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Introduction, gallery, and applications
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Introduction, gallery, and applications
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CMFT 2005 Joensuu, Finland

front row: Tom Delillo, Alan Elcrat, Nick Trefethen, Ken Stephenson
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Saff, Ted Suffridge, Roger Barnard, David Minda
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Introduction, gallery, and applications

“Competitors” and friends

Rudolf Wegmann on Fourier series methods based on
Riemann-Hilbert problems; see his survey, R. Wegmann, Methods for
Numerical Conformal Mapping, in Handbook of Complex Analysis:
Geometric Function Theory, Vol. 2, R. Kiihnau, ed., Elsevier, 2005,
pp. 351-477.

Darren Crowdy on Schwarz-Christoffel mappings for multiply
connected domains using the Schottky-Klein prime function; see
Darren’s webpage and my 2006 CMFT J. paper relating our methods.

We learned a lot from both of them...and at least someone else usually
read our papers!
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Introduction, gallery, and applications

Other general references for numerical conformal
mapping

1. D. Gaier, Konstruktive Methoden der konformen Abbildung,
Springer, 1964.
2. P. Henrici, Applied and Computational Complex Analysis, Vol. 3,

Wiley, 1986.
3. T. A. Driscoll, and L. N. Trefethen, Schwarz-Christoffel Mapping,

2002, Cambridge.
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Introduction, gallery, and applications

Fourier series for maps w = f(z) from disk

See tutorial on Fourier series methods on my webpage http:
//www.math.wichita.edu/~delillo/TD_tutorial.pdf.

Goals of conformal mapping in 1980s on (see Henrici ACCA, v. 3,
1986) for maps from the disk to the domain were to find and
investigate:

fast, fft-based methods: Theodorsen, Timman, Friberg (linearly
convergent) and Newton-like methods of Fornberg and Wegmann; see
M. H. Gutknecht, JCAM special issue 1986.

Crowding (Menikoff and Zemach 1980, Gaier 1972) = severe
ill-conditioning of the mapping problem
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Introduction, gallery, and applications

Conformal map w = f(z) from disk to target domain

.In““‘""
L/
s‘gg‘_!,,;g/éé‘

TN
/1]
R

ellipse using N=64 Fourier points. f'(z) # 0, so locally

f(a+ h) = f(a) + f'(a)h and f maps a small circle near z = ato a circle near
f(a) magnified by |f'(a)| and rotated by arg f'(a), therefore f is

Figure: Fornberg (Fourier series) map from unit disk to interior of an inverted
angle-preserving or conformal. Existence and uniqueness given by Riemann
Mapping Theorem with f(0) and f(1) fixed.
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Boundary correspondence

The boundary I of Q is parametrized by S (e.g., arclength or polar
angle), I : v(S),0 < S < L,v(0) = ~(L). If S= S(0) or its inverse
0(S) = arg f~'(~(S)) is known, then the map is known for z € D or
w € Q by the Cauchy Integral Formula,

f(z) % /|¢|_1 728(0 )dg(e)

z

or

) ] i0(S)
F1(w) = ﬁ/ry(S)——wd”(S)'
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Introduction, gallery, and applications

Two classes of methods

1. Find S = S(#) such that f(€"?) = ~(S(6)). We will discuss this
case. These methods solve a nonlinear integral equation for S(9)
by linearly convergent methods of successive approximation
(Picard-like iteration) such as Theodorsen’s method, or
quadratically convergent Newton-like methods such as Fornberg’s
or Wegmann’s methods. Cost: O(Nlog N) with FFTs.

2. Find 6 = 4(S) such that = (v(S)) = €?(5). These methods solve
linear integral equations arising from potential theory for 6(S) or
¢'(S). Cost: O(N?), but can handle more highly distorted regions.
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Introduction, gallery, and applications

Taylor series = Fourier series
For|z| < |¢|=1,(=€", d¢ = ie"dh

f(z) = L/Kl 17(3(9))dc

27 (—z
1 z z\? dc
2
= 21—7r (S(0)(1 + ze" + 22e72" ... )db
0
o 1 27 .
= — 7(3(9))e—'k9d9) zK
kz:;) (277 /0
= Zakzk,
k=0

Taylor coeff. = Fourier coeff. ay := 5= [Z™ v(S(6))e~"db.
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Applications:

Transplant boundary value problems for Laplace equation from
complicated domain to circle domain or model domain and solve using
(fast) Fourier/Laurent series or elementary methods.

(BVP for biharmonic equation can also be solved by transplanting the
analytic functions of the Goursat representation.)

Advantages: fast methods and spectral accuracy for analytic data and
boundaries.

Disadvantages: Crowding phenomenon—mapping problem can be
severely ill-conditioned for distorted domains, e.g., an L x 1 elongated
domain has derivatives of order exp(cL).
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Introduction, gallery, and applications

Simply-connected case: crowding=large
distortions=lll-conditioning
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Figure: Fornberg (Fourier series) map from unit disk to interior of ellipse
using N=1024 Fourier points.
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Introduction, gallery, and applications

Figure: Map from the « = 0.1 ellipse to sock with N = 256 Fourier points, D.
and Elcrat (1993), D., Elcrat, amd Pfaltzgraff (1997).
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Map from annulus—D. and Pfaltzgraff (1998)

Figure: Doubly connected Fornberg maps annulus p < |z| < 1 to domain
between two ellipses a = .3, .6 with N = 64. Normalization fixes one
boundary point f(1) to fix rotation of annulus. The inner and outer boundary
correspondences S = S;(0) and S = S,(0) along with the unique
p(=1/conformal modulus) must be computed numerically.
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Introduction, gallery, and applications

Exterior mult. conn. case, D., Horn, and Pfaltzgraff
(1999), Benchama et al, (2007)

