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THE ACCURACY OF 
NUMERICAL CONFORMAL MAPPING METHODS: 

A SURVEY OF EXAMPLES AND RESULTS* 

THOMAS K. DELILLOt 

Abstract. This paper shows how the geometry of the region affects the conditioning and the 
accuracy of numerical conformal mapping methods for simply connected regions, especially Fourier 
series methods. Both explicit examples of popular test cases and more general estimates are discussed. 
The severe ill conditioning that is known as the crowding phenomenon is discussed and its effect on 
a conformally transplanted boundary value problem is illustrated. Remarks on various numerical 
methods are included. 
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1. Introduction. The accuracy of numerical approximations of conformal maps 
is influenced by two properties of the boundary curve: the local property of smoothness 
and the global property of shape. We will be concerned here mainly with maps between 
the unit disk and simply connected regions bounded by Jordan curves and mainly with 
methods that approximate the Taylor series of such maps from the disk. There are 
a variety of results, some classical, that say that a conformal map can be extended 
to the boundary with, roughly, the same smoothness as the boundary. These results 
may be used, for instance, in a standard fashion, to show the rate of decay of the 
Taylor coefficients of the map. We discuss such a case below. The effect of the global 
shape of the boundary is less well known and may be much more dramatic. The map 
from the disk to an elongated region, such as the interior of a slender ellipse, has 
relative distortions which vary exponentially with the aspect ratio of the region. This 
severe ill conditioning, known as the crowding phenomenon for the map to the disk 
(or the Geneva effect in [25, p. 428], presumably because positions that were far apart 
were drawn close together) was apparently first noticed independently by [17, p. 179], 
[21, ?3], and [31]. It can make the numerical problem difficult or impossible to solve 
and has been the object of much recent study; see [6], [9]-[12], [19], [20], [28], [30], 
[33], [35]-[42], [44], [46, p. 4], [52], [53], [55], and [56]. The map from the disk to a 
"pinched" region, such as the interior of an inverted ellipse, will also suffer from ill 
conditioning of a less severe, algebraic nature. We will illustrate both these cases in 
our examples and estimates below. 

In this paper we give a detailed discussion and survey of the above effects with a 
focus on Fourier series methods that approximate the Taylor series of the map from 
the disk to the region. In this case, the crowding for extreme regions is actually an 
expansion or spreading of the boundary, but we shall continue to call it "crowding." As 
shown in [15], [30], and [55], for instance, extreme regions may require an inordinately 
large number of Fourier coefficients, if they can be mapped at all; see also [22]. If we 
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think of the problem as one of resolution, then images of the discrete Fourier points 
do not resolve extreme boundaries well. In this sense maps to the disk are not so 
badly affected; see [33]. Thus, a Fourier series map from the disk to the interior of 
an ellipse of major to minor axis ratio 5 is difficult to produce, whereas finding the 
preimages of the corners of a rectangle for the Schwarz-Christoffel map to the disk 
becomes difficult for rectangles of aspect ratio 10 or 20; see [47]. 

In the remainder of this section we will give some introductory results, including 
a proof of Zemach's rule for the smallest number of Taylor coefficients required for 
even a first order approximation. In ?2, we discuss several popular test cases in detail 
and show that for families of analytic boundary curves whose nearest singularities 
outside the disk are known, a more precise form of Zemach's rule can be stated. 
In ?3, we discuss some more general attempts to estimate the crowding, including 
results of Dubiner, Gaier, Pfluger, Wegmann, and Zemach and recent related work 
on domain decomposition methods for computing conformal modules. In ?4, we show 
how the crowding can affect a numerical solution to a boundary value problem when 
it is conformally transplanted to the disk. Finally, in ?5, we make some remarks 
on various other numerical methods, including some recent attempts to avoid the 
crowding problem by picking more appropriate computational domains. 

First, let us define some notation: f will denote the conformal map from the 
interior of the unit disk D to the interior Q of a Jordan curve F with a parametric 
representation y = -y(of), where 0 < a < L and a is, for instance, the arclength or 
polar angle. Also, f will be normalized by f(0) = aO and either f'(0) > 0 or f(1) fixed. 
Often we will want to consider maps f = f, to a family of curves F, : -y, (a) where 
0 < a < 1 and a measures the "thinness" of the region or the distance from f (0) to the 
boundary. For example, r, might be the family of ellipses of minor-to-major axis ratio 
a centered at the origin with ao = 0 and major axis [-1,1]. Note that if -y(a) is smooth, 
then f extends smoothly to the boundary of the unit disk and f(eit) = y((t)), 
where c(t) is the boundary correspondence function. An easy, standard calculation 
with the Cauchy integral formula shows that the Fourier coefficients of f(eit) are 
the Taylor coefficients, ak, of f expanded about 0. That is, for Izl < 1, f(z) = 

Z=00 akZk. We will imagine approximating f by its truncated Taylor series, fN(z) = 
Z k= 

Nk- akZk. Numerical methods, such as those due to Theodorsen, Fornberg, and 
Wegmann, essentially produce approximate values ak to the N + 1 ak's. The map 
obtained by using these approximate coefficients in the truncated series will be denoted 
by fN(z). We will consider mainly the effects of the boundary on the accuracy of fN, 

since the effects on fN are similar. 
Most numerical conformal mapping methods are essentially methods for solving 

integral equations for a (t) (or t (a) for maps to the disk). For instance, for Theodorsen's 
method, we start with the auxiliary function, h(z) = log f(z)/z, analytic in D. If F is 
star-shaped with respect to 0, then -y(a) = p(a)e ia and h(eit) = log p(a (t))+i(a (t)-t). 
Let K denote the conjugation operator relating conjugate harmonic functions Re h 
and Im h on the boundary of the unit disk, Im h(eit) - Im h(O) = K Re h(eit). 
Using the normalization f'(0) > 0 and the representation of K as a singular integral 
operator, we have the Theodorsen integral equation, 

a(t) - t = K(logp(a(t))) = +PV cot ( 2-) log p(a (i))di. 

