C, is the image under an analytic map $ from a parameter plane, denoted by ?& 
of the circle 151 = p > 1. We further assume that $ is a conformal map on Ill > 1 fixing infinity and 
the positive direction. In particular, $ is the normalized conformal map of Ill > p onto the exterior 
of C,. Specific $‘s will be given below. We here emphasize the part of the framework that does 
not depend on detailed properties of $. 

This work is based on a necessary and sufficient condition for a function f defined on C, to 
extend into D as an analytic function. We recall the following fundamental fact [ 18, p. 1141. 

Proposition 1. A Hiilder continuous function f on C, extends into D as an analytic function if 

and only if 

J’ 
c f(z)z”dz=O, m>O. 
I’ 

We will use the Faber polynomials F,(z) of degree m associated with D which can be defined 
[23], by the expansion 

W(5) =~F,(W”, ZED, 1+-p. 
$(0-z m=O 

We remark that zm may be replaced by any polynomial of degree m in Proposition 1. In particular, 
we may replace zm by F,(z). The basis of our method can then be described as follows: transplant 
the condition of Proposition 1 to the circle ][I= p and use Fourier series to implement this condition. 
If this is done, then, for f analytic in D, by Cauchy’s theorem 

f(z)=&l Edi 
I’ 

1 
=- 

.I 

f(rl/(i))$‘(i) d[ 

2ni I~I=~ $(i) -z 

1 
=- 2~i J ,5,=p f (11/(‘)) ~ pi-“-’ ‘5 

m=O 

= A0 + 2 ‘f4nK(z), 
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where 

1 f¢ f(~(~))~-m-1 d~ 
Am = 2rti I=P 

is the coefficient in the expansion of f in Faber polynomials in D. If f is analytic in a neighborhood 
of = p and am are its Laurent coefficients then 

Am -= p-mare, m >l O. 

Implementation of this idea requires more detailed information about Cp and ¢. We will carry this 
out below in two cases: C; is an ellipse and ~k(()= ~ + 1/~, and Cp is a symmetric "cross" shaped 
region with ¢ ( ~ ) =  x/~ z + 1/~ 2. 

We conclude this section by collecting some known results from Fourier analysis and the theory 
of univalent functions. 

We will need several operators occurring in Fourier analysis. The domain of these operators is 
the set of absolutely continuous 2re-periodic functions h with square integrable derivatives. We then 
write, as in [26], 

P_h = ½(I - iK + J)h, 

where K is the conjugation operator, 

1 r2~ 
Kh(O):}-~P.V. Jo c o t ( ~ - ~ ) h ( ~ b ) d q  ~, 

and 

If 

then 

and 

if[ Jh(O) = h(O) dO. 

h(O)=- ~ ake ikO, 
k=--oo 

--1 oo 

Kh(O) = i ~ ake ik° - i  ~ ake ik°, 
k = - o o  k = l  

Jh(O) = a 0 ,  

P_h(O) = E akeik°" 
k = - o o  

We will discretize these operators by N-point trigonometric interpolation. If 

h=(h(Oo),...,h(ON_l)) T, Oh =2nk/N, k = 0 , . . . , N -  1, 
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and 
N--1 

1 ~ h(Oj)w_jk ' w = e 2ni/N, dk = -~ 

then the trigonometric polynomial interpolating h is given by 

N/2--1 ( N )  
TNh(O) : ~ fike ik° "q- (IN/2 COS ~ - 0  , 

k=-N/2+ 1 

and the discrete operators corresponding to those introduced above are 

--1 N/2--1 

Knh(O)=i ~ fike i k ° - i  ~ fike ik°, 
k=--N/2+l k=l 

N 
JNh( O) = ~o - aN/2 COS (--~O), 

and 

P-,N iKN + Jx). :½(rn- 
If the N x N matrix F : : ( w - ~ ) ,  k,v,=O . . . .  , N -  1, then 

1FHF =In, 1 F h  = a = (d0 , . . . ,dn_l )  T = (a0,...,dN/z, fi_n/z+l,. . . ,~_l) T, 
N 

since dk = dk-N, and 

where In is the N × N identity matrix, H denotes Hermitian conjugation, and I1,I2 are the N/2 × N/2 
matrices diag (1 ,0 , . . . , 0 )  and diag (0, 1,..., 1), respectively. 

The following characterization of Faber polynomials can be found, for example, in [23]. 

Proposition 2. Fro(z) is the unique mth degree polynomial such that 

Fm(~t(~)):~mq-o(1) as ~----~cx3. 

We also need [17, p. 48], 

Proposition 3. I f  k is a univalent function on Iffl > 1 fixing infinity, so is ~ for m> 1. 

3. Analyticity conditions and linear operator equations 

We are concerned with the structure of  the linearized equations arising at each step of the Newton's 
method for the boundary correspondence. This may be cast as a problem in Fourier analysis by 
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transplantation to the circle [~] = p. In order to set the context, for what follows, we first describe the 
situation when D is the unit disk. The case in which D is an ellipse, a cross-shaped region, and some 
other possible extensions will then be considered. The analyticity conditions from Proposition 1, 
which guarantee that a function defined on the boundary of  D extends analytically to the interior 
of  D, will be derived in each case and shown to lead to linear operator equations for the Newton 
updates, U(O). The linear operators will be seen to be roughly of  the form identity plus a compact 
operator. Additional conditions, such as the normalization f ( 0 ) =  0, will be discussed here and in 
more detail in Section 4. 

3.1. Disk 

Our goal is to determine the conformal map from the unit disk D onto f2 normalized by f ( 0 )  = 0 
and f ( 1 )  fixed. The parameter domain is the ~-plane with ~ (~)=~ ;  the Faber polynomials are the 
powers, Fm(z)---z m. For a function h defined on the unit circle C, h extends into D as an analytic 
function if and only if 

h(z)z m d z = l  h(~)~ m+l d~/~=O, m =0,  1, . . . ,  
f 

JpC_I=I 

that is, the negative indexed Fourier coefficients vanish, am =0 ,  m>0.  The normalization h ( 0 ) = 0  
holds if and only if a0 = 0. The power series of  a function analytic inside a disk is its Faber series. 
The condition that h = ~ + ei~U extends into D as an analytic function vanishing at the origin is 
equivalent to P_h = 0. Since U is real 

where 

(I + R)U = g, 

and 

RU = Re(e-i/~(J - iK)ei~U), 

g = - 2 R e ( e - i ~ p  ~). 