Figure: Fornberg map from exterior of five disks to the exterior of five smooth
curves. Normalize at oo and find m = 5 boundary correspondences and

centers and radii of circles (unigue “conformal moduli”) must be computed.
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Interior mult. conn. case—Kropf’s MS thesis (2009)

Figure: Outer circle is unit circle. Map normalization fixes f(0) and f(1).
m = 4 boundary correspondences and centers and radii of inner circles
(unigue “conformal moduli”) must be computed.
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Introduction, gallery, and applications

Figure: It's easier to count moduli for an annulus with holes.
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Introduction, gallery, and applications
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Figure: Infinite product map from circle domain to radial slit disk.
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Introduction, gallery, and applications

Figure: An orthogonal grid using level lines of map to radial slit disk, MCSC
orm VAR aAd D ~ N A ith Nric~anll anA WKeanf
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Introduction, gallery, and applications

Figure: Schwarz-Christoffel map from the exterior of m=10 disks to the
exterior of m=10 polygons using Laurent series centered at disks and least
squares fit to BCs, above, D., Elcrat, Kropf, and Pfaltzgraff (2013).
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Introduction, gallery, and applications

Application to resistance calculation

Figure: Map from the interior of unit disk minus m — 1 = 2 disks to interior of a
bounded polygonal domain and to a rectangle with horizontal slits.
Resistance = length/width of rectangle = 1.832838728. (D., Elcrat, and Kropf,
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Introduction, gallery, and applications

Application to resistance calculation

Figure: Map from the interior of unit disk minus m — 1 = 2 disks to interior of a
bounded polygonal domain and to an annulus with a radial slit.

Resistance = - log(outer radius/inner radius) = 0.3671. (D., Elcrat, and
Kropf, CMFT J. 11 (2011), 725-745
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Fourier series (FFT) methods Extensions of Fornberg’s method for the disk: crowding

Outline

e Fourier series (FFT) methods
@ Extensions of Fornberg’s method for the disk: crowding
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Fourier series (FFT) methods Extensions of Fornberg’s method for the disk: crowding

Simply-connected case: crowding=Ilarge
distortions=lll-conditioning
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Figure: Fornberg (Fourier series) map from unit disk to interior of ellipse
using N=1024 Fourier points.
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Fourier series (FFT) methods Extensions of Fornberg’s method for the disk: crowding

D. and Pfaltzgraff, JCAM 46 (1993), 103—113 and Ch. Pommerenke,
Boundary Behavior of Conformal Maps, 1992. Estimate of crowding by
conformal invariants, harmonic measure w(ayp, E, 2) and extremal
distance A(K, E, Q) ~ length?/area, for map to amoeba

w(ag, E,Q) < Ce ™ KEQ) . cg—/W.

29/126
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Fourier series (FFT) methods Extensions of Fornberg’s method for the disk: crowding

Rudolf Wegmann on crowding 2005 review article:

“The behavior of conformal mapping depends on the local property of
smoothness— and the global property of shape.

On small scales a conformal mapping maps disks to disks, but on
large scales a disk can be mapped to any simply-connected bounded
region, however elongated and distorted it may be. But it takes some
effort for a mapping which has such a strong tendency to map disks to
disks, to map a disk to an elongated region. The mapping suffers, lying
on a Procrustean bed, and the numerical conformal mapper must
share the pains.”
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Fourier series (FFT) methods

Computational region

Taget region
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Fig. 1. Top two maps: arctanh region =029 with disk map with N = 1024 and ellipse map with deupee =0.3,N = 64. = = ©vae
Bottom two maps: 4-leaf Kocbe region o= 0.4 with disk map with N = 1024 and cross map with teess = 0.6, ~
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Fourier series (FFT) methods Extensions of Fornberg’s method for the disk: crowding

Maps based on Faber series

D. and Elcrat, JCAM 46 (1993) 49-64, D., Elcrat, and Pfaltzgraff,
JCAM 83 (1997) 205-236.

Represent map from a simply-connected domain E : z = z(0) to target
domain Q : v = ~(S) with normalizatiion f(0) = 0, f(z(0)) = v(0)

f(2) = Ao+ Y AcFi(2)
k=1

where Fi(z) is the kth-degree Faber polynomial of E.
For E = unit disk, Fx(z) = Z.
For E = ellipse, Fx(z) = kth-degree Chebyshev polynomial.
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Fourier series (FFT) methods Extensions of Fornberg’s method for the disk: crowding

Newton method following Fornberg and Wegmann
Fornberg, 1 SISSC (1980) 386-400, also Wegmann, Numer. Math.,
(1978,1984).

Find boundary correspondence S = S(0) such that f(z(0)) = v(S(0)).

Linearization:
f(2(0)) = ~(8Y(0)+ UM(0))
1(SM(6)) +/(SW(0) UM (9))
Conditions for analytic extension to interior of E : z(#) give linear
system for U = |v/|U%)(9) of form
AU=r

where A = identity + compact operator (as Widlund 1980, Wegmann
1986 proved for disk), spd, and can be solved by conjugate gradient
with superlinear convergence in O(Nlog N).