Note that although K is a linear operator, the equation is nonlinear in a(t) (or, 
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more properly, in the 27r-periodic function a(t) - t) with the nonlinearity entering 
through the "curve information," logp(cr). A method of successive conjugation can 
be applied to solve the equation. The discretization KN of K can be accomplished 
by N-point trigonometric interpolation, and the numerical evaluation of KNh(eit) 
can be implemented with two N-point FFTs. For a thorough discussion of the basis 
of the various Fourier series methods in function conjugation, see [23]. For similar 
discussions and other methods, see, for instance, [5], [16], and [25]. For collections of 
recent papers and applications, see [37], [45], and [46]. 

If F is analytic, then the Taylor series for f about 0 can be extended outside the 
unit disk to a radius R > 1 equal to the modulus of the nearest singularity to Izl = 1. 
f may also fail to be conformal if f'(z) 0 for some 1 < Izl < R. For a proof of these 
statements, see [44, p. 41]. We will discuss the case of analytic F more thoroughly in 
the context of our examples in ?2. 

In practical cases F may be considerably less smooth than the analytic cases 
discussed in our examples. For instance, F may be determined by interpolating a set 
of points by a periodic cubic spline. Theorem 2 gives a result showing how the error in 
approximating f by fN depends on N for spline boundaries. In our error estimates we 
will mainly use the max-norm Ilf llo = max,, I, lf(z) . Other results yielding slightly 
sharper estimates or using different smoothness assumptions or norms are also possible. 
We will not pursue such details further here. We will, however, need a theorem that 
guarantees that the extension of f to the boundary of the disk is roughly as smooth 
as the boundary parametrization, -y(cr). There are many such results in the literature; 
see, for instance, [44, Chap. 3] and [23, ?4]. Theorem 1 states a result from [23, ?4] 
which applies to the case where F is a cubic spline. Let us first define the Sobolev 
space, 

WM {P h periodic; h(m-1) absolutely continuous, h(m) e LP}, 

m > l, 1 < p < oo. 

THEOREM 1. -y(a) e Wm ?w => f(eit) E Wm'P I 1 <p < 00. 

If -y is a cubic spline, then -y(2) is absolutely continuous and -y(3) is piecewise 
constant and, hence, in L?. Thus ty e W3',, and the theorem says f e W3P for 
1 < p < oo. A standard integration-by-parts argument gives the decay of the Fourier 
coefficients, lakl < Ilf(3)llp/k3. 

THEOREM 2. If y is a cubic spline, then If - fNII|O < CN 5/2. 
Proof. Using p = 2 and the isometry of 12 and L2 we have 

00 

Ilf fNI12 S lakI 
k=N+l 

00 

= E Ik(k - 1)(k - 2)ak12(k(k - 1)(k - 2))-2 
k=N+l 

< II f(3)112 ((N + 1)N(N - 1))-2 

Similarly 

If' -f fI2 < IIf (3)112/((N + 1)N)2. 
By Warschawski's inequality [16, p. 68], 
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Next we state a rule of thumb due to Zemach [55], [56] giving a lower bound on 
the number of Taylor coefficients N required for even a rough approximation to f. 
Suppose F is smooth and L is its arclength. Let At = 27r/N. If N is large enough so 
that "cr do' for all t, then IfI(eit)I = ddt - "' < NL for all t. That is, for N large 
enough that fN is a good approximation to f', we must have Zemach's rule: 

N> 2IIf'I I 
-L 

Note that this expression scales with L. As will be shown below, llf' K0, may be large 
for thin regions, so this rule links accuracy to global shape. We will give a more precise 
statement of this rule for the examples in the next section. 

2. Examples. In this section we give the details of some popular test cases 
and illustrative examples. These examples involve parametrized families of analytic 
boundaries. We exhibit the Taylor series for the maps and relate the modulus R of 
the nearest singularity to Ilf'lo. This allows us to give our more precise version of 
Zemach's rule. 

For each example, computations with Wegmann's method are reported. As in 

[503, we find 

Ilf - fNIIoo _ CR-N/2 

where the error is measured at the mesh points, tj = 2rj/N. The dashed lines in 
Figs. 2, 4, 6, 8, and 10 indicate the values of CRN-!12. The symbols nearby indicate 
the errors, If - fN K ,. The values of C are given below. The error in truncating the 
exact series after N terms would be If - fNIKI = O(R-N), and we might expect the 
numerical error to be of this order. However, as shown in [18] and as illustrated in 
the explicit example given in (ii) below, II (K - KN)flloo = O(R- N/2). This is, indeed, 
what is found numerically. Roughly speaking, the numerical methods using N mesh 
points compute N/2 + 1 Taylor coefficients accurately. A more careful discussion of 
the error in fN would require use of the Sobolev norm as in [50]. In Figs. 1, 3, 5, 7, 
and 9, images of radial lines and concentric circles in the unit disk are plotted. For 
the concentric circles with an N-point map, the images of 4N equally-spaced points 
are plotted. If N is not large enough for high accuracy, oscillations may be seen on 
the boundary, as in Fig. 3 for a = .2 (where the accuracy had degraded, as discussed 
in (ii)) and Fig. 9 for a = .3. As noted at the end of this section, the interior of the 
map may look quite good even for very poor solutions. 

(i) Circle; see Fig. 1. F is the unit circle. Let 0 < a < 1. Then f will just be the 
Moebius transformation of the unit disk to itself that takes 0 to -1 + a. We note the 
following facts: 

f(z) 
+ z-1 a =-1?a+a(2-a)Z(1 a) 

1~~~~~= 

$0,~~~) 
R-1 =+a+0(a2) 

lIflIloo = If'(1)I = 2 _ 1, 

a 
min If'(z)I = If'(-1)1 2a~ 
IzI1<2-a 
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RLPHR=.4 RLPHR=.2 
N=32 N=64 

RLPHR. 1 RLPHA=.05 
N=128 N=256 

FIG 1. Circles with Wegmann's method. 