Wegmann [26] and Widlund [30] have analysed Fornberg's method [14] using the operator R, which 
can be represented as a Fredholm integral operator on L2(0, 2rt) with kernel 

1 
R(O, 0)  = 2~ sin(/~(~b) - /~ (0 )  + (0 - qS)/2)/sin((0 - q~)/2). 

This is a symmetric, compact operator. The eigenvalue distribution of  R and its discretization is 
discussed in Section 4.1. 

3.2. Ellipse 

We begin our work on other computational domains with the ellipse. This case was dealt with 
recently in [6] using different normalizations and a different arrangement of  the computations. In 
this case ~ ( ~ ) =  ~ + 1/~ and Cp is the image of  ]~] = p >  1, that is the ellipse in the z-plane with 
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foci at +2,  and lengths of  semi-major and semi-minor axes, p + l /p ,  and p - I /p,  respectively. The 
mapping w = f ( z )  will be normalized by f ( 0 )  -- 0 and f ( p  + 1/p) fixed at a point on F : 7(S).  We 
define f ( O ) =  f ( ~ ( p e i ° ) ) =  7(S(0) )  where S is arc length on 7. We have here 

Fro(z) = Tin(z) = 2-m((z + V/Z 2 -- 4) m + (Z -- V/Z 5 -- 4)m), 

that is, Fm is the Chebyshev polynomial o f  the first kind. Proposition 2 applies, since 

Fm(¢'(~)) = ~m +um. 

By Proposition 1, a function h is analytic inside Cp if  and only if  

fch(z)Tm(z) dz = 0, /> 0. m 
P 

I f  we denote the functions transplanted to the ~-plane with the same letter, this is equivalent to 

f ~  h(~)(~m + ~--m)(~ __ ~--') d~/~ = 0; 
I=p 

in particular, if h ( O ) :  V ~ a e ira° this implies that 

a-m : p-2mam, m ~ 1, (1)  

as in [6]. This condition plays the role here that P_h = 0, i.e. vanishing of  negative index Fourier 
coefficients, does when D is the disk. We define the operator c by c(e ik°) = e -i~°, and let 

l(O) = 1/(1 - p-2ei°). 

Then (1) is equivalent to 

(P_ - J - c l ,  )h = 0 

where • denotes convolution. This is applied to h = ~ + e i~ U to obtain 

A U  : = 2e-i~(P_ - J - cl* )(ei/~u) = - 2 e - i ~ ( P _  - J - c l ,  )~ : =  g. 

In addition to the operator R given above we define 

S U  = Im(e- i~(J  - iK)(ei/~U)), 

C1U = Re(e - i~c /*  (ei~ U)) ,  

CzU = Im(e- i~c /*  (ei~U)), 

Ji U = Re(2e-i~j(ei~ U)) ,  

and 

J2 U = Im(2e-i~j(eit~ U)) .  

A straightforward calculation shows that Cl, C2,J1, and J2 are Fredholm integral operators (integration 
w.r.t. ~b) with (continuous) kernels 

cos(/~(0)  - /~ (q~) )  - p-2  cos(/~(0)  - /~ (q~)  - (0 + ~)) ,  
CI(O, ~) 

1 + p-4 _ 2p-2 cos(0 + ~b) 
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s in ( /3 (0)  - / ~ ( ¢ ) )  - p - 2  sin(fl(0) - fl(qS) - (0 + 4) )  
G ( 0 , ¢ ) =  

1 + p-4 _ 2p-2 cos(0 + qS) 

Jl(O, 4 )  = 1 cos ( f l (~b)  - fl(O)), 
7~ 

J2(O, 4,) = 1 sin(fl(~b) - fl(0)), 

and are therefore compact operators. For S we obtain the kernel 

1 c o s ( f l ( 0 )  - f l(4~) - ( 0  - ~b) /2 )  
S(0, qS)= 2n s i n ( ( 0 -  q5)/2) ' 

so the integral must be taken in the principal value sense and S is not compact. We now expand A 
using P_ = ½(I - iK + J )  and the above definitions to obtain 

A U  = (I + Re)U + iSeU, 

where 

Re = R - 2 G  - Jl,  

and 

Se = S  - 2C2 - J 2 .  

I f  g = g l  q - i g 2 ,  U real implies 

(I + Re)U = gl. 

The operator Re is compact and our treatment of  a discrete version of  this equation will be simliar 
to that described above when D is the disk. 

The normalization on w = f ( z )  that f ( O ) =  0 can be written as 

OO OO 

0=A0 + Z A m T m ( O ) = a o  + 2 ~ ( -  1)kp-Zkazk. (2) 
m=l k=l 

since T2k(0)=2(--1) k, T2~_1(0)=0, and Am=p-mare for m~>0. 

3.3. Cross 

The other case that we consider explicitly is a "cross-shaped" region bounded by the curve Cp 
which is the image of  Ill = p under the map z = ~k(~) = v/~ 2 + 1/~ 2. We note that if ~0(~) = ~ + 1/~ 
is the map used for the ellipse then ~k(ff)= (~90(~2)) m. 

Generating the Faber polynomials for D is less simple here, but, if  

F2m(Z) = 2-2m((z 2 + V/Z g - 4)"  + (z 2 - ~ - 4)m), 

then 

F2m(0( f f )  ) = ~2m _~ ff--2m, 
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and Fzm(Z), m/> 0, are degree 2m Faber polynomials for D by Proposition 2. These will suffice to 
generate our algorithm for this domain. In fact by Proposition 1, f defined on Cp extends into D 
analytically if and only if 

fc ~ f (~ ) ,  ~'2m 0 = f ( z ) F 2 m ( Z )  d z  = _}_ ~-2m)(~2 ~ -2 )  d~/~ (3) 

O= fc f(z)zF2m(z)dz: ~l~ f(~)(~2m -'[- ~-2m)(~2 - ~-2)d~/~ (4) 
~, I = p  

and 

for m ~> 1. If  we let 
OQ 

f ( 0 ) =  ~ am eimO, 

m = - cx~ 

and 

(f/~l)(O)= Z bmeim°, 
m ~ --oc~ 

then (3) and (4) are equivalent to 

b _ 2 m : p - 4 m b 2 m ,  

and 

a _ 2 m : p - 4 m a 2 m ,  

(5) 

(6) 

for m >~ 1, respectively. As Eqs. (1) were the foundation for our equations for the ellipse, (5) and (6) 
essentially define our method for the cross. These equations are equivalent to 