Newton update: Sk+1(9)) = S (9) + UK (9)).
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Fourier series (FFT) methods Extensions of Fornberg’s method for the disk: crowding

Conditions for analytic extension into E

Theorem
f Hélder continuous on E extends analytically to interior if and only if

/ f(z)Fx(z)dz =0,k > 0.
E

For unit disk, conditions are just a_, = o~ [Z" f(e?’)e*?df = 0, k > 1.
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Fourier series (FFT) methods Extensions of Fornberg’s method for the disk: crowding
Conditions for extension into ellipse
2(0) = (¢) = C+1/¢, ¢ = pe®, Fi(v(¢)) = ¢K+ (¥

o:/f )Fi(z dz_/f YN¢=¢Nag/C
_ /f N(CKTT = (k=1 k=1 _ ki) gy

— ,/ f( (pele)[( k+1e(k+1)9_p—(k+1)efi(k+1)9)
0
_(pk71 ei(k*1)9 _ pf(k71)efi(k71)0)]d9‘

This gives, for the Fourier coefficients ay of f(y(pe’?)),

Kk+1 —(k+1) —(k—1)

P A (k41) — P Ay = pf a_(k—1) —p k1.
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Fourier series (FFT) methods Extensions of Fornberg’s method for the disk: crowding

Conditions for extension into ellipse...cont.

Alan’s solution is
a_x=p *fag, k>0.

Identity + compact structure preserved since multiplication by p=2k can
be represented by convolution.

Similar condition for cross (¢) = /(2 +1/¢2.

Wegmann solves finds updates U%) as solutions to Riemann-Hilbert
problems; see his survey in R. Kilhnau, ed., Handbook of Complex
Analysis, v. 2, (2005).

Tom DelLillo (Wichita State U Math Dept) Conformal mappingofsimply and multiply conrssv T CRERNE T VE 1478 FSP-l0 [} 36/126



Fourier series (FFT) methods
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Fourier series (FFT) methods

Figure: Map from the a = 0.1 ellipse to sock with N = 256 Fourier points.
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Fourier series (FFT) methods Extensions of Fornberg’s method for the disk: crowding

Figure: Map from « = 0.3, 0.2 ellipses to « = 0.1,0.01 Cassini ovals with
N = 128, 256, resp.
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Fourier series (FFT) methods
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Fourier series (FFT) methods

Figure: Map from cross to symmetric amoeba with N=256 Fourier points.
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Fourier series (FFT) methods Extensions of Fornberg’s method to doubly connected domains

Outline
e Fourier series (FFT) methods

@ Extensions of Fornberg’s method to doubly connected domains
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Fourier series (FFT) methods Extensions of Fornberg’s method to doubly connected domains

Map from annulus—D. and Pfaltzgraff (1998)

Figure: Doubly connected Fornberg maps annulus p < |z| < 1 to domain
between two ellipses a = .3, .6 with N = 64. Normalization fixes one
boundary point f(1) to fix rotation of annulus. The inner and outer boundary
correspondences S = S;(0) and S = S,(0) along with the unique
p(=1/conformal modulus) must be computed numerically.
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Fourier series (FFT) methods

Analyticty conditions

Extensions of Fornberg’s method to doubly connected domains

A function f given on boundary of annulus extends analytically to
interior p < |z| < 1 if and only if

/ f(z)z"dz = / f(z2)z¢dz, keZ.
|z|=1

|z|=p
If we let

i akeiké” Z by eIk9 Z akp elk@
k=—o00

k=—oc0 k=—oc0

then pkay = bk, k € Z or (to prevent overflow)

pkak:bk>a—k:pkb—kak:0>172>""
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Fourier series (FFT) methods

Mapping problem

Extensions of Fornberg’s method to doubly connected domains

Target region Q bounded by two smooth curves 'y : v¢1(S1) and
2 :72(S2).

Problem: Find the boundary correspondences S;(0) and S,(6) and the
conformal modulus p such that f(z) is analytic in the annulus

p < |2l <1 and f(e) = 71(S1(6)) and f(pe”) = 75(Sx(6)).
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Fourier series (FFT) methods Extensions of Fornberg’s method to doubly connected domains

Linearization for Newton-like method

At each Newton step we want to compute corrections U (6), Uz(6),
and dp to 5¢(0), Sa2(0), and p. With S; arclength,
B(0) = argv/(S(0)), (6) = 4(Si(0)), j =12, ¢(6) = F(pe)e” =
— i) dS,(0)/de/p, as in [LM] we linearize about Sy, S, and p,
%S O) + Ui(0) = %(Si(0) +(S(0)Ui(9)), j=1.2,
f((p+06p)e”’) ~ f(pe”)+F(pe”)5pe”

giving
f(e?) ~ &(0)+ e U (o)
f(pe”) =~ &(0) + > Up(0) — ¢(6)dp.

We find Uy, Us, 6p to force these BVs to satisfy the analyticity
conditions for the annulus.
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Fourier series (FFT) methods Extensions of Fornberg’s method to doubly connected domains

Linear system and Newton update

Applying above conditions and fixing f(1) leads to linear system
AU=r

for U= [U],U],5p]" Where A= |+ Compact, eigenvalues cluster
around 1, and CG with fft converges superlinearly.
Newton update:

k+1 k k
Stk — gt 4 ik

§(2k+1) _ §gk) +Q§k)
PR o0 500,

See my tutorial or D. and Pfaltzgraff (1998) for details.
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Fourier series (FFT) methods Extensions of Fornberg’s method to multiply connected domains

Outline
e Fourier series (FFT) methods

@ Extensions of Fornberg’s method to multiply connected domains
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Fourier series (FFT) methods Extensions of Fornberg’s method to multiply connected domains

Exterior mult. conn. case, D., Horn, and Pfaltzgraff
(1999), Benchama et al, (2007)

Figure: Fornberg map from exterior of five disks to the exterior of five smooth
curves. Normalize at oo and find m = 5 boundary correspondences and

centers and radii of circles (unigue “conformal moduli”) must be computed.
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Fourier series (FFT) methods Extensions of Fornberg’s method to multiply connected domains

Interior mult. conn. case—Kropf’s MS thesis (2009)

