
Chapter 3

Simulation and Monte Carlo integration

In this chapter we introduce the concept of generating observations from a specified distribution or sample,
which is often called Monte Carlo generation.

The name of Monte Carlo was applied to a class of mathematical methods first by scientists working on
the development of nuclear weapons in Los Alamos in the 1940s. For history of Monte Carlo see Kalos and
Whitelock (1986), Monte Carlo Methods, Vol. I: Basics, Wiley.

3.1 The law of large numbers

There are two types of laws of large numbers, a strong one and a weak one. They may be thought of as the
theoretical background for Monte Carlo methods. Below is a strong law of large numbers.

Theorem 1. If X1, X2, . . . , Xn, . . . are independent and identically distributed random variables with
EXk = µ, k = 1, 2, . . . , then

P

(

lim
n→∞

∑n
k=1 Xk

n
= µ

)

= 1.

Proof. See page 85 of Billingsley, P. (1995), Probability and Measure, 3rd edition, Wiley. 2

The next one is a weak law of large numbers.

Theorem 2. If X1, X2, . . . , Xn, . . . are independent and identically distributed random variables with
EXk = µ and E(Xk − µ)2 = σ2, k = 1, 2, . . . , then, for any positive constant ε,

lim
n→∞

P

(∣

∣

∣

∣

∑n
k=1 Xk

n
− µ

∣

∣

∣

∣

≥ ε

)

= 0.

Proof. It is not so hard, and is left as a homework.

41



42 CHAPTER 3. SIMULATION AND MONTE CARLO INTEGRATION

3.2 The “hit-or-miss” method

Consider an event A whose probability is p. Define a sequence of independent and identically distributed
Bernoulli random variables X1, X2, . . . , Xn by

Xk =







1, if event A occurs,

0, otherwise,
k = 1, 2, . . .

You may imagine {X = 1} as “hit” and {X = 0} as “miss”.

The moment estimator and maximum likelihood estimator of p based on X1, X2, . . . , Xn are the same,
with

p̂ =

∑n
k=1 Xk

n
.

This estimator is unbiased, that is, Ep̂ = p. More importantly, it follows from the strong law of large
numbers that

P

(

lim
n→∞

∑n
k=1 Xk

n
= p

)

= 1.

The earliest documented use of random sampling to find the solution to an integral seems to be that of
Comte de Buffon, which is often called Buffon’s needle problem. Here we estimate π by the “hit-or miss”
method.

Example 1 (Estimation of π). Suppose that a disk with radius 1 meter is put inside a square whose
length is 2 meters. We toss a little needle to hit the square. The question is: what is the probability that
the needle lies within the disk?

The answer is π
4 .

To perform the Monte Carlo method, let U1 and U2 be independent random variables uniformly dis-
tributed on the interval [−1, 1], and they may be treated as two sides of a square. Define a random variable
that represents the event of hitting the disk,

X =

{

1, if U2
1 + U2

2 ≤ 1,
0, otherwise.

Then
EX = P (U 2

1 + U2
2 ≤ 1) =

π

4
.

For a sequence of such i.i.d. variables, X1, . . . , Xn, by the strong law of large numbers we obtain

lim
n→∞

∑n
k=1 Xk

n
=

π

4
,

with probability 1.



3.3. MONTE CARLO INTEGRATION 43

pimc=function(n){ # n is the number of simulations

u1=runif(n, -1, 1) # generate a uniform variable U_1

u2=runif(n, -1, 1) # U_2

x=rep(0, n) # format of X

x[u1^2 + u2^2 <=1]=1 # X variable

pimc=4*mean(x) # pi estimator

pimc

}

> pimc(10)

[1] 4

> pimc(100)

[1] 3.28

> pimc(1000)

[1] 3.06

> pimc(10000)

[1] 3.136

> pimc(100000)

[1] 3.13792

> pimc(1000000)

[1] 3.141824

3.3 Monte Carlo integration

Suppose that g(x), x ∈ [0, 1], is a real and continuous function. The question is: how to estimate the integral
∫ 1
0 g(x)dx? There may be many approximations for this integral. Here we use the Monte Carlo method.

Example 2 (Estimation of π). Consider the function

g(u) = 4
√

1 − u2, u ∈ [0, 1].

It is easy to show that
∫ 1
0 g(u)du = π.