Q(P_ - el • - J ) f  = 0 

and 

Q(P_ - cl * - J ) ( f / ~ )  = 0 

where Q is the projection onto functions whose odd order and zeroth Fourier coefficients vanish. 
We add to these the normalization 

OQ 

0 =A0 + ~-~AmFm(O). 
m=l  

In Appendix A we show that Fk (0 )=0  if k # 0 m o d 4 ,  and F4 ,n(0)=2( -1)  m so that this condition 
becomes 

0 =a0  + 2~-~(--1)mp--4ma4m. (7) 
m=l  
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We need an analogous equation (8) involving the bn's. For this we note that 

f / O  = ~-l( 1 q- f f -4)-I /2  ~ ameimO, 
m=--vc 

and, hence, 

oQ 
- 4 m  - -  1 bo = ~ al+4mBmp 

m=O 

since 

( ~m2 ~-4m : ~ - 1 Z B m ~  4m" 
m=0 

(8) 

3.4. Remarks on extensions 

Here we discuss some possible extensions of  our methods. Generalizations of  the cross region to 
regions with n-fold symmetry would seem to be feasible. If the target region had n elongated legs, 
one would want the ends of  the legs of  the computational region to map to the ends of  the legs 
of  the target region in order to circumvent the crowding. However, this is equivalent to fixing n 
boundary points of  the conformal map, and this cannot be done for n > 3 unless the target region 
itself possesses a sufficient amount of  symmetry. Thus, the case n = 3 is particularly interesting. 
First, note that 00(() = ( + 1/( + 2 maps > 1 to the exterior of  the line segment, [0, 4]. Then our 
symmetric 3-fold region is bounded by the curve Cp which is the image of  I~l = p > 1 under the map 
z = = (00(  3 ) )1 /3 .  

By Proposition 2, the Faber polynomials of  degree 3m are 

F~,,(z) =2-m((z 3 - 2 + x /~  - 4z3) m + (z 3 - 2 - x/z 6 - 4z3)m), 

since 

F3m(0(ff) ) = ff3m _~_ ~--3m. 

By Proposition 1, these yield analyticity conditions on f of  the form 

a-3m : p-6ma3m, b-3m = p-6mb3m, C -3m : D-6mc3m, 

for m ~> 1, where ak, bk, and ck are the Laurent coefficients of  f ,  f /O ,  and f / O  2, respectively. 

4. Discretization, normalization, and numerical implementation 

In this section we use N-point trigonometric interpolation to discretize the linear operator equations 
for U of Section 3. We show how to implement our two normalization conditions (a) f ( 0 ) =  0, 
f (z (O))- -7(0) ,  and (b) 3 boundary points fixed. We discuss (b) only for the ellipse, where 2 end 
points of  the ellipse can be mapped to the ends of  a slender region as in Example 5, Fig. 4. 
Adaptation to the disk and the cross, Example 8, Fig. 6, is obvious. An additional condition is 
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needed for the cross. The auxiliary conditions perturb the eigenvalue distribution of our discrete 
systems in a well-known way. In each case we use the conjugate gradient method to solve the 
normal equations. Since the eigenvalues are well-grouped around 1, the conjugate gradient method 
converges superlinearly. At the end of  this section, we discuss the evaluation of  the maps. 

4.1. Disk 

With the normalization f ( 0 ) =  0, the discrete version of  the analyticity conditions from Section 3.1 
become 

bin=0, m = 0 , - 1 , . . . , - N / 2 + l .  

With -~Fh = a = (h0,.. . ,  bN/2, h-N/2+1,..., ~-~)T, E = diag~(ei~(°k)), h = ~ + Eu, I1 and 12 as in Sec- 
tion 2, P := (I~,I2), C := PFE, and c := - P F ~ ,  the discrete analyticity conditions lead to a matrix 
equation for the unknown u = (Uo . . . .  , un_l )T, 

Cu = - (1112)F~ =: c. 

This is a system of N/2 complex equation in N real unknowns (of  numerical rank N - 1 ). To fix 
the boundary point f ( 1  )---7(0), we want So-= 0 and hence u0 = 0. This condition can be expressed 
as u0 = e~u = 0, where ei is the ith standard basis vector for R n. The full-rank system may now be 
written as 

1 T / / z  ~el 0 

Multiplying by (2 H ~C el) and using u real, we arrive at the "normal equations", 

(IN + RN + Q)u = r, (9) 

where 

In + R n ' =  2 R e ( C H C )  = 
2 

o~ l T ~e~el 

r : = - 2 R e ( C r t c ) = - 2 R e ( E r t F r t ( I ~  ~ ) F ~ ) .  

The definition of  RN as an operator is given by RNU :=Re(e-i~(JN - iKN)¢~)U,  which is the dis- 
cretization of  R by N-point trigonometric interpolation. 

The system (9) now contains the normalization condition u0 = 0 and has full rank numerically. 
We solve (9) by the conjugate gradient method. This amounts to a slight modification of  Fornberg's 
original method [14] where the Gauss doubling of  the DFT is used to derive a system of N/2 
unknowns for the u2i's. The eigenvalue distribution of  R compact and Rn is studied in [14, 26, 
27, 30, 11]. In [26], it is shown that - 1  is a simple eigenvalue of R and the other eigenvalues 
occur in pairs -4-/~ with 0 < I/~1 < 1. The eigenvalues of  RN inherit this structure and so 1N + RN 
is symmetric, positive semidefinite with eigenvalues well-grouped around 1. The addition of the 
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low rank matrix Q perturbs the eigenvalues in a well-known way (see e.g. [16, Theorem 8.1.5, 
p. 412]) so that IN + RN + Q is symmetric, positive definite with eigenvalues remaining well- 
grouped around 1. Therefore, the conjugate gradient method applied to (9) converges superlinearly 
and the matrix-vector multiplication costs O(NlogN) .  In [11] a more detailed discussion of these 

1 T observations is given. Addition of  the normalization term ~e~e~ is generally necessary. For instance, 
the method converged for ellipses of  0~ = 0.8 and 0.6 without the normalization term, but did not 
converge for 0~ = 0.4. With the normalization term, the method converged in all these cases. 

The Newton update at the kth Newton step in all our cases is given by 

slk+')=sl  k )+u l  k), i : 0 , 1 , . . . , N - 1 .  

4.2. Ellipse 

For the ellipse, the discrete version of the analyticity conditions from Section 3.2 become 

£ l _  m = p-2m~tm, m : 1 . . . .  ,N /2  - 1. 