Figure: Outer circle is unit circle. Map normalization fixes f(0) and f(1).
m = 4 boundary correspondences and centers and radii of inner circles
(unique “conformal moduli”) must be computed.
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Fourier series (FFT) methods Extensions of Fornberg’s method to multiply connected domains

Form of the Map (bounded case)

The conformal map has the series representation

ZauZ’+ZZa —/< Cy>j,

v=2 j=1

where for 1 <v < mand j > 0 the Fourier coefficients a, ; are defined

1 2 ) .
a,j = / f(c, + p,e?)e 1 db.
’ 27'(' 0

Linearization and (complicated) conditions on a, ;'s for analytic
extension again leads to system of form “identity + compact” for
Newton updates to centers, radii, and boundary correspondences
solved in O(N?) by cg; see my tutorial and Wegmann’s R-H
formulation.
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Schwarz-Christoffel mapping of multiply connected domains

8B 8 8 R . ®

Figure: Infinite product map from circle domain to radial slit disk.
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Schwarz-Christoffel mapping of multiply connected domains

Figure: An orthogonal grid using level lines of map to radial slit disk.
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Schwarz-Christoffel mapping of multiply connected domains

Outline

e Schwarz-Christoffel mapping of multiply connected domains
@ Doubly connected formula
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Schwarz-Christoffel mapping of multiply connected domains Doubly connected formula

Re-derivation of Schwarz-Christoffel map of annulus
D., Elcrat, and Pfaltzgraff, SIREV 43 (2001) 469—-477. Motivated by the
derivation of the formula for the disk in Nehari’s book, John had the
idea that the known formula for the annulus p < |z| < 1 could be
derived by reflection arguments and that this could probably be
extended to the multiply connected case...

a=af f1[e ()] T (25)] " ocre

k=1
where z,  are the prevertlces and j3, x are the turning parameters and

o(w) - ﬁ (1 - M2u+1w> (1 _sz+1/w> .

v=0

The ukzo7k’s and ukzhk’s are reflections of the prevertices on the outer
and inner circles, resp., through concentric reflected circles.
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Schwarz-Christoffel mapping of multiply connected domains

=18

Multiply connected formula and numerics

T Aﬂ

Figure: Exterior MCSC with Cartesian grid for m=4 polygons.
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Schwarz-Christoffel mapping of multiply connected domains Multiply connected formula and numerics

MCSC for unbounded case- D., Elcrat, and Pfaltzgraff
(2004)

Given polygons and fixing normalization of w = f(z) at infinity the
circles (and the map) will be uniquely determined.

. . K .
Zy i, Syi = reflections of prevertices, centers, > -," , Bk =2,i=1,...,m

Bk,i

L
f(Z)zA/ ITIT 1 11 < ’”’> d¢+ B
it k=1 | = ¢ = Sui
=1 k= j=0
veaj(i)
Numerics: “parameter problem™: Find A, B, prevertices
Zkj=Cj+ rie'%«.’s, circle centers ¢;, and radii r;, such that sidelengths,
positions, and orientations of polygons are correct.
Important: Transform 6y ;’s, r;’s to unconstrained parameters.
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objective function call #84
(m-1)""#-07598 A=08186

6F I 17
2k T
| I
i
1.5F a O
s EEEEN
Al [
05}
o ok
[
-0.5f |
=
_if NN
I
4 I
-1.5F |
HHHH
T A:‘j
ok sl INENNEN ,
-15 35 5 0 5 10

Figure: Objective function integration paths for m=4 polygons.
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Schwarz-Christoffel mapping of multiply connected domains Multiply connected formula and numerics

Figure: The (inverted) map from the exterior of m = 4 disks to the exterior of
m = 4 slits gives a better orthogonal grid.
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Schwarz-Christoffel mapping of multiply connected domains Multiply connected formula and numerics

Our first attempt at numerics was D., T. A. Driscoll, A. R. Elcrat, and J.
A. Pfaltzgraff, Computation of multiply connected Schwarz-Christoffel
maps for exterior domains, CMFT J., 6, (2006), 301-315.

Most of the MCSC computations here are from Everett Kropf’s PhD
dissertation and from D. and E. H. Kropf, Numerical computation of the
Schwarz-Christoffel transformation for multiply connected domains,
SISC, 33 (2011), 1369-1394.
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Schwarz-Christoffel mapping of multiply connected domains Multiply connected formula and numerics

Some remarks on numerics

Most effective nonlinear solver is the continuation algorithm CONTUP,
Program 3 from Allgower and Georg’s book.

Some MFILES from Driscoll’s SC Toolbox were used, such as a
function for automatically calculating the turning angles from input
polygon vertices.

Evaluation of the Schwarz-Christoffel integrals is done using
Gauss-Jacobi quadrature, GAUSSJ from SC Toolbox. A fixed number of
Gauss-Jacobi points (typically 30) is generally sufficient for each
integral.

Integration paths may cross circles. This causes no trouble unless they
come close to interior singularities.
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MCSC formula for the bounded case

K1 m 00 K1 K, ‘
f’(Z) =A H(Z_Zk,1 )'Bk’1 H H H (Z — Zk’l,,'1)/8k’1 H (Z — Zk’l,,')ﬁk"
k=1 =2 j=0 k=1 k=1
veaj(i)

Here C; is the (outer) unit disk and the other C; are in the unit disk.
Also, 2/51:1 Bk = —2.