N 
0 128 256 512 1024 

1E+OO- I I I 1 

IE-05 

O... 

lE-10- ' 

| \ ' zLALPHA .05 

I : O .1 

+ .2 

1E-15- X .4 

FIG. 2. Discretization errors for Wegmann's method for circles. 
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The errors in Fig. 2 fit the estimate quite well with C = .03 for a wide range of a. 
The degradation of the errors for a = .2, N = 256 and a = .1, N = 512 is associated 
with the onset of divergence as discussed at the end of the next example. 

(ii) Inverted ellipse; see Fig. 3. Here F y(a) = p(a)e i, where p(a) = 

/1 - (1 - a2)sin2a for 0 < a < 2ir and 0 < a < 1. This map is derived by inverting 
the familiar Joukowski map to the exterior of an ellipse. We note the following 

f(z) = 1 -+ or _ a)Z2 = + a k= 1 + a 

R= a= 1+a +0(a 2), 

f'(?iR) = 0, 

ljf'iloo = If'(+1) = 1, 

min If'(z)l = If'(?i)l = a 
Iz?1< 

The exact boundary correspondence is 

a(t) = arctan a tan(t - 7r/2) - 7r/2. 

Following the example for the exterior problem for the ellipse in [8] and using the 
auxiliary function for Theodorsen's method, h(z) = log(f(z)/z), and Im h(eit) = 

KRe h(eit) with f as given, we have 

logp(a (t)) = log ? +R-2 cos 2t ? cos 4t+ ?. 

-4 -2 R~~~~~ 
a(t)-t = R2 sin 2t?+ sin 4t?+*- 

2 

Noting that sin mt = K(cos mt) and that the N-point FFT gives the approximation 

__ ft R4 Rt-NI2 N 
log p(a(t)) log ? +R2 cos 2t + cos 4t + ..+ ? cos -t 

1 + a ~~2 N/4 2 

to the first N/2 terms of the sin/cos series, we see that II(K 
- KN) log p(a(t)) tO 

O(R-N/2). This is an explicit example of the estimate in [18]. As is shown in Fig. 4, the 
errors for Wegmann's method exhibit the same behavior with C = 1, at least for a > 
.4. For smaller a the errors degrade. This is due to the onset of divergence caused by 
amplification of rapidly oscillating terms. This "convergence/divergence" phenomenon 
was noted in [8]. It is discussed in [49] and [50] where cutting off the higher indexed 
Fourier coefficients in the calculation of the Newton updates is recommended. We 
have not done this here. Rather, for a = .2 we have used an 0(1/N) perturbation 
of the exact boundary correspondence as our initial guess. The first few iterations 
converge rapidly and then the iterations diverge. We note that the data from Table 
1 of [49, p. 323] for the inverted ellipse with a = .2 (p=.8 in [49]) with damping of 
rapid oscillations would be nearer to our predicted values.1 

1 Note added in proof: The method given in R. Wegmann [Discrete Riemann-Hilbert problems, 
interpolation of simply closed curves, and numerical conformal mapping, J. Comput. Appl. Math., 
23 (1988), pp. 323-352] overcomes these problems. 
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ALPHR=. 8 RLPHR=. 4 
N=32 N=32 

RLPHR=. 3 RLPIH=. 2 
N=256 N=512 

Fic- 3. Irwverted ellipses wth WVegman'ns method. 
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RLPHR=. 8 ALPHR=. 4 
N=32 N=64 

RLPHA. 2 RLPHA=. 1 
N=256 N=512 

FIG. 5. Cassini ovals with Wegmann's method. 

(iii) Cassini oval; see Fig. 5. Here F y(or) = p(&)eia where 

1= 1 7/( - a2) cos 2o + \/(1 - a2)2 cos2 2o ? 4a2 

for 0 < a < 2rr and 0 < a < 1. 

We note that 

f (z) =-cxz' -(1-2)z2 _1 1 2 (2k)! 1- a2 2k 

K1?+ a2-(1-a2)Z2 )1 + >2 (k!)222k k1 + ?a2 

1-a2 R= a 1 + a2 + 0(a14)1 

lifilo fl(?1) 
IIf'IK = If'(?1)I = 2a2 + 2? 

min If'(z)l = If'(?i)l = ( 2 ) 

C = .01 gives a reasonably good fit to the data in Fig. 6. Our results with Weg- 
mann's method can be compared to Fornberg's results with his method for the same 
example given in [15, Table 2]. In terms of our a, his a is /(1 -2)/(1 ? a2). Such 
a comparison indicates that Wegmann's method is slightly better for (our) a near 1, 
and Fornberg's method is slightly better for a near 0. 

(iv) Arctanh; see Fig. 7. Here we investigate an explicit map exploited by Dubiner 
in his theoretical estimates in [12]. We use the map from the disk to the infinite strip 
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N 
0 128 256 512 1024 

IE+00 , , , , l , , 

1E-0 ' \ I %% 

, . 

lE-lO- ' 

I ' O~~~~~~~~L ALPHA =.1 
1+ 

_ O .2 
_X + .4 

lE-15- X .8 

FIG. 6. Discretization errors for Wegmann's method for Cassini ovals. 