Note that the discrete analyticity condition makes no sense for m = N/2,  since a-N~2 = aN/2 by the 
N-periodici ty of  the discrete Fourier coefficients. Using a = ( 1 / N ) F h  and P = (Pe, Ie), where Pe and 
I~ are the ( N / 2 -  1)× N/2 matrices 

0 p - - N + 2  

p e  ~ - -  , / e  ~ 

0 p-4 

0 p-2 

the discrete analyticity conditions can be written in matrix form as 

P F h  = O. 

IO 1 

0 1 

0 1 

Letting h = ~ + Eu, C = PFE, and c = - P F ~ ,  our linear system for u can be written as 

C u = c .  

This is now a system of  N/2 - 1 complex equations in N real unknowns. 
At this point we could discretize I + Re from 3.2 as the nonsymmetric system 

IN + Re, N = ~ Re EHF n F E  , 

where N/2 + 1 rows of  zeros have been added below P to make an N x N matrix. After adding the 
normalization conditions, we could solve the normal equations by the conjugate gradient method. 
This approach, however, requires 2 FFTs more than the approach that we take next and does not 
change the convergence rate of the conjugate gradient method. 
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As in the case of the disk, our normalization conditions can be expressed in the form qTu = d 
where 4 and d will be given below. These equations can then be added to the analyticity conditions 
to get a system of essentially N + 1 real conditions for N real unknowns, 

(;)u= (;). 
We will again solve the “normal equations” for u real, 

$ Re(CHC) + Q 
> 

u = Y, 

where Q and r are given below. f Re(CHC) = $ Re(EHFHPTPFE) is easily seen to be symmetric, 
positive semidefinite. In our examples, we find its numerical rank to be % N - 3. The matrix-vector 
multiplication costs O(N log N). 

We now discuss the normalization conditions: 
(a) f(0) = 0, f(z(0)) fixed. For f(0) = 0 we need a truncated version of (2). This takes the form 

N/2-1 

cio + 2 c (- 1 )kp-2%2k = 0 
k=l 

and can be written nTa = 0, where the N vector nT := (1, 0, -2pe2, 0, 2pm4,. . .). With 

lT := nTFE 

and 

d:= 

we have 

iT 
qT:= ) 

0 4 

Q := -$ Re(ccT) + eiey, 

and 

r := - $ Re(EHFHPTPFl) - f$ Re(Qd). 

We now can clarify the effect of both normalization conditions on the eigenvalue distribution of 
OUT ITldlTkCS. khlg [j = ?/j •b i/ij, T/j, ,Uj Ed, and Y/ = (?jo, vi,. . . , ?‘jN___l )T, p = (po, pl, . . . , pi_ 1 )T, we 
have 

R&IT) = ylylT + ppT. 
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Then since ~/r/vr/= [[~112~ and /~/~v/~ = I1~11~, the eigenvalues of  2 Re ( ~ x )  are bounded above by 
II~ll~ = II~ll~ + 11#1122. Note further that 

~-II ~11 ~ 4 -0(1/~), ¢11~ = EFnlI~ = Ilnll~ ~<1 + 4 p-4i= 1 + p 4 ~  
i = l  

where ~ = CCeUipse : (p2 _ 1 )/(p2 + 1 ) is independent o f  the 0¢ of  the target region ~2. Numerical studies 
o f  the eigenvalues for our normal system show that the largest eigenvalues are indeed O(1/~) and 
that the rest o f  the eigenvalues behave similarly to the disk case with grouping around 1, interlacing, 
and more smearing away from 1 for the more extreme examples where ~ ~ 0 (p ~ 1 ). Therefore, more 
conjugate gradient iterations are needed. 

(b) 3 boundary points fixed. We wish to fix the values of  f ( ± ( p  + l / p ) )  and f ( i ( p -  l /p ) ) .  This 
is done by  fixing SO,SN/4, and SN/2, and requires that u0 = UN/4 = UN/2 = 0. These conditions are easier 
to apply than those o f  (a). We express them as eTu = O,i = 1,N/4 + 1,N/2 + 1. Then we just  use 
q = (el, eN/4+l, eN/2+l ), Q : qqT, and d = (0, 0, 0) T above. 

4.3. Cross 

Let a = (1/N)Fh and b = (1/N)F~Ph, where ~':=diagk(1/~(pei°k)). The discrete versions of  the 
analyticity conditions (5), (6) are then 

~l_2m : p--4m(lzm , b_2m : p-4mb2m , m :- 1 , . . . ,N/4  - 1. 

With P = (Pc,/~), where Pc and Ic are the (N/4 - 1 ) × N/2 matrices 

/0 0 0 p--N+4 O" ~ 

and 

P c  = _ 

0 0 0 p-8 0 0 

0 0 p-4 0 0 

I~ = 

' 0 0 1 0  

0 1 0 

0 1 

these conditions can be written in matrix form, 

( P F )  h = O P F t P  

0) 
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With 

h = ¢ + E u ,  

we again have 

Cu -~ C, 

C =  PF~ E, and c =  PF~ 3, 

a system of N / 2 -  2 complex equations in N real unkowns. Since we can fix one boundary point, we 
expect the rank of Re(CHC) to be N - 5 .  We therefore need 5 more (real) equations: 3 normalization 
conditions and 2 additional conditions relating the ak's and the bk's. We consider here only the 
normalization (a) f ( 0 ) =  0 and f(z(O)) fixed. To impose f ( 0 ) =  0 we truncate (7) to get 

t/Ta ~ 0, 

where n T-- (1 ,0 ,0 ,0 , -2p-4 ,0 , . . . ) .  The 2 additional conditions are truncations of (8) which, using 
bo = (1/N)e~F~FHa, can be written as 

raTa z O, 

where 

1 T H m T = ~ e l F ~ F  - (0 ,p- l ,0 ,0 ,0 ,Blp-5 , . . . ) .  

The complete set of  N + 1 real equations of  rank N for u is then 

U z , 

where 

and 

~T ~ nT FE, 

Z T z mTFE, 

I qT = ZT , 

( nTF~ 

Our normal equations are again 

(2Re (CHC)  + Q) u = r ,  
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where 

2 
Re(CHC) := ?.  Re(EHFHpTpFE 

N N 

2 Re(~T + ~zT) + ele~, Q : = ~  

and 

+ E rt ~HFHpTpFtPE) ' 

2 2 Re(~nTF~ + ~mTF~)" r := - ~ Re(EHFHpTpF~ + E I ~ n F H p T p F ~ )  - 

The factor of  2IN in the matrix (2/N)Re(CHC) normalizes the eigenvalues to be grouped around 1. 
As in the ellipse case, a calculation, given in Appendix B, shows that the largest eigenvalues are 
O(1/~z), ~ J. 0. Our numerical studies show behavior of the eigenvalues similar to the disk and 
ellipse cases, but with somewhat poorer grouping around 1 and a resulting increase in the number 
of conjugate gradient iterations. 