Note: The reflections z, ¢ of the prevertices on outer circle replace the
reflections s,; of the centers in the formula for the unbounded case.
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abjecive funcion call #130
(-1 ¥ =07071  a=08330

Figure: Schwarz-Christoffel map from the interior of unit disk with minus
m — 1 = 4 disks to a bounded polygonal domain with origin and one
boundary point fixed. Integration paths between circles plotted.
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Schwarz-Christoffel mapping of multiply connected domains Derivation of formula

Theorem

If the unbounded m-connected circular domain satisfies the separation

property A < (m—1)='/4 form > 1, then the SC map to the polygonal
domainP is

Bk,
4 m K‘ oo . .
f(z) = A/ (ﬁ) d¢ + B, (1)

Ilk1 j=0 C = Sui
vea;(i)

where —1 < By ; <1 and Y {_, Bk = 2 and the separation parameter

r.+r.
A = max ——

—— <1, 1<ij<m
Jl¢/|C/ Cj\
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Separation parameter A

Here

r+r
A _max#

1. 1<ij<m 2

is the separation parameter of the circle domain. Let C; denote the
circle with center ¢; and radius r;/A. Then geometrically, 1/A is the
smallest magnification of the m radii such that at least two C;’s just
touch.

Note: A < (m— 1)~"/#is a sufficient condition for convergence. It is
not necessary and is violated in many of our numerical examples.
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Schwarz-Christoffel mapping of multiply connected domains Derivation of formula

Remark on extension of w = f(z) by reflection.

(More details below): We use Schwarz reflection of z across circles
and w = f(z) across sides of polygons to extend f(z) analytically to a
(multivalued) function of the entire plane. v is a multi-index labeling
reflections.

The extended f(z) will have singularities at the reflections of the z ;’s.

f(z) ~ Az + B for z ~ oo, and so f has a simple pole at cc.

(For unbounded multiply connected case, reflection across polygonal
sides keeps ~o fixed. Therefore, the reflections s,; of the centers ¢; are
simple poles of the extended f.)
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The preSchwarzian f'(z)/f'(z)

Extend f (to global multi-valued function) by Schwarz reflection.
The (global) preSchwarzian of f, ’(z)/f'(z), is invariant under affine
maps w — aw + b and, hence, single-valued, i.e.,

(af(z) + b)" _ 1'(2)
(af(z)+ by — F(2)

Behavior near corner f(z ;) is represented by an o ; root,
f(2) — f(zki) = (2 — Zk,i) ™ ki (2)
where hy ; (z) is analytic and nonvanishing near z. Local expansion:
" (2) /' (2) = Bki/ (2 — zki) + Hi,i (2), Bri= axi—1

where Hj ; (z) is analytic in a neighborhood of z ;,

Tom DelLillo (Wichita State U Math Dept) Conformal mappingofsimply and multiply conrssv T CRERNE T VE 1478 FSP-l0 [} 70/126



Schwarz-Christoffel mapping of multiply connected domains

N = 1 levels of mutual reflections of circles and
centers for unbounded case with connectivity m = 3.
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Schwarz-Christoffel mapping of multiply connected domains

N = 2 levels of mutual reflections of circles and
centers for unbounded case with connectivity m = 3.
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Schwarz-Christoffel mapping of multiply connected domains

N = 1 levels of mutual reflections of circles for
bounded case with connectivity m = 3.

Tom DelLillo (Wichita State U Math Dept) Conformal mappingofsimply and multiply conr



Schwarz-Christoffel mapping of multiply connected domains

Reflections through sides of polygons
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Schwarz-Christoffel mapping of multiply connected domains Derivation of formula

Singularity function S(z) for unbounded mc case

Bk,i and =2

Single-valued (!) and constructed by reflecting poles 75 pa—

(cf: method of images)

Ki

co m
S(z) = Z Z Z Z 2 —ﬁkz;“,, — 7 _231/i (nonconvergent form)

j=0 i=1 vea;(i) | k=1

B fll(z)

(for proof see [DEP](2004).

- f(2)
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BCs for SC maps and convergence

Tangent angle v(t) = arg{ie’ f'(e)} is constant each arc between the
prevertices and hence (for disk)

I ( it
() =1+Re {e’f ff,((:,.t)) } =0

To prove convergence of MCSC infinite product formula, show

singularity functions truncated to N levels of reflection converge to
S(z) and S(z) = f"(z)/f'(z) and satisfies BCs:

Re{(z—cx)S(2)} = -1 z=cx+ rke".

(Proved for A < (m — 1)'/4 for connectivity m > 2.)
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Schwarz-Christoffel mapping of multiply connected domains Derivation of formula

A useful lemma (Henrici, ACCA, v.3, p.505)

To prove convergence, we need to estimate how fast the reflected
circles shrink.

Lemma

m
Z r2 < A“”Z re.
i=1

V€0'n+1

This shows decrease in total area of circles at nth level of reflection.
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Schwarz-Christoffel mapping of multiply connected domains Derivation of formula

Truncated S(z)

N
Sn(z) = Y A(2), S(z) = lim Su(2)
j=0

where

A(2)=> >

i=1 veo;(i)

>y

i=1 veaoy(i)

Y

i=1 veo;(i) [
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K,
S~ Bk 2
k—1 Z— zk,l/i Z— 8y
K.
' < Bri Bk, )
Kk—1 Z = Zk i Z— 8,
K.
~ Br,i(Zk i — Sui)

Aalto U., January 14, 2016
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Schwarz-Christoffel mapping of multiply connected domains Derivation of formula

Convergence of Sy(z)

The lemmas and the Cauchy-Schwarz inequality for z bded away from
Zk, 'S giVG

DEEI D3PS

i=1 veo;(i) k=1

i = sl/l"
|z — Zk ,il|Zz — s,

Ki

2 2Kimax <
39D S IELS 3D IS
i=1 vea(i) k=1 =1 veoy(i)
1/2 m 1/2
2Kmax
< Yyl (L e
i=1 vea(i) =1 veay(i)

1/2
< Efmax 2Kmax (Zr > m(m_ 1)j/2 < CAZj(m_ 1)j/2

Therefore the series converges if A2y/m —1 < 1.
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Schwarz-Christoffel mapping of multiply connected domains Derivation of formula