To use the Monte Carlo method, suppose that U1, U2, . . . , Un are independent random variables uniformly
distributed on the interval [0, 1]. Then X1 = g(U1), X2 = g(U2), . . . , Xn = g(Un) are i.i.d random variables,
with mean

EXk = Eg(Uk) =

∫ 1

0
g(u)du = π.

pimc=function(n){ # n is the number of simulations

u=runif(n) # generate a sequence of uniform U random numbers

g=4*sqrt(1-u^2) # g(U)

pimc=mean(g) # pi estimator

pimc

}



44 CHAPTER 3. SIMULATION AND MONTE CARLO INTEGRATION

3.4 Generating random numbers

This section describes some approaches to generate random variables or vectors with specified distributions.
When talking about “generate” a random object, we mean an algorithm whose output is an object of the
desired type.

To generate a random variable (or vector) having a target distribution F (x) on R
d, we typically start

from a sequence of i.i.d. uniform random numbers. Thus, our task is: given an i.i.d. sequence U1, U2, . . . that
follow an uniform distribution on the interval [0, 1], find m ≥ d and a deterministic function g : [0, 1]m → R

d

such that the distribution function of g(U1, . . . , Um) is F (x).

3.4.1 The inverse method

Theorem. Let X be a random variable with distribution function F (x).

(1) For every t ∈ [0, 1],
P (F (X) ≤ t) ≤ t.

In particular, if F (x) is continuous on the real line, then U = F (X) is uniformly distributed on [0, 1].

(2) Define the inverse of F as

F−1(y) = inf{x, F (x) ≥ y}, 0 < y < 1.

If U is a uniform random variable on [0, 1], then F −1(U) has distribution function F (x).

Example 1. An exponential density function is of the form

f(x) =

{

λ exp(−λx), x > 0,
0, x ≤ 0,

where λ is a positive constant. The cumulative distribution function

F (x) =

{

1 − exp(−λx), x > 0,
0, x ≤ 0,

is strictly increasing and continuous on [0,∞), with the inverse

F−1(x) = − 1

λ
ln(1 − x), 0 < x < 1.

Thus, we could use the following procedure to generate exponential random numbers.

rexp = function(n, lambda){

u = runif(n) # generate uniform random numbers

g = -1/lambda*log(1-u) # exponential random numbers

g

}



3.4. GENERATING RANDOM NUMBERS 45

One way to see whether a data set comes from a particular distribution is the q-q plot, which is
based on sample order statistics (or sample quantiles) and theoretical quantiles. For a set of observations
x1, x2, . . . , xn, we put them in order,

x1:n ≤ x2:n ≤ xn:n.

If the target distribution function is F (x), then the quantile for k
n+1 is F−1

(

k
n+1

)

, k = 1, . . . , n. A q-q plot

is a scatterplot of points
(

xk:n, F−1

(

k

n + 1

))

, k = 1, . . . , n.

These points would be close to a straight line if the data set actually comes from F (·).

Below is an example for an exponential case.

x = rexp(50, 1) # generate 50 exponential random numbers

sq = sort(x) # sample quantiles

tq = function(u){-log(1-u)} # exponential quantile function with lambda=1

plot(sq, tq(1:50/51),

xlab="Sample quantiles", ylab="Theoretical quantiles")

The next example is for generating normal observations, but not using the inverse method.

Example 2 (Generating normal observations). To simulate normal random variables, Box and Muller
(1958) suggested the following procedure. Let U1 and U2 be independent random variables uniformly
distributed on the interval (0, 1). Define X1 and X2 by

X1 =
√

−2 lnU1 cos(2πU2),

X2 =
√

−2 lnU1 sin(2πU2).

It can be shown that X1 and X2 are independent standard normal random variables.

rnormal=function(n){

u1=runif(n)

u2=runif(n)

x = (-2*log(u1))^(1/2)*cos(2*pi*u2)

x

}

qqnorm(rnormal(100))

qqline(rnormal(100))

3.4.2 Rejection method

We want to generate random numbers from a target distribution with the density f(x).



46 CHAPTER 3. SIMULATION AND MONTE CARLO INTEGRATION

Suppose that f(x) can be rewritten as

f(x) =
h(x)g(x)

∫∞

−∞
h(u)h(u)du

, x ∈ R,

where h(x) is a nonnegative function, and g(x) is another density function that has a simple form. The
rejection procedure is:

Step 1. Generate Y ∼ g(x).

Step 2. Generate U ∼ uniform(0, 1).

Step 3. Accept Y is U ≤ h(Y ) ≤ 1, otherwise go back to Step 1.