RLPHR=. 9 RLPHR=. 841 
N=32 N=32 

ALPHA=. 419 RLPHIR=. 29 

N=t28 N=512 

FIG. 7. Arctanh regions with Wegmannr's method. 
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normalized as follows: 

1 1+(1- 3)z_ ___ z 2k-i, f(z) = arctanh(l - 3)z = log 1-(1-)Z -= Z2k 1 ( 
2 I - 

( 
- 

0)z k=1 
2- 

R= 
I 

A with O</3<1, 
I 1- 

() (1 + (1 - #Wz(i - (1 - 3)z)) 

min If'(z)I = If'(?i)t = 1/ 1 + 2 

if(?1) =1 -2 log:3 and a -, 
241 

1-/ 1 _ 21 
lIf'IKQ If'(?1)I (2 B3)B3 2/3 2 

Also, note that 

R-(N+ 2) 
-2k R-N 

lIf-fNI?oo N ZR -k 

In our computations, we have used a parametrization of the boundary, (1+ r2) cos y- 
(1- r2) cosh x, where r = 1-B3, provided by John Pfaltzgraff (private communication). 
Also, we have normalized the curves so that If(?1)I = 1 and tf(?i)I = al. A choice of 
/ then gives an a. One could, of course, solve for /3 for a given a, but we have not done 
this. Again C = .01 gives a reasonble fit to the data in Fig. 8. This map is perhaps 
the simplest example of the severe distortions, seen as the crowding of points mapped 
near ?1I by f l, which occurs for maps from the disk to slender regions. As is typical 
in such cases, the distortions vary exponentially with the aspect ratio 41/7r of the 
region. Note that for z near ?1 the series starts to grow like the harmonic series as 
R tl. 

(v) Ellipse; see Fig. 9. Here r : -y(a) = p(a)eia, where p(a) = a/ 
1-(1--a2) CoS2 a for 0 < a < 2ir and 0 < a < 1. The exact map is given 

in [34] in terms of an elliptic integral: 

z/V4 

f (z) asin2K J (1-t2)(1-k2t2) 

0 

In [55] Zemach discusses the crowding for this map and finds 

a22 

lIfIlloo = If'(?1)j la e12/4 

2ir 
The map w = f(z) can be computed by composing a sequence of known maps. 

Here we give a modification of the construction in [32, pp. 295-296]. Our construction 
uses the Schwarz-Christoffel transformation between the rectangle and the disk instead 
of the half plane, so that SCPACK [47] may be employed. First, map the upper half 
of the unit disk, IzI < 1, Im z > 0, to the right half of the unit disk in the (-plane with 
the semicircle mapping to the diameter [i, -i], by ((z) = (i - z)/(i + z). Next, use 
SCPACK to compute the Schwarz-Christoffel map ( = ((() from the full unit disk 
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N 
0 128 256 512 1024 

1E+00 I l I l l l l 

+ 

IE-05 * 

_L . . 

lE-10- $ " 

', ALPHA= .29 

+ .49 

' X .84 

IE-15- 

FIG. 8. Discretization errors for Wegmann's method for arctanh regions. 

RLPHR=.8 RLPHR=.6 
N=32 N=128 

RLPHR=.4 ALPHR=.3 
N=S12 N=1024 

FIG. 9. Ellipses with Wegmann's method. 
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<4I ? 1 to the rectangle in the (-plane with base [-7r/2, 7r/2] and height i2 log p, and 
normalized such that ((O) = i log p and ((1) = 0. Finally, the rectangle is mapped 
to the upper half of an ellipse in the w-plane by w(() = sin(. The line segment Im 
( = log p bisecting the rectangle will map to an ellipse in the w-plane with major axis 
(p + l/p)/2, minor axis i(p - l/p)/2, and focii ?1. The map w = h(z) = sin(( (z)) 
from the full disk Izl < 1 to the full ellipse is gotten by reflecting through the real 
axis. The desired a is given by a = (p2 _ 1)/(p2 + 1) and our normalized ellipse map 
with f(1) = 1 and f(i) = ia is given by f(z) = 1- a2 h(z). 

We can now further analyze the asymptotic behavior of the ellipse map as a I 0. 
Let h(?I/R) = ?1, where ?1 are the focii of the (unnormalized) ellipse and R > 1. 
Then it can be seen from the above construction that the singularities of h nearest to 
the unit disk are branch points of the square root at ?R. The preimages of the corners 
in the Schwarz-Christoffel map are ?i(1/R) and ?i(R). Let 0 = arg(((R)/~(1/R)). 
A slight modification of the discussion of crowding for the Schwarz-Christoffel map 
given in ?3(i) below shows that 

0 -e-r 2/4log as p 1 1 

and so 
R 1+ -I/4e ' as a 0. 

Table 1 compares some calculated values of R with the asymptotic estimates for 
various a. 

TABLE 1 

a R 1+4e- 2/4a 

.8 1.53 1.18 

.6 1.12 1.06 

.4 1.011 1.008 

.3 1.0013 1.0010 

Using the calculation of the exact map given above, we see in Fig. 10 that 

IIf - fN 1 CR-N/2 for Wegmann's method with C = .01. This is another example 
of a slender region that crowds. Numerical experiments in [4], [8], and [22] show 
how difficult it is to produce this map or, equivalently, the map to the exterior of an 
inverted ellipse for even moderate a .2. The similarity of the data in Figs. 8 and 
10 should be noted. 

We may summarize the relation between the singularities and the maximum 
derivatives in Table 2: 

TABLE 2 

Region R = 1 + 5(Q) IIf'||o =0(6(a)) 

Circle 1 + a + 0(Q2) 2 + 1 
Inverted ellipse 1 + a + 0(2) 1 

Cassini oval 1 + a2 + O(Q4) + 
Arctanh , 1 + 0(e-r/2a) 1 er/2a 

22 

Ellipse - 1 + 4e-ar2/4c, 2 e 2e7r2/4a 

So for the above examples we have roughly R = 1 + 1/O(JJf'JJI,) and 

IlIf - fNl < CR 0N = Ce-No NlfgR C llfl 
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FIG. 10. Discretization errors for Wegmann's method for ellipses. 