1 T T T T 1
I
0.8 } } 1 0.8 1
I
06l L ] 06l |
0.4 4 0.4} 4
0.2F 1 0.2F 1
of =] — of —
~02f B ~02f B
~0.4f 4 ~04f 4
—0.6F N B ~0.6F B
I
-08f H 4 -08f 4
I
-1
-1 -05 o 05 1

Figure: Geometry used to test numerical accuracy. For orientation note that
C; is the lower, inner circle, and C is the upper.
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Schwarz-Christoffel mapping of multiply connected domains

log of error vs. levels of reflection N
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@ Numerics
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Schwarz-Christoffel mapping of multiply connected domains Numerics

Truncated infinite products

We truncate the infinite Schwarz-Christoffel product for f'(z) after N
levels of reflection and denote them in the unbounded case as

z)_exp</SN dz> HH H (Z Z;(V':I)Bki7

i=1 k=1
I/Ea](l)
and in the bounded case as
Ki m N Ki Ki
pp(2) = H(Z—Zk,1)’8k1 H H H(Z—Zk,un)ﬁ“ (z -z, I)ﬁkz
k=1 i=2 j=0 \k=1 k=1
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Parameter count-unbounded case

Parametrize the prevertices by z ; = ¢; + rie’ i for k = 1,..., K; with
91’,' < 927,' <0< 0!(;,i~
The unknown ¢;s, r;’s, and 0 ;'s amount to a total of

Ki+:+Kn+3m.

real parameters.
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Schwarz-Christoffel mapping of multiply connected domains Numerics

Parameter count continued
Relax normalization f(z) = z+ O(1/z),z = > to

f(z)=Az+ B+ 0O(1/z2)
and A and B are determined implicitly by setting ¢y =0, r; =1, and
01,1 = 0. We then write
z
—c [ pu0)dc+D
Z

with D = wy 1 = f(z4 1) and define
Wo 1 — Wy 4
f pPu(¢) d¢
This normalization takes care of 4 of the real parameters, leaving
(Ki—1)+Ko+- - +Kn+(B8m-3)=Ki+---+Kn+3m—4

real parameters to be determined.
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Schwarz-Christoffel mapping of multiply connected domains Numerics

Nonlinear equations-unbounded case
Side-length conditions

1F(Zky1,1) = F(2k,i)| = [Whit,i — Wi il
fori=1,....mand k=1,... K;gives Ky + ...+ Kn — 1 equations,

since C above fixes the first side-length of the first polygon.
Positions of polygons I's through T, relative to '

f(z1,) — F(z11) = wqj — wy 4
fori=2,...,mgives 2(m — 1) real equations.
Orientation of polygons I'> through I, is determined by
arg(f(zz,i) — f(z1,)) = arg(we,; — wy ;)
fori=2,...,mgives (m— 1) real equations (position and orientation

of 'y determined by the normalization). (These equations can be
combined with the side-length conditions for kK = 1 to obtain

f(22,i) — F(z17) = Wa,i — Wy, i=2,...,m.)
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Schwarz-Christoffel mapping of multiply connected domains Numerics

Transformation to unconstrained parameters
Key improvement leading to very robust method.

We use the unconstrained variables, Re{c;}, Im{c;}, and log r;.
SR (Bt — Ok) = 2, With 01 == 01 + 2.

Denote ¢k :=0k1 — Ok, k=1,..., K.

Unconstrained variables 1k j = v := log d’g—f fork=1,.... K—1.

14312 e’

1—1—2]-'(:_11 el
Unconstrained angle variables: v 1,121, ...,1k,—1,1 and
01,001,502, - VK—1,is [ =2, ..., M.

Inverse, given 64, is 0 = 61 + 27
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Numerical continuation

The equations above can be expressed as a non-linear system,

where F: R" — R", where n=K; +---+ Kn+3m—4. Asin
[DDEPO06], we use the continuation algorithm CONTUP, Program 3
from book by Allgower and Georg. We give a brief discription of this
algorithm. It is assumed that F is smooth enough — that is F has
enough derivatives to facilitate the required analysis. Let G be a trivial
map G : R” — R" with known zeros. Let xp, x; € R" be such that
G(xo) = 0 and F(xq1) = 0. Define the homotopy function

H(x,\) = AF(x) + (1 = N)G(x)

for A € [0, 1].
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Schwarz-Christoffel mapping of multiply connected domains Numerics

Some remarks on numerics

Other nonlinear solvers from MATLAB’s Optimization Toolbox were
also tried, but the above continuation method was best.

Some MFILES from Driscoll’s SC Toolbox were used, such as a
function for automatically calculating the turning angles from input
polygon vertices.

Evaluation of the Schwarz-Christoffel integrals is done using
Gauss-Jacobi quadrature, GAUSSJ from SC Toolbox. A fixed number of
Gauss-Jacobi points (typically 30) is generally sufficient for each
integral.

Integration paths may cross circles. This causes no trouble unless they
come close to interior singularities.
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Schwarz-Christoffel mapping of multiply connected domains Relation to Crowdy’s work

MCSC for unbounded case [DEP04](from exterior of disks):

Ki oo z—z Bk, i
—AlTII 1T (%-%)
i=1 k=1 j=0
veaj(i)

s, = refls. of ctrs, Z/’f’ﬂ Bri=2,1=1,
Crowdy’s formula (from interior of Cy=unit disk):

Ki m K
f(2) = ASx(2) [] [w(z zi0)) ™ TT I [w(z. 2is)] ™
k=1 =2 k=1

w = Schottky-Klein prime function.
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Schwarz-Christoffel mapping of multiply connected domains Relation to Crowdy’s work

Crowdy’s formula uses the Schottky-Klein (SK) prime functions;

w(z a) = (z-a) [] EZ’ﬁ(Z) 2)(6,(a) - 2)

AL, (6(2)~ 2)(6(a) - a)

where 0; € ©” involve all compositions of the “forward” maps

9, = pjp1,j # 1 giving “half” of the Schottky group ©, and ©” does not
include any 0,?1 or the identity map, id.