There are two discrete events involved in the above procedure: a success (Y is accepted), and no success
(Y is rejected). To confirm the procedure makes sense, we need evaluate the conditional probability

P (Y ≤ x | success).

Note that

P (Y ≤ xand success) = P (Y ≤ x,U ≤ h(Y ) ≤ 1)

=

∫ ∫

y≤x,u≤h(y)≤1
(joint density of Y and U) dydu

=

∫ ∫

y≤x,u≤h(y)≤1
g(y) · 1dydu

=

∫

y≤x

(

∫

u≤h(y)≤1
du

)

g(y)dy

=

∫

y≤x
h(y)g(y)dy

=

∫ x

−∞

h(y)g(y)dy, x ∈ R,

from which we obtain

P (success) = lim
x→∞

P (Y ≤ x and success) =

∫ ∞

−∞

h(y)g(y)dy.

Thus,

P (Y ≤ x | success) =
P (Y ≤ x and success)

P (success)

=

∫ x
−∞

h(y)g(y)dy
∫∞

−∞
h(y)g(y)dy

, x ∈ R.

This means the above procedure works theoretically.



3.4. GENERATING RANDOM NUMBERS 47

Example 1. Let

f(x) =







4
π

1
1+x2 , 0 < x < 1,

0, otherwise.

We will use the rejection method to generate random numbers from this distribution.

Choose g(x) to be a uniform density,

g(x) =







1, 0 < x < 1,

0, otherwise,

and h(x) = f(x). Then, the algorithm is

re =function(n){

h=function(x){4/pi*(1+x^2)^(-1)}

y = runif(n)

u = runif(n)

re = y[u <= h(y) & h(y) <=1]

#if(u>h(y)) repeat

re

}

> re(100)

[1] 0.7310012 0.9566798 0.8679352 0.5366552 0.5633315 0.5500107 0.8593855

[8] 0.6485496 0.6402452 0.6262020 0.7063684 0.5277953 0.7371513 0.7603023

[15] 0.5445079 0.6313800 0.6478479 0.8180368 0.8224039 0.6279190 0.7134841

[22] 0.7110942 0.8868061 0.6479279 0.8643747 0.5624662 0.6680021 0.9070305

[29] 0.8095055 0.6669217 0.5366229 0.6524184 0.9968572 0.8017481 0.5706411

[36] 0.9855979 0.7278967 0.9353859 0.8450351 0.7762552 0.9016270 0.9033395

[43] 0.5256584

Example 2. Consider the following algorithm that was proposed by Marsaglia and Bray1:

(1) Generate U and V independent uniform (−1, 1) random variables.

(2) Set W = U 2 + V 2.

(3) If W > 1, go to Step (1).

(4) Set Z =
√

(−2 lnW )/W , and let X1 = UZ and X2 = V Z.

Show that the random variables X1 and X2 are independent and normally distributed with mean zero
and variance 1. Use this algorithm to generate 100 normal random numbers, and obtain a normal Q-Q plot.

1Marsaglia and Bray (1964), A convenient method for generating normal variables, SIAM Review, vol. 6,260-264.



48 CHAPTER 3. SIMULATION AND MONTE CARLO INTEGRATION

3.5 Importance sampling

Suppose that we have an n-dimensional integral

I =

∫

Rn

g(x)f(x)dx

that needs to evaluate, where f(x) is a density function. The Monte Carlo procedure is to take a random
sample X1, . . . ,Xn from this distribution, and then to form the mean

gn =
1

n

n
∑

k=1

g(Xk).

When
∫

Rn g2(x)f(x)dx < ∞, the strong large number law asserts that

1

n

n
∑

k=1

g(Xk) → I,

with probability 1.

Since gn estimates I, we can write
gn = I + error.

This error is a random variable, with mean 0 and variance

var(gn) =
1

n

{∫

Rn

g2(x)f(x)dx − I2

}

.

What we want is to reduce the error (variance).

But, f(x) is not necessarily the best density function to use in the Monte Carlo simulation even though
it appears in the integrand. A different density function, f̃(x), can be introduced into the integral as follows:

I =

∫

Rn

g(x)f(x)

f̃(x)
f̃(x)dx,

where f̃(x) ≥ 0,
∫

Rn f̃(x)dx = 1, and g(x)f(x)

f̃(x)
< ∞ except for perhaps a (countable) set of points. How to

choose an appropriate f̃ is a trick in importance sampling.