This is Zemach's rule for the above analytic curves. For the ellipse map where R 
is a branch point, it is easy to show that maxlZJ<R If(z)I = (p4 + 1)/(p3 + p) -+ 1 

as p I 1. Cauchy's estimate then gives the O(RftN) behavior of the error for the 
truncated series. For families of analytic curves for which f(z) becomes unbounded 
as z approaches R, application of Cauchy's estimate is less straightforward. This is 
illustrated in the following theorem. Obtaining precise information on the singularities 
of f may require the use of asymptotic techniques such as those in [3, pp. 255-257]. 

THEOREM 3. For a family of analytic curves F y,y(a) with R = 1 + 6(a) and 
for r fixed, 0 < r < 1 and Rr = 1 + r6(a) we have 

if - fNIloo < Ca,rR7N. 

Proof. For Izj < Rr = 1 + r6(a), there is an Mr such that Jf(z)j < Mr. Cauchy's 
estimate gives lakl < MrRT-k. Therefore, for IzI < 1, 

1a<Mr < MrR- lIf-fNIIoo < S akl Rr - l r6(a) 

Simlary,we an k=N+1l1- 6a Similarly, we can estimate the error in the interior of an analytic curve if the 
ak's are known accurately: Let IzI = r < 1. Then for our curves normalized so that 
IlfifKo = 1, the Cauchy estimate gives lakl < 1. Therefore, 

oo ?? rN+1 

If(z) - fN(Z)l < ? E akZ ki< rk = r1 
-r 

k=N+1 k=N+1 

For example, N = 10 and r = 2 gives an error of less than 10-3, so the map may be 
evaluated accurately in the interior of the unit disk with only a few accurate coefficients 
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and may look reasonable even when the solution is quite poor. 

3. Crowding estimates. In this section we review several estimates for crowd- 
ing. In (i) we consider the case of the Schwarz-Christoffel transformation to rectangles 
of large aspect ratio. In (ii) we apply estimates of Gaier based on the curvature of the 
boundary and show that they do not capture the severe crowding phenomenon. In 
(iii) we discuss Zemach's estimates based on the Menikoff-Zemach integral equation 
for the boundary correspondence. In (iv) we give a brief review of Dubiner's general 
theory. In (v) we apply a theorem of Pfluger from the theory of conformal invariants 
to give a general estimate of the crowding for elongated sections of a region. In (vi) 
we give an example which exhibits the algebraic crowding for pinched regions. In (vii) 
we briefly discuss Wegmann's estimates of If'j. Finally, in (viii) we mention the recent 
related work on domain decomposition methods for computing conformal modules. 

(i) Schwarz-Christoffel transformation. Let f be the Schwarz-Christoffel trans- 
formation for the upper half plane to the rectangle with corners ?K, ?K + iK'. Using 
symmetry we fix f(+1) = ?K, f(?1/k) = ?K + iK', and we also have f(0) 0 and 
f (i/k) = iK'/2, where 0 < k < 1. Then 

,;w dr 

We map the upper half plane to the unit disk by 

z(w) = 
i 

- V.w 
i + Vk-w 

Then z(O) = 1, z(oo) = -1, z(?l) = e?iO/2, and z(-+1/k) =-e?iO/2, where 

0 = arg z(1) = 4 arctan v'. 
z(-1) 

We now want to ask what happens to 0 as the aspect ratio K'/2K becomes large 
(as k 0). In this case we have 

0 rli4Vk, 

_ _ _ _ _ _d r _ d r 2' 
K=J 1-k2T2 JO 2 ' 

and 
l/k d-r 4 

JlK2 2t log 
k 

The behavior of K' is derived in [54, p. 522], using elementary estimates of the inte- 
grals. Putting these together, we get 

k- 4e- 2K 

and finally 

9r8e4 K 

Thus, for the conformal map from the unit disk to a rectangle of large aspect ratio, the 
crowding of the preimages of the corners can be severe. The estimates above are also 
discussed in [28] and [36], with standard references to the elliptic function literature. 
We wish to point out the easy estimate in [54]. For a comparison of the maps to four 
rectangles of increasing aspect ratios, see Fig. 3 in [28]. 
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Note that it is the global property of aspect ratio that is causing the crowding 
and not the local effects of the corners. Acute corners are singularities in f' which 
magnify infinitesimal regions infinitely. By contrast, the crowding in example (iv), 
?2, for instance, is caused by a singularity of f near which f becomes unbounded. 
Similarly, it is not the curvature which is causing trouble, as the following estimates 
of Gaier indicate. 

(ii) Gaier's estimates. In [16] and [25] various equations for t(of), the boundary 
correspondence for the map to the disk, are discussed. In particular, equations for 
t'(f) would seem right for estimating the distortions in the map. Two such equations 
derived in [16] and [25] are the equation of Warschawski, 

L 

t'(a) + J N(&, u)t'()d& = 2Im (U) 
0 

for the map from the interior of -y(o), and the equation of Banin, 

L 

t'(lr) N(3, u)t'(&)d3, 
0 

for the map from the exterior of -y(o), where 

N( 
r,=-I (a) 

( 
)-0) 

is the Neumann kernel. For smooth convex curves with maximum and minimum radii 
of curvature Pmax and Pmin, respectively, Gaier proves the following theorems. 

THEOREM 4 [16, Thm. 4.2, p. 45]. 