See Chap. 12 of H. F. Baker, Abelian Functions: Abel’s Theorem and
the Allied Theory including the Theory of the Theta Functions,
Cambridge U. Press (1897) reissued 1995; for characterization as BVP
free of infinite product, see Crowdy and Marshall (2007). D. (2006)
relates reflection and SK formulas for bounded case.
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Schwarz-Christoffel mapping of multiply connected domains Relation to Crowdy’s work

Crowdy’s additional factor:

Sg(2)

Soo(z) = UJ(Z, zoo)zw(z, 2021 )2 )

where f(z.,) = oo and the factor arising from the bounded case is
used:
wz(z,8)w(z,3 ") — wo(z, @ Nw(z,a)

sz 7’4 27]2

Sp(z) :=

The map

na(z) = — A oy ) =o.

law(za ™)’

taking the circle domain to a circular slit disk with n(a) = 0 is used.
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Schwarz-Christoffel mapping of multiply connected domains Relation to Crowdy’s work

Alternate representation [De] of ratios of Schottky-Klein prime
functions using the full Schottky group ©:

w(z,a) z—6i(a)
w(z.b) ~ @b e,l;le z— 0;(b)’

where C(a, b) is a ratio of integration constants.
Therefore for a;, bj € C;

w(z, a;) _ CH z—pu(a)

w(z, by) L Z - pu(bi)
is a slit map and so
ar w(z,a) _ constant
9 O.)(Z, bl) -

forze C;,j=0,...,m;see [Cr].
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Schwarz-Christoffel mapping of multiply connected domains Relation to Crowdy’s work
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Radial slit map: Extend f by reflection. Choose a; € C;. f(z4;) =0
implies f(p,(zx,)) = 0 (simple zeros). f(a;) = oo implies f(p,(a;)) =

(simple poles). f has the simple form
z—pu(zki)  w(z,z))

f(z) = fzk,i,a/ = CH z—pu(a) - w(z,a)

Aalto U., January 14, 2016
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Schwarz-Christoffel mapping of multiply connected domains Relation to Crowdy’s work

Remark on Crowdy’s approach

Our derivations are based on the invariance of the preSchwarzian
f"(z)/f(z) under reflections. They give “geometric” in solutions of
boundary conditions guaranteeing “straight” sides by a method of
images.

The Schottky-Klein (SK) prime functions in Darren Crowdy’s similar
formulas are the generalization of the elliptic © functions to finitely
connected domains bounded by circles and invariance properites
under the group of reflections in circles. This approach is more
“algebraic” based on the fact that certain ratios of prime functions are
constant on the circles.
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e Schwarz-Christoffel mapping of multiply connected domains

@ An MCSC map based on Laurent series

Tom DelLillo (Wichita State U Math Dept) Conformal mappingofsimply and multiply conrssv T CRERNET VE 1478 FSF-l0 [} 97 /126



Schwarz-Christoffel mapping of multiply connected domains An MCSC map based on Laurent series

DEP=DT~Cr factorizations of f’(z) for unbounded case

Bk,i
K; o R
r@ Al T (53
j i vi
i=1 k=1 j=0
VEO’I‘(I)
m K
=A H H [fzk,,(z)] B finite product
i=1 k=1
m K
= Afy(z H H freai( )]Bk' product of radial slit maps
i=1 k=1
Ki

m w(z,2))\
— Afy(2) 1} U (m)
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Schwarz-Christoffel mapping of multiply connected domains An MCSC map based on Laurent series

where
m 2 o0
. Z — a,j
fa(z) = ([[fa(2) ] . with fa(2):= ]] (ﬁ)
i—1 i—0 vi
I uelaj(i)

Which factorization is “best” may be determined by numerics.
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Schwarz-Christoffel mapping of multiply connected domains An MCSC map based on Laurent series

o
O

Figure: MCSC factor, w = f,, (z) with £ ,(zx ;) = 0, from the exterior of four
disks to the interior of a starlike curve f(C;) through 0 with three radial slits
removed, satisfying BCs: arg f,, ,(z) =const. on C;,j # i,

dargf, (2)/00 = —-1/2,z=c;+ ;e € C.
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Schwarz-Christoffel mapping of multiply connected domains An MCSC map based on Laurent series

Figure: Schwarz-Christoffel map from the exterior of m=10 disks to the
exterior of m=10 polygons using Laurent series centered at disks and least
squares fit to BCs, above.
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Schwarz-Christoffel mapping of multiply connected domains An MCSC map based on Laurent series

Comment

Boundary value (RH?) problems seem to form a common theoretical
basis for most of the methods; see also V. Mityushev, CMFT 12 (2012),
449-463, on RH problem for S(z). (Kropf tried to solve this directly.)
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Other results and methods Maps to radial and circular slit domains

Maps to radial and circular slit domains
D., Driscoll, Elcrat, and Pfaltzgraff, Proc. R. Soc. A, 464 (2008),
1719-1737

Here the pre-preSchwarzian f'(z)/f(z) is invariant under reflections.

o z = pua)
f(z)=(z-a) kl] /1} z—py(ck)’
VEO'j(k)

where the p,(ax)’s and p,(ck)’s are the reflections of a and oo across
he circle

Tom Delillo (Wichita State U Math Dept)
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Other results and methods Maps to radial and circular slit domains

Our boundary conditions for map to radial slits are
Re{(z — ck)f'(2)/f(2)} =0,z € C.

i.e., for z = ¢, + e’ € Ck, we have arg f(z) =const. Therefore,

0 = 2arg f(z)

00
. . , . / .
= %Imlog f(cx + re€?) = Im irke’9f7 =Re rke’efF(ck + rce').
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Maps to radial and circular slit domains
Least squares for more efficient numerics

E.g. for radial slit map for more efficient numerics following Driscoll,
Trefethen,..., Finn et al. (2003)...

f(z) = (z — a)e9®

Let

Solve linear least squares problem for a ;'s to satisfy BCs.
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Other results and methods Maps to radial and circular slit domains

For circular slits concentric wrt origin, boundary conditions are
Im{(z — cx)f'(2)/f(z)} =0,z € Cx.