Remark. For the disk, ellipse, and cross case, we choose N = 2 M. However, for the discretization 
of  the 3-fold case in Section 3.4, it is expedient to choose N = 3 • 2 M. 

4.4. Evaluation o f  the map 

Evaluating the maps for the ellipse or the cross in the interior of  the region requires some caution. 
Let 5k, k = - N / 2  + 1, . . . ,  - 1, O, 1 . . . .  N/2 be the discrete Laurent coefficients of  the approximate map 

f .  Then 

N/2 
f(~k(pei°)) = Z akeik°" 

k = --N/2+ 1 

To evaluate f in annulus re i°, 1 <~r<~p let ~ = r/p. Then 1/p<~F<<. 1 and 

N/2 
f(~/(rei°)) = Z t~krkeik0" 

k =  --N/2+ 1 

However, we cannot use this to obtain good numerical results, since for F < 1, k < 0, ~ ~ c¢. If we 
had the exact ak's then ak~ k ~ 0, k < 0. However, the 5k are only known to the level of  the residual 
error and hence do not decay rapidly enough. That is, ~k~ can be very large for k near - N / 2  when 
p and N are large. To get even marginally reasonable looking graphics the finite Laurent series must 
be truncated further. Even in such cases the images of  inner concentric circles may look poor; see 
[6, Figs. 1, 5, and 7, ~ large]. 

To correct this problem for the ellipse we use the relations between the Laurent coefficient, 
5_k ~ p-2ktik and instead evaluate 

N/2 N/2-1 

f(~k(rei°)) = a0 + Z 5kFkeikO + ~--~ ak(rP2)-ke-ik°" 
k = l  k = l  
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Then p ~<~p2< p2 and the above problems are avoided. Images of f ( O ( r e  i°,)) for evenly distributed 
0fs and fixed ~ may be computed using the FFT. Images of other points are computed using Homer's 
rule. 

We use a similar procedure for the cross. If 

O0 

c,¢ *, 
k =  - -oo  

we denote the even and odd parts of  the series by 

and 

c2j  2j 
j ~  --CX) 

OO 

gO(~)= Z C2j+I~2j+I' 
j ~  --OO 

respectively, and g = 9o + 90. Note that O(~) = ((1 + ~-4)1/2 is an odd series, O = Oo. With f ,  the 
mapping function, and f = 0h, as above, we have fo = 0he, that is 

f = f~+~khe. 

Then with ~ = re i° and ~i_2j = p-%i2j, we obtain 

N/2 N/2-1 
fe(O(rei°))=gto + ~ gt2jreJe i2j° + ~ a2j(fp2)-2Je -i2s°. 

j=l  j=l  

Similarly 

h(~b(pei°)) = 
N/2 
Z l)keikO' 

k= --N/2+ 1 

with D_2j = p-aS[~2j gives 

N/2 N/2-- 1 
ae(~(reiO)) = b0 q- ~ b2j ~2jei2jO "r ~ [32j(rp2) -2je-i2jO. 

j=l  j=l  

Combining the above expansions, we may evaluate 

f ( O(re i°) ) = fe(l~(re i°) ) + 0(re  i°)he(l~(rei°)) 

for fixed r and evenly distributed 0j's using FFT's. Note that even though the a2j+|" 's and b2j+l~ 's 
could be computed, we do not have the fundamental relations (5) and (6) among the odd indexed 
coefficients needed for a stable numerical evaluation of  the series. 



224 T.K. DeLillo et al./Journal of Computational and Applied Mathematics 83 (1997) 205-236 

5. Numerical examples 

We have tested our methods on a variety of  regions exhibited below and found that the ellipse and 
cross methods work well for regions with elongated sections with ~ = 0.1 or smaller using moderate 
values of N. This is much better than what is possible with the disk as a computational domain. Our 
methods for the disk and the ellipse are revisions of  the methods [14, 6] and behave in a similar 
fashion. Our computations were done in double precision on an IBM ES 9000. 

Before we discuss the examples, let us give some more programming details. As noted above, we 
use the radix-2 complex FFT routine [3, p. 416] for the conjugate gradient iterations and the evalu- 
ations of the mapping function. The boundary curves are defined by taking N~ points 7i, i = 1,. . . ,  Ns, 
along the boundary curve, given generally by certain analytic formulas, and interpolating the points 
by a periodic cubic spline parametrized by the chordal approximation to the arclength between the 
successive 7i's according to the algorithm in [19]. Thus, the regularity of the approximate boundary 
curve is different than that of  the actual boundary curve in most cases. This does not generally 
affect the accuracy of  the approximate map. The important consideration for the computations is that 
the 7~'s be distributed with enough density that the derivatives of the the spline yield sufficiently 
accurate values of  the tangent angles for the matrix E above. We take Ns = 1000 for the ellipse and 
disk methods and Ns = 2000 for the cross method. Then the spline curves fit the boundary to an 
accuracy of  10  - 6  o r  less. 

For the ellipse, ~ is the minor-to-major axis ratio, ~e l l  = ]~b(pi)/~(p)[ where ~b(() = ( +  1/(. For the 
cross, we use ~cross = [~(pei~/4)/@(P)[ where @(()= v/( 2 + 1/( 2. Given an ~ for a target region, the 
~'s for the ellipse or cross are chosen, according to the discussion in Section 6, below, to minimize 
the discretization error. The mesh points are images of Fourier points under the maps ~((). For 
small ~ they crowd at the ends of the elongated sections of the computational domains, but the 
crowding for maps to the exterior of  slender regions is not severe (see, e.g. [4, Section 3(ii)]) and 
is not a source of numerical diffÉculty in the cases considered so far. 

The plots of  the maps in the figures show the images of  5 concentric circles and 32 or 64 radial 
lines in the annulus. The image of [([ = p is plotted using 2N points and the images of the curves 
with 1 ~< [([ ~< p are plotted using N points and employing the formulas developed at the end of 
Section 4, above. 