2 < N(&,) ?- 2 
27rPmax - ~ 2lrPmin' 

Applying this estimate to the above equations for t'(o), gives the following. 
THEOREM 5 [16, Thm. 4.3, p. 46]. For the interior map 

O < t (O-) < -- 
a PmaxX 

and for the exterior map 

1 t 1 < 
Pmax Pmin 

Note that these estimates do not capture the crowding, since the lower estimate 
for the interior map would have to be exponential in a. (The lower estimate is just 
the fact that t(c) is increasing. It is included only for emphasis.) The reason for this 
would seem to be that these estimates are based on the Neumann kernel, which is 
closely related to the curvature, and curvature, like a corner, is a local property of 
the the curve. These estimates are not necessarily sharp for some of our families of 
test curves. For instance, let us consider some cases where the bounds are converted 
to bounds on c'(t). For the map to the interior of the family of circles in example 
(i), we have a/(2 - a) < 5'(t) < (2 - a)/a. Gaier's estimate gives a/(2 - a) < 
a-'(t) < ox. Note that the lower bound is sharp for this family. For the family of 
ellipses in example (v), we have Pmax = 1/a 2 and Pmin = a. The exact map for the 
interior gives If'(?i)I < o'(t) < If'(?1)I (a2/27r)ex2/2a. Gaier's bounds in this 
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FIG. 11. Crowding for map of half plane, Re z > .2 by f(z) = 2 log sinh z/2. 

case give a/(2 - a3) < cr'(t) < oo, so the exponential behavior of the upper bound 
is not captured at all. The exact (Joukowski) map to the exterior of the ellipse gives 
1 < oa'(t) < 1/a, whereas Gaier's bounds give a < ca'(t) < 1/a2. Though these 
bounds are not sharp they do demonstrate that the map to the exterior of a slender 
region is not a difficult case. This is seen in the numerical experiments in [8] and [24] 
and in aeronautical engineering applications where Fourier series methods are used to 
compute potential flow over the exterior of often slender airfoils. The difficult exterior 
case is the map to, say, the exterior of an inverted ellipse. Roughly speaking, whenever 
"fingering" occurs in the target region, the mapping problem will be ill conditioned; 
see Fig. 11. Note that Gaier's estimate can be used for the interior of the nonconvex 
inverted ellipse. There the exact map of example (ii) gives a2 < o'(t) < 1/a. Using 
Gaier's bounds for the exterior of an ellipse and reflecting gives a 3 < r'(t) < 1/a3. 

(iii) Zemach's estimates. Consider the map from the vertical strip -ir < u < 
7r, v > O in the w = u + iv-plane to the strip -7r < x < 7r, y > y(x), in the z = x + iy- 
plane, where y(x) is a given 27r-periodic function. Let z = z(w) be the conformal map 
between the strips for which z(?ir) = ?rr + iy(?7r) and the vertical sides map to the 
vertcal sides. Then z(w) will be determined if u = u(x) is found for -7r < x, u < 7r. 
In [31], u = u(x) is found as a solution to the Menikoff-Zemach equation, 

y(x) = yo + 2 log 2 + log sin 2 (u(x)-u(x')) dx'. 

Similar equations can be derived for other geometries, such as the map between the 
unit disk and the interior of a closed curve. As illustrated in Fig. 11, the maximum 
and minimum crowding will take place where dy/dx = 0. In [55], Zemach assumes 
severe crowding, du/dx <K 1, near x = 0, u(O) = 0 for y(O), a minimum, and derives 
an estimate for the local behavior of u(x). He applies these estimates to some examples. 
For an ellipse in circular geometry he gets the correct asymptotic behavior within a 
constant factor. For the cosine curve, y(x) = - cos x, he finds 

du (?) -7r/2 fo sin xlxdx 
dxel a 

j 



804 THOMAS K. DELILLO 

He also gets an estimate for the minimum crowding: 

du2 
d ( -) = 

A similar example is given in the next paragraph; see Fig. 11. 
(iv) Dubiner's work. We give here some brief remarks on the results that Du- 

biner presented in his Ph.D thesis [12]. Unfortunately, to this author's knowledge, this 
work has never been published in an accessible form. Dubiner shows quite generally 
that the conformal map f from the disk to a region may have max If'I very large, 
growing exponentially with the aspect ratio for slender regions. However, log If'l is 
well-behaved and min If'I is reasonable. His estimates exploit the theory of conformal 
invariants, extremal length, and harmonic measure. The key estimate of f' for the 
severe crowding uses the arctanh function in ?2, example (iv). In an introductory 
example, Dubiner uses the following map, which illustrates the crowding for the half 
plane mapped to a half plane with "fingering." Such geometries may occur in com- 
putations of surface waves [30] and the Rayleigh-Taylor instability [31]. The map is 
f (z) = 2 log sinh z/2 from the right half plane to the slit plane as shown in Fig. 11. 
Curves x = c > 0, c constant, map to finger-like curves as c t 0. Note in this case that 
f'(x + ir) 1 0,f(x) 2logx, and f'(x) l/x as c J 0. If we take a := -1/logx 
as the aspect ratio, then we see again f'(x) el/l. Dubiner applies this example to 
the region x > - a cosy to get the same estimates for the maximum and minimum 
derivatives as those reported above due to Zemach. 

Besides attempting to give bounds for If'l, another way to study the distortions 
in f is to try to estimate the harmonic measure of a boundary arc at an interior point 
of the region. Dubiner also gives such estimates in terms of conformal invariants such 
as extremal distance. We give a similar result next. Dubiner's other results include 
a perturbation formula connecting perturbations of the boundary to perturbations of 
the map. A numerical method is also suggested, but no experiments are reported. 

(v) Pfluger's Theorem. In this section we use some results from the theory of 
conformal invariants [1] to estimate the crowding. 

For an arc E on the boundary F of Q, we recall the following definition. 
DEFINITION 1. The harmonic measure of E with respect to Q, w(w) = W(w, E, Q), 

is the unique bounded harmonic function on Q with boundary values 1 at interior points 
of E and 0 at interior points of F - E. 

If w = f(z) maps D conformally onto the Jordan domain Q and g = f-1, then 

w(z, f -1(E), D) = w(f (z), E, Q), 

since harmonic functions are preserved by conformal maps. The boundary arc E maps 
to an arc f-1 (E) on the unit circle. It is a familiar consequence of the mean value 
property of harmonic functions that 

meas(f 1(E)) = 2irw(0, f (E), D) = 27rw(f (0), E, Q), 

where meas denotes linear measure on the unit circle. Thus, estimates of the harmonic 
measure w(f (0), E, Q) can be used to assess the distortion of the boundary set E under 
conformal mapping by f. 