Then Q is mapped conformally onto circular slits with f(a) = 0 and
f(0) = o if

= (2= pu(@))(z = pu(ci))
f(z) =(z-a) E 11} (2 = pue(@))(Z = puo(ci))
ve,vo€aj(i)
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Theordorsen and Timman methods
Theodorsen’s method

See D. and Elcrat, SISC, 12 (1991), 399—422 for comparisons.
Requires that the boundary I be starlike with respect to the origin, i.e.,

[:y(¢) = p(9)e”,0 < p(¢),0 < ¢ < 2.

The method finds the boundary correspondence ¢ = ¢(6) by
successive conjugation such that f(e'”) = p(¢(6))e(?)

Start with auxiliary function h(z) :=logf(z)/z.

Normalization f(0) = 0 and f'(0) > 0.

Note that h(0) = log f(0) is real and h(z) is analytic in |z| < 1 and so

. e'o(
p(e”) = tog LA _1oq s0(0)) + ito(6) - )
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Theordorsen and Timman methods
Theodorsen iteration

Apply conjugation operator K to the real and imaginary parts of
h(e") = log p(6(9)) + i(¢(0) — 0)
giving Theordorsen’s equation

¢(0) — 0 = Kllog p(4(6))]-

The iteration
¢ (9) — 6 = Kllog p(¢(™(6))]-
converges linearly for nearly circular regions.
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Other results and methods

K as singular integral operator

27 _
Kh(0):21—7TPV 0 h(T)cot(9 T) dr,
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Other results and methods Theordorsen and Timman methods

Timman’s (James’) method for exterior domains

Here f(z) = cz+ap+aiz" ' + az2+-.-, c=r€formapto
exterior of a general smooth boundary, parametrized by, e.g., o =
arclength,

M:y=v(),0<o <L

The method finds the boundary correspondence o = o(6) by
successive conjugation.

Now auxiliary function h(z) :=log f'(z).

Conjugation for exterior of disk, Reh(e’) — Reh(co) = KImh(e') and
f'(e?) = —/(0(0))o’' (0)ie~", we have

logo’(#) + log |7/ (a(8))| — log T = K [arg~/(c(0)) — 6 — 7/2] .
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Other results and methods Theordorsen and Timman methods

Timman iteration (linear convergence)

With normalization (1) = (o), we have

A 00) =1 [ o0 (K [arg /(0 (0) ~ 6]) /1D o)) 00

where L7, is given by the integral over [0, 2x].
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Other results and methods Theordorsen and Timman methods

Fig. 9. H-K flow past an inclined airfoil with fixed separation points.

R

Fig. 10. R-J flow past a flat plate.

T. K. Delillo, A. Elcrat, and C. Hu, Computation of the
Helmholtz-Kirchhoff and reentrant jet flows using Fourier series,
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Other results and methods Curvilinear polygons - an early attempt

“Schwarz-Christoffel” (SC) for curvilinear polygons

Ives, Davis, Noble, and others; see D., JCAM, 19 (1987), 363-377.

Express map derrivative as
f'(z) = g(z)e"?.

If h(z) = 0 and g(z) = [[4(z — zx) P, we have standard SC

7(2) = Iz 20 %

k

h(z) can be used to include effects of curvature.
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Other results and methods Curvilinear polygons - an early attempt

Timman for exterior domains with with corners

D. and Elcrat, JCP 1993, for exterior of curvilinear domains with
corners at f(zx) = v(o(0x)) of angle aym with 5y := ay — 1 used
auxiliary function

h(z) = ilog((f'(2)/f'(c0)) [ [(1 — 2x/2) =

k

Iteration with underrelaxation was used. The results only gave a
couple digits accuracy for axm > 7 and failed to converge for aym < .
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Curvilinear polygons - an early attempt
Inverse Timman with corners

D. and Elcrat, JCP 1993: Integrating the Hilbert transform by parts a la
Menikoff and Zemach and others and solving for the inverse boundary
correspondence 6 = 6(o) worked somewhat better:

Denote A\(0) := arg~/(o) = tangent angle with jumps at corners. Using
auxiliary function h(z) = log f'(z) we have

d

log d‘; = logt + K [Mo(6) — 6]

log ™+ —PV/cot (9 . 9) (Ao (D)) — f)dd

1
IogT-i——/Iog
™

sin g‘ d(\a(8)) — )
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Other results and methods Curvilinear polygons - an early attempt

Inverse Timman with corners...cont.

Interchanging dependent and independent variables ¢ and ¢ and
letting x(c) = X (o)= curvature of smooth sections, we get and an
equation for 0 = 0(o)

do(e) 1 (o) — Ok |
do 4t 1;‘[ sin 2
L (=
= xexp <—1/ log sine(a)ze(g m(&)d&)
T Jo

which (with smoothing of singularities and numerical integration) can
be solved by successive approximation. o, at corners are now mesh
points.
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