To monitor the outer Newton iterations, we compute the successive iteration error max~ ]sl k+l)-s~-(k) ] 
at the mesh points 0~ = 1,. . . ,N. The discretization error is monitored by the residual error, 

max [a_k[, 
k~<0 

for the disk, 

max(max[a_k--p-2kak[,]nYa[), 
for the ellipse, and 

(max I"T°l, I T°t), m a x  

for the cross. In cases where the exact map is known, the residual error is a good indicator of the 
exact discretization error. Quadratic convergence is observed, but may degrade for extreme regions. 
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Fig. 2. Cassini ovals with disk map,  c~= 0.2,0.1, and N = 256, 1024, respectively. 

Table 1 
Cassini ovals with the disk map 

N Residual CPU seconds 

0.2 128 0.11 - 10 -2  1.5 

0.2 256 0.62.  10 4 2.3 

0.1 256 0 . 3 9 . 1 0  2 2.1 
0.1 512 0 . 3 2 . 1 0  3 7.3 

0.1 1024 0.15.  10 4 9.8 

The successive iteration error can usually be iterated to 0 ( ~  10 -15 in double precision), but the 
convergence rate may slow to linear once the level of  discretization error has been reached; see [28]. 
For our initial guess, we use S~ °) proportional to S(Oi) for the map, ~9(pei°i). 

Next, we discuss our examples. 

Example 1 (Disk to Cassini ovals, Fig. 2). This example is discussed in [4, 14]. Utilizing Proposi- 
tion 3, above, the exact map is given by f(z)=(k(r2z2)/k(r2)) 1/2 for Izl l where k(z)=z/(1 - z ) .  
In this case 0~---- v/(1 - r2)/(1 + r 2) and the maximum derivative is given by f ' ( 1 ) =  1/(2~ 2) + 1/2, 
so this is a case of algebraic crowding. Residual errors and timings in CPU seconds are given in 
Table 1. 

Example 2 (Disk to arctanh regions, Fig. 1, top map). This example is discussed in [4, 10]. The 
exact map is given by f ( z )=k(rz ) / k ( r )  for Izl 1 where k(z)= arctanh(z)= ½ log((1 - z ) / ( 1  +z) ) .  

1 rt/2~ In this case ~ = l f ( i ) l ,  and r ~ l  - e  -~/z~ and the maximum derivative I f ' ( 1 ) L ~ e  as ~10. 
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Fig. 3. Cassini ovals with ellipse map, c~=0.1,0.01, and N =  128,256, respectively. 

Table 2 
Cassini ovals with the ellipse map 

~c~ss aetl N Residual CPU sec 

0.1 0.3 64 0.14. 10 -5 1.3 
0.1 0.3 128 0.10. 10 -9 1.5 

0.01 0.2 128 0.12- 10 -6 2.5 
0.01 0.2 256 0.21 • 10 -9 4.6 

This map provides a simple example of exponential crowding. The results of our computations are 
comparable to the results reported for Wegmann's method in [4]. 

Example 3 (Ellipse to Cassini ovals, Fig. 3). Here we apply the ellipse map to the regions in Ex- 
ample 1. Residual errors and timings in CPU seconds are given in Table 2. C~Cass denotes ~ for the 
Cassini ovals and ~eH denotes ~ for the ellipse. By comparing Table 1 and Table 2, the improvements 
in efficiency and accuracy of the ellipse map over the disk map can be easily seen. 

Example 4 (Ellipse to arctanh regions, Fio. 1, second map from top). Here we apply the ellipse 
map to the regions in Example 2. The results of our computations are similar to those reported 
in [6]. 

Example 5 (Ellipse to a spline region with 3 boundary points fixed, Fig. 4). In this example the 
boundary of the region is given by selecting several points placed in the plane and interpolating 
them with our periodic cubic spline routine. This provides a type of example which occurs in 
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Fig. 4. Spline boundary with ellipse map, ~Xellips e = 0.1 and N = 256 and boundary points 1, 2, and 3 fixed. 

Table 3 
Spline curve, 3 boundary points fixed, 0 ~ e l  1 = 0.1 

N Newt it suc it er Residual CPU sec 

128 6 0.28. 10 - 4  0.17. 10 -3 1.9 
256 6 0.17- 10 - 6  0 . 1 5 .  10 - 4  3.5 
512 7 0.62. 10 - 9  0.56.10 -9 7.6 

Table 4 
4-leaf Koebe regions with the cross map 

~Koebe O~ . . . . .  N Residual CPU see 

0.2 0.4 128 0.22.10 -5 3.9 
0.2 0.4 256 0.51.10 -l° 14.3 

0.01 0.2 256 0.29.10 -3 7.6 
0.01 0.2 512 0.12.10 -5 15.3 

practice. Results are given in Table 3, where we have also listed the number  o f  Newton  iterations 
(Newt. it.) and the final error between successive iterates (sue. it. er.). 

E x a m p l e  6 (Cross to 4-leaf Koebe regions, Fig. 1, bottom map). In this example  the boundary  o f  
the region is given by  f ( z )=(k(r4z4) /k(r4))  1/4 for Izl = 1, where k(z )=z / (1  - z )  2 is the Koebe 

function. Here  0~Koebe = V/( 1 -- r 4)/( 1 q- r 4), so r may  readily be found in terms o f  ~. In Fig. 1, bo t tom 

map,  0~,oss = 0.6, 0~Koebe = 0 .4 ,N ---- 256, and the residual = 0.11 • 10 -14. Results for some other regions 
are given in Table 4. The t imes for this method are greater than the disk and ellipse methods for 
the same values o f  N. The disk and ellipse methods require 2 F F T ' s  per conjugate gradient iteration, 
whereas  the cross method requires 5 F F T ' s  per  iteration and generally several more  conjugate gradient 
iterations in the early Newton  steps. Note  that this family o f  regions provides another example  o f  
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Fig. 5. 4-leaf arctanh region with cross map, ~ = 0.41,0.29, and N = 256, 256, respectively. 

algebraic crowding for the disk map. Arbitrary degrees of  algebraic crowding and regions with an 
arbitrary number of  leaves may be constructed using the Koebe function and Proposition 3. 