Next, we recall the notion of extremal distance between two disjoint sets E' and 
E in the closure of Q. We consider the family of Riemannian metrics ds = pldzl which 
includes the Euclidean metric. 
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E 

r'~~~~~~~G 

FIG. 12. Region with elongated section for Pfluger's theorem. 

DEFINITION 2. The extremal distance between E' and E is 

(inf f pldzl)2 
A(E', E, Q) = sup 

ff. p2dxdy 

where the supremum is over all nonnegative, Borel measurable p = p(x, y) such that 
0 < f fQ p2dxdy < oo, and the infimum is over all locally rectifiable arcs -y in Q 
connecting E' and E. 

Under a conformal map f the metric p will transform as ds = pldzl = p'ldf , 
where p' = p/lIf' I. Thus, we see that extremal distance is a conformal invariant, which 
may be thought of as length2/area. If Q is a rectangle of length I and width w and 
E' and E are opposite sides of Q a distance I apart, then A(E', E, Q) = l/w. That is, 
the extremal distance is just the conformal module of the rectangle. Similarly, in [6] it 
was noted that for a "slender" region Q of length 1 and width w with E' and E at the 
"ends" we have I > w and the area of Q lw. Then an inequality due to Rengel [29, 
p. 22] gives A(E', E, Q) l/w. Mapping Q to a rectangle and applying the estimates 
for the Schwarz-Christoffel transformation in (i) will then yield the crowding estimate. 

There is, however, a more precise and general estimate of harmonic measure 
in terms of extremal distance due to Pfluger. Let E be a set on the boundary of 
Q = Q' U Q" U E'. Fix ao e Q and a small compact set K in Q containing ao, as in 
Fig. 12. Then Pfluger's theorem says 

w(ao, E, Q) < Ce -A(K,E,Q) 

where the constant C depends only on ao and K and does not depend on the boundary 
set, E. If E is a boundary arc at the end of a long "finger" Q' of length 1 and width 
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w protruding from Q and K C Q" as in Fig. 12, then as was observed in [11], 

A(K, El Q) > A(E/l E, Q') > llw(l + e) X 

where the area of Q' = lw(l + e). Combining this with Pfluger's inequality and ad- 
justing the constant yields the crowding estimate, 

w(ao, E, Q) < C'e-'l/w. 

To apply this to a rectangle of length I and width w and ao at the center of the 
rectangle, we must replace I by 1/2 in the estimate. This example shows that the 
estimate is sharp. 

In [44, ??9.4 and 9.5], we have essentially this same crowding estimate along with 
a proof of Pfluger's theorem. 

For a slender region the crowding estimate may be thought of as a simple carica- 
ture of Saint Venant 's Principle from the theory of elasticity, expressing the exponen- 
tial decay-of-influence of boundary data at E on the value of a harmonic function at 
ao as a function of the distance from ao to E; see, e.g., [26] and the references there 
for a lead into the extensive literature in this area. 

(vi) Algebraic crowding. In examples (i), (ii), and (iii) of ?2 where the target 
regions are pinched, we saw that the maximum derivatives of f behaved like 0(a-k), 
in contrast to the exponential behavior for elongated regions. Here we present a simple 
example which displays this algebraic behavior more generally. For 0 < a < 1, and 
O < s < r consider the bowtie-shaped region Q interior to the boundary formed by 
an arc E given by eio, -s/2 < 0 < s/2, the line segment from eis/2 to aeis/2, the arc 
given by aeio , s/2 < 0 < Xr - s/2, the line segment from ae i(s-s/2) to ei(r-s/2) and 
the reflection of these curves through the origin. This gearlike domain is our model 
of a pinched region of thinness a. If we map this region into the upper half plane by 
the function -i log z, the boundary will map to a periodic step function, with the bow 
mapping to a step of width w = s and height I = - log a. If we then map this region 
conformally to the upper half (-plane with points kir going to kix, then the base of the 
steps of length s will map to intervals on the x-axis of length 0. A crowding estimate 
given in [14] shows that 

0 < Ce--llw - Car/s. 

If we map the upper half (-plane to the disk with the function ei(, then w(0, E, Q) = 0 
and the estimate gives the algebraic crowding of the image of E on the disk as a o 0. 

We could change this example slightly to treat the map from the disk slit from 1 
to a to the full disk with 0 going to 0. If we take E to be the unit circle and s 2xr, 
our estimate gives 

w(0, E, Q) < Cv'a. 

This example is discussed in [11, ex. 5.3] and represents a limiting case for algebraic 
crowding. 

(vii) Wegmann's estimates. Wegmann [52], [53] also gives estimates of the crowd- 
ing. He gives a lower bound for the supremum norm of the derivative of the map from 
the disk to an elongated region by combining the known behavior of certain explicit 
maps with a generalization of the Schwarz lemma. His results are somewhat less gen- 
eral than the results above in that his regions must be contained in a smallest rectangle 
of length I and width w. However, he does give a detailed discussion of the constant C 
for certain regions and shows which elongated regions will produce minimal crowding. 
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(viii) Domain decomposition methods. Papamichael and Stylianopolis [35], [38]- 
[42] have also recently proposed a domain decomposition procedure for computing the 
map from a rectangle to an elongated strip. The strip is decomposed into shorter 
strips. Due to the effects of the crowding, the sum of the conformal modules of the 
shorter strips is often a good approximation to the module of the full strip. Related 
work by Gaier and Hayman concerning crowding and the computation of conformal 
modules for long quadrilaterals is reported in [19] and [20]. 

4. Remarks on solving boundary value problems. We now discuss briefly 
the effect of crowding on a boundary value problem conformally transplanted to the 
unit disk; see also [7]. Suppose we want to solve the Laplace equation, Au = 0, in 
the region Q given by the image of the unit disk under the normalized map in ?2 (iv), 
f(z) = arctanh(1 - 3)z/arctanh(1 - 3) with u = y on the boundary. Then, of course, 
u = Imf(z). Also, a = If(+ti)I. In Fig. 13 a, b, and c for 3 = .5,.1, .01, we show the 
regions, the boundary correspondence 5(t), where a is arclength, the boundary data 
u(u) = y plotted against a, and the transplanted boundary data u(u(t)) = y plotted 
against t. 

The effect of the crowding on the transplanted data is to make the data more 
like a step function, which has a slowly converging Fourier series. We illustrate the 
problems this may cause for computations as follows: The solution to our Dirichlet 
problem in the disk 0 < r < 1 is 

00 

u(reit) = E Anrinleint 
n=-o-o 

where An are the Fourier coefficients of u(u(t)) = Imf(eit) with An = An and An = 

an + ibn. Suppose we wish to find the Dirichlet integral D[u] of u in the original region 
Q in the w-plane. Since D[u] is preserved under conformal mapping we have 

0.0 

D[u] =1 IVwu(w)j2 = lD IVzu(f(z))12 = 47r E n(a2 + b2). 
Q D n=1 

From ?2 (iv) we see b2k-1 = (1 _ /3)2k-1/((2 - 4k)arctanh(1 - /3)) for k = 1, 2, ... 
and an, bn = 0, otherwise. For small a (3 near 1) this is a slowly converging series. 
If we use an N = 2M-point FET to find the discrete Fourier coefficients of u(a(t)) 
and then to estimate D[u], we get the results in Table 3. Ne in the table is the first 
N = 2M such that D[u] is computed to 10-2 accuracy. The rapid increase of Ne with 
aspect ratio clearly shows the effects of crowding. With /3 near 0, the initial Fourier 
coefficients are roughly O(n-1), like those for a step function. It might be wondered 
whether use of filtering, acceleration of convergence, or perhaps, wavelets [2] might 
help here. 

TABLE 3 

aB a D[u] Ne llf'(?1)11 

.5 .84 2.65 16 .67 

.1 .47 1.63 64 4.7 

.01 .29 1.03 512 49.7 

.001 .20 .75 4096 499.7 

5. Remarks on other methods. One way to handle the crowding problem 
is to try to avoid it by choosing a computational domain more suited to the target 
region. Recently Howell and Trefethen [28] proposed a Schwarz-Christoffel method for 
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FIG. 13a. The effect of crowding on transplanted boundary data, v3 = .5. 
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FIG. 13b. The effect of crowding on transplanted boundary data, 3 = .1. 
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FIG. 13c. The effect of crowding on transplanted boundary data, 3 = .01. 

elongated polygons which uses the infinite strip as a computational region instead of 
the disk or half plane. The map between elongated rectangles'and elongated polygons 
of the same aspect ratio (conformal module) can then be found. Maps from doubly 
connected regions to annular regions seem to suffer less from severe distortions. Thus, 
Papamichael, Kokkinos, and Warby [36] proposed a method for mapping slender, 
simply connected regions with enough symmetry to allow them to be pieced together 
to form a doubly connected region. The region is then mapped to an annulus and the 
annulus to a strip. The map of the original region to a rectangular portion of the strip is 
then available. In [131 and [14], Floryan and Zemach have derived generalized Schwarz- 
Christoffel transformations which may provide more suitable choices for computational 
domains. However, for any computational domain a severe target region can be found. 
For instance, Howell and Trefethen's strip map would not be appropriate for a T- 
shaped region. 

In [9] Elcrat and the author give a Fornberg-like method which uses the ellipse 
as the computational domain. The map from an ellipse to a slender target region of 
similar aspect ratio can then be computed with a moderate number of mesh points. 
The method is based on approximating the Chebyshev series of the map and uses 
fast Fourier transform methods. It has been generalized further by Elcrat, Pfaltzgraff, 
and the author in [101 to employ a cross-shaped region as the computational domain. 
The map is then approximated by the Faber series for the cross-shaped domain. In 
both the ellipse and the cross case the Dirichlet problem for the Laplace equation can 
be transplanted to the computational domain and its solution represented efficiently 
by a Faber series. The effects of ?4 can then be avoided in certain cases. Further 
generalizations of these methods should be possible. 
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Explicit maps such as those due to Grassmann [21] may be used to map extreme 
regions to nearly circular regions. A Fourier series map to the nearly circular region 
can then be easily computed and composed with the inverted explicit maps to form 
a map to the original region. However, experiments reported in [4] and [7] indicate 
that this does not circumvent the crowding problem since the large distortions in the 
explicit maps magnify errors in the Fourier series map. 

Maps from the region to the disk suffer less severely from crowding; see [27] 
and [33]. The effect of the curve geometry on the accuracy of the method in this 
case requires further study. According to [12] the stretching is less severe than the 
crowding. For maps to the disk we discretize in the plane of the boundary curve. 
Sufficient accuracy would seem to require that the images of these points sufficiently 
"resolve" the boundary of the disk. Thus, curves which cause the most stretching 
would present the greatest difficulties. This is indicated, for instance, in Trummer's 
[48] experiments with the Kerzman-Trummer method for maps from the inverted 
ellipse and the Cassini oval to the disk. The stretching for these regions is 0(a-2) 
and 0(a-1), respectively, as is given by If'(?i)l-l in ??2 (ii) and (iii). This roughly 
predicts the discretization error, though estimates like those in ?2 are not at hand. 
(Our a is equal to a(1- a2)/(1 + a2) for Trummer's a for Cassini ovals.) In [43] 
the singularities near the boundary are used to improve maps to the disk. One might 
wonder whether similar techniques can be used for maps to the region, in particular, 
for regions with severe crowding. 

Acknowledgments. Much of this work grew out of the author's Ph.D thesis [4]. 
The author thanks Olof Widlund, Nick Trefethen, John Pfaltzgraff, Alan Elerat, and 
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