Example 7 (Cross to 4-leaf arctanh regions, Fig. 5). In this example the boundary of  the region is 
given by f ( z ) =  (k(r2z2)/k(r2)) 1/2 for [z I = 1, where k ( z ) :  arctanh(z). Here ~4~rc = [f(ei~/4)l. Resid- 
ual errors and timings in  CPU seconds are given in Table 5 where ~4arc =0.41,0 .29(r=0.9999,  
0.99999999, respectively). 
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Table 5 
4-leaf arctanh regions with the cross map 

229 

~4arc ~c . . . .  N Residual CPU sec 

0.41 0.5 128 0.48. 10 -8 4.2 
0.41 0.5 256 0.57. l0 -15 8.9 

0.29 0.3 256 0.47. 10 - 6  14.3 
0.29 0.3 512 0.32. 10 -ll 28.9 

2 
2 

f 

3 
3 

Fig. 6. Spline boundary with cross map, 0~cross  : 0.5 and N = 256 and boundary points 1, 2, and 3 fixed. 

Example  8 (Cross to spline reyion with 3 boundary points fixed, Fig. 6, C~cross =0 .5 ,  N = 2 5 6 ,  and 
the residual error = 0.13 • 10-14). 

6. Accuracy 

We will address two questions regarding the accuracy o f  our methods. They are both concerned 
with the number o f  terms used in a Faber (or Fourier) series. 

First, we consider a map f from an ellipse to a target domain f2. The ellipse has minor-to-major 
axis ratio e = (p2 _ 1 )/(p2 q_ 1 ), and we will want to vary p, so we denote f by fo- We denote by 
S , ( fp )  the nth partial sum o f  the Faber series. It is convenient to refer back to the annulus 1 < [~1 <P-  
Suppose fp extends analytically beyond the ellipse and that when the singularities are pulled back 
to the l-plane the singularity nearest 1~1 = P lies on I~1 = R = R p .  Then a result given by  Ellacott [13, 
Corollary 2.2] implies that 

I i f0  - s.(f )ll  < 2M(p/Rp)"+~/(1  - p/Rp),  

where M is the maximum of  Ifpl over the image o f  [~l = R p  by the Joukowski map. In general M 
will be infinite, but i f  we consider slightly smaller values o f  ICI it is a fixed number independent o f  
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Table 6 
Optimal ~ for ellipse map to Cassini oval 

O~Cassin i N O~ellips e Residual 

0.1 64 0.5 0.21 - 10 -2 
0.1 64 0.4 0.91 • 10 5 
0.1 64 0.3 (optimal) 0.14.10 -5 
0.1 64 0.2 0.13. 10 -3 
0.1 64 0.1 0.57.10 -2 

0.1 128 0.5 0.13.10 -3 
0.1 128 0.4 0.11 - 10 -8 
0.1 128 0.3 (optimal) 0.10.10 -9 
0.1 128 0.2 0.14.10 -6 
0.1 128 0.1 0.12- 10 -1 

0.01 128 0.3 0.80.10 -2 
0.01 128 0.2 (optimal) 0.12.10 -6 
0.01 128 0.15 0.16.10 5 
0.01 128 0.1 0.65.10 -4 

0.01 256 0.3 0.50.10 -3 
0.01 256 0.2 (optimal) 0.21.10 -9 
0.01 256 0.15 0.17.10 -8 
0.01 256 0.1 0.51 • 10 -7 

Table 7 
Optimal c~ estimated by matching derivatives 

,~,~ ~ IFe~,(1 )1 ~C~ss IF~a~s(1)[ 

0.4 12.2 
0.35 22.4 
0.3 53.4 
0.25 192.3 
0.2 1451.3 
0.15 49,872.4 
0.1 8.27- 107 

0.1 50.5 

0.01 5000.5 

n. The  b e h a v i o r  o f  the  e r ror  is O((p/R)"+l) ,  for  any  n u m b e r  p < R < R p .  In our  m e t h o d s  w e  do  no t  

c o m p u t e  S , ( f p )  bu t  an a p p r o x i m a t i o n  b a s e d  on  t ak ing  a cer ta in  n u m b e r  o f  F o u r i e r  coeff ic ients  on  

= pe i°. The  b e h a v i o r  o f  the  e r ror  is s imi lar ,  as  in the case  o f  the  d i sk  m a p  [4, 25].  The  b e h a v i o r  

o f  the er ror  is bes t  u n d e r s t o o d  in t e rms  o f  the  ra t io  p/Rp. In par t i cu la r ,  w e  m a y  a sk  i f  there  is an 

o p t i m a l  va lue  o f  p,  and  equ iva l en t l y  o f  ~, for  a g iven  ta rge t  doma in .  E l l a c o t t ' s  e s t ima te  sugges t s  that  

the  op t ima l  p is the  one  w h i c h  m i n i m i z e s  p/Rp. W e g m a n n  [29] has  r ecen t ly  e x t e n d e d  his  R i e m a n n -  

H i lbe r t  m e t h o d  for  the  d i sk  [24, 25] to the  e l l ipse .  [29] g ives  a s o m e w h a t  different  d i s cus s ion  o f  the  

a c c u r a c y  o f  the  a p p r o x i m a t i o n  to S(O) for  the  e l l ipse  map .  

In Tab le  6 w e  g ive  s o m e  n u m e r i c a l  resu l t s  w h i c h  a p p r o x i m a t e  the  op t ima l  ~ = ~e l l ipse  for  the  m a p  

to Cass in i  ova l s  o f  ~=~Cassini z 0 . 1  and  0.01, The  o p t i m a l  ~ are  i n d e p e n d e n t  o f  N in each  case.  
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Since the maximum derivative of map from the unit disk to the Cassini oval grows more slowly in 
1/c~ than the maximum derivative of  the map from the unit disk to the ellipse, one expects that the 
optimal e for the ellipse map to the Cassini oval should be greater than eCassini- This is indeed what 
we find. If the target region is an arctanh region, so that the maximum derivative grows exponentially 
in 1/~ like the ellipse, then we would expect ~optimal ~ (Xarctanh- We have also found this to be the 
case. When the maps from the unit disk to the target region are known explicitly, choosing the 
that matches the maximum derivatives provides a good criterion for the optimal ~, as indicated in 
Table 7. In practice, where the derivatives of the map are not generally known, one could perform 
a preliminary search with N relatively small to approximate the optimal 7 and then perform the 
final calculation of the mapping function with N sufficiently large to yield the desired accuracy. The 
optimal c~ does not have to be found with much precision, but if ~ellipse is tOO far from it, the method 
will fail to converge. The observations in [4] connecting the crowding to the geometric properties 
of  the region are helpful in providing a first guess of  the optimal ~. Similar ideas can be applied to 
the cross map. 

The second question that we address is whether a criterion can be given for the number of terms 
required for the derivative of  the map to be well approximated. Our target domain is again £2 with 
boundary curve F and T is the length of F. We recall the Zemach rule [4, 31], which says that, for 
the map F from the disk D to f2, the number of Fourier coefficients required is at least 

2/~ 
N = N ( D )  t> -=- [[F'II~. 

1 . . .  

The crowding problem may be thought of as arising from large values of F '  at points mapping to 
the ends of  the boundary of slender parts of  f2. We note in particular the example F ( z ) =  z/(c 2 - z  2), 
c > 1 for which the above rule gives N >~ (2rc/T)(c 2 + 1 )/(c 2 - 1 )2. 

In discussing this question for the ellipse it is useful to refer back to the annulus as before and 
also to introduce a domain obtained by slitting the unit disk along the interval [ -L,L]  where L < 1. 
This new domain can be mapped onto the annulus by ~ = 9(z), a mapping given explicitly in terms 
of  elliptic functions, obtained from [21, pp. 293-5] with slight modification. The maps we have 
introduced are described in Fig. 7. We note that Nehari [21, p. 295] gives 

2 f i {  !_+__(I/p) 8" ,]2 
L = L ( p ) =  P ~ 3 \ 1  + (1/p)8n_ 4 ) . 

Our method for constructing f is based on finding h., Hence, if F is given by h(pei°), 0 <. 0 <~2rt, 
then do-/d0 = plh'(pei°)l. Suppose that N(A)=2rc/AO is the number of equally spaced points that 
we take on = p -  Then 

do" Aa T T 

dO ~ --~ <~ AO -- 2rt/N(A) 

implies N(A)>>-(27tp/T)]]h'l[~. Now, since F(z)=h(g(z ) ) ,  h '(g(z))=F'(z)/g '(z) ,  and the explicit 
formula 

~p 
Ig'(e ia)] = 2K]e2i a - L 2] 
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F = h o g  F(e'~) 

¢ 

p 

Fig. 7. I l lustrat ion for Z e m a c h ' s  rule for the ellipse map.  

(where the constant K is given in [2l,  p. 281]) implies that 

2K ]e2i ~ __ L2 Ilh']l~ = - -  max I iF'(ei6) I. 
zcp 6 

One sees that the factor ]e 2i6 - -  L 2 [ has the possibility o f  ameliorating the ill effects o f  large values 
of  iF']. In the particular case of  our example F ( z ) = z / ( c  2 - z 2 ) ,  

[e2i6 _ L211e2 + e2i~ I 
le2i~ _ L 2 l l F ' ( e ~ ) f  = le~ - e2i~12 

The extreme cases are for 6 = 0, n, and, in order for this quantity to be bounded when c approaches 1, 
we need only choose p so that L = 1 - (c - 1)2. 

A similar analysis can be given for the cross. We write g2(z) = ~ .  A set o f  maps analogous 
to those above are depicted in the Fig. 8. We obtain the rule 

N(A) >~ 4Kp m6ax le4i 6 _ L2[ iF , (d6) l .  

We omit further details. 
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F=hog2 

/ /  
q, 

f 

Fig. 8. Illustration for Zemach 's  rule for the cross map. 

As remarked above, these observations suggest a simple procedure for estimating the optimal a if 
maximum derivative of the map from the unit disk to the target region is known in terms of ~. 
We let F~. be the map from the unit disk to the ellipse and Fcass be the map from the unit 
disk to the Cassini oval. The maximum derivatives in both cases occur at +1 and are given by 

1 IF'.(1)] ~(~2/2n)e~2/4~ and IF~ass(1)l = 1/2a 2 + ~. For a given aCass, the optimal ~ is the ~e, such 
that IF~'u(1)l =[F~a~s(1)l. Some sample derivatives indicating this are given in Table 7; see also 
Table 6. 

Appendix A 

We need to derive recursion relations for Fn(z) in the case of the cross. First, the binomial 
expansion implies that 

o o  

= ~'(~) = (C + ~-~)~/~ = ~ + ~ ck~ '-~, 

k = l  
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where 

(') Ck= ~c = ( - 1 ) k - l l ' 3 " 5 " " ( 2 k - 3 ) / ( 2 k k ! ) "  

The even index polynomials satisfy the simple relation F2m(Z) = ~2" + ~--2m, m = 1 ,2 , . . . ,  but the odd 
index case is more complex. I f  the general relations given in [2] are specialized to our situation the 
relations 

m--I 

F4"(z) : FI(Z)F4m-I(Z) -- Z CjF4(m-j)(z) -- 4mCm 
j=l 

and 
m - I  

F4m+k(Z ) : F l ( z ) F 4 m + k _ l ( Z )  - ~_~ CjF4(m-j)+k(Z), k = 1 , 2 ,  3 
j = l  

follow. These can be used to show, recursively, that F ' ( 0 )  = 0 if m ¢ 0 m o d 4 ,  and F4"(0) = 2 ( - 1 ) ' .  

Appendix B 

Note from Section 4.3 that [I(I]~/N = Ilnll~ and IIZ[I2/N = Ilmll~ and so Ilnll g and Ilmllg are eigen- 
values of-~(T/N and ~zT/N, respectively. 

Recall that n T = ( 1,0, 0, 0, - 2 p  -4, 0, 0, 0, - 2 p  -s,  0, ...) and so 

4 1 
Ilnll~ ~< 1 + 4 ~ p - 8 j :  1 + -~pS-----7 ~ ~-~-, a J- o, (p ,L 1). 

j = l  

Recall m T = (1 /N)e3[F~F n - b T and b T = (0, p - l ,  0, 0, O, B lp  -5, O, ...). Then 

and 

Ilbl[~llbll, ~ ~< p-1 B j ( _ p - 4 ) j  _ 1 ~ 1 
-= p2(1 _ p-4)  2~2' 

SO 

, 2 ' l  1 1 
"NeTF~FH 2 = IIV'll~ ~< x [~(peiO) [ p2(1 _ p-4)  ~ 2a2, 

2 
Ilmll~ ~< (]1 ~[12 + Ilbll2) 2 ~ - -  ~ & 0. ~2 ' 

Next, note from [16, p. 58], that 

[[PII2--I1(~ Ic)ll~ ~< v/ll(P~ Ic)lllll(P~ Ic)ll~ < v ~  
and so 

HPTpll2 ~< IIPIIz z ~< 2. 

~ 0 ,  
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Thus we have that 

II2ReCHC/N + QII2 ~ 2(IIPII~ + II II IIPII2 z + 211~w112/N + 2[[~XTII2/N) + 1 

8 
4(1 + II llzZ) + 211nllz2 ÷ 21[mll  + - ~2'  
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