Chapter 8

Two-way ANOVA: Mixed factor effects Equal sample sizes

8.1 Assumptions and model

- There are two factors, factors A and B, that are of interest.
- Factor A is studied at *a* fixed levels, and factor B at *b* random levels. All *ab* factor level combinations are included in the study.

		Factor B					
		level 1		level j		level b	
	level 1	Y_{111},\ldots,Y_{11n}		Y_{1j1},\ldots,Y_{1jn}		Y_{1b1},\ldots,Y_{1bn}	
	:						
Factor A	level i	Y_{i11},\ldots,Y_{i1n}		Y_{ij1},\ldots,Y_{ijn}		Y_{ib1},\ldots,Y_{ibn}	
	•						
	level a	Y_{a11},\ldots,Y_{a1n}		Y_{aj1},\ldots,Y_{ajn}		Y_{ab1},\ldots,Y_{abn}	

Table 8.1: Format of (balanced) data set

8.1. ASSUMPTIONS AND MODEL

8.1.1 Restricted mixed factor effects model

$$\begin{aligned} Y_{ijk} &= \mu \dots + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}, & i = 1, \dots, a, \quad j = 1, \dots, b, \quad k = 1, \dots, n. \\ \mu \dots \text{ is a constant} \\ \alpha_1, \dots, \alpha_a \text{ are constants subject to } \sum_{i=1}^a \alpha_i &= 0 \\ \beta_1, \dots, \beta_b \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(0, \sigma_\beta^2) \\ (\alpha\beta)_{ij}, \quad i = 1, \dots, a, \quad j = 1, \dots, b, \quad \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(0, \frac{a-1}{a}\sigma_{\alpha\beta}^2) \text{ subject to the restrictions:} \\ \sum_{i=1}^a (\alpha\beta)_{ij} &= 0, \quad \text{ for all } j \\ cov((\alpha\beta)_{ij}, (\alpha\beta)_{i'j}) &= -\frac{1}{a}\sigma_{\alpha\beta}^2, \quad i \neq i' \end{aligned}$$
Error terms $\varepsilon_{iik}, \quad i = 1, \dots, a, \quad j = 1, \dots, b, \quad k = 1, \dots, n, \quad \stackrel{\text{i.i.d}}{\rightarrow} \mathcal{N}(0, \sigma^2) \end{aligned}$

Error terms ε_{ijk} , i = 1, ..., a, j = 1, ..., b, k = 1, ..., n, $\stackrel{\text{i.i.d}}{\sim} \mathcal{N}(0, \sigma^2)$ $\beta_j, (\alpha\beta)_{ij}$ and ε_{ijk} , i = 1, ..., a, j = 1, ..., b, k = 1, ..., n, are independent

- Features of model
 - $1^\circ~$ The response variable Y_{ijk} is normally distributed with

$$EY_{ijk} = \mu_{..} + \alpha_i$$

$$Var(Y_{ijk}) = \sigma_{\beta}^2 + \frac{a-1}{a}\sigma_{\alpha\beta}^2 + \sigma^2$$

 2° (Covariance structure of observations) Unlike for the fixed factor levels model where all observations Y_{ijk} are independent, the Y_{ijk} for the random factor effects model are correlated when they are from the same random factor B level.

$$cov(Y_{ijk}, Y_{ijk'}) = \sigma_{\beta}^{2} + \frac{a-1}{a}\sigma_{\alpha\beta}^{2}, \qquad k \neq k'$$

$$cov(Y_{ijk}, Y_{i'jk'}) = \sigma_{\beta}^{2} - \frac{1}{a}\sigma_{\alpha\beta}^{2}, \qquad i \neq i' \quad \text{(Same levels of factor B)}$$

$$cov(Y_{ijk}, Y_{i'j'k'}) = 0, \qquad j \neq j' \quad \text{(Different levels of B)}$$

8.1.2 Notations

Means, and Sums of squares are defined the same as the fixed factor levels case.

8.1.3 Questions of interest

1° Variance components $\sigma_{\beta}^2, \sigma_{\alpha\beta}^2$ Point estimation; Interval estimation; Test whether $\sigma_{\beta}^2 = 0, \sigma_{\alpha\beta}^2 = 0.$ 2° About α . Point estimation; Interval estimation; Test whether $\alpha_1 = \ldots = \alpha_a = 0.$ 3° About μ .. Point estimation; Interval estimation.

8.2 Inference on variance components

Source of Variation	df	Sum of Squares (SS)	Mean Square (MS)	F^* -value	Test for
Factor A	a-1	SSA	$MSA = \frac{SSA}{a-1}$	$F^* = \frac{MSA}{MSAB}$	$\mathcal{H}_0: \ \alpha_1 = \ldots = \alpha_a = 0$ (factor A main effects)
Factor B	b-1	SSB	$MSB = \frac{SSB}{b-1}$	$F^* = \frac{MSB}{MSE}$	$\mathcal{H}_0: \ \sigma_\beta^2 = 0$ (factor B main effects)
AB interactions	(a-1)(b-1)	SSAB	$MSAB = \frac{SSAB}{(a-1)(b-1)}$	$F^* = \frac{MSAB}{MSE}$	$\mathcal{H}_0: \sigma^2_{lphaeta} = 0$ (interactions)
$\operatorname{Error}(\operatorname{Residuals})$	ab(n-1)	SSE	$MSE = \frac{SSE}{ab(n-1)}$		
Total	nab-1	SSTO			

Question: Why the denominators of F statistics for testing factor A and B main effects of the mixed factor effects model are not the same?

Imitation pearls, p.1006

Factor A (number of coats) has 3 fixed factor levels, and factor B (batch) has 4 random factor levels.

```
> y <- read.table("CH24PR17.DAT")
> data <- y[,1]
> coat <- y[,2]
> batch <- y[,3]
> pearls.df <- data.frame(data=data,coat=factor(coat),batch=factor(batch))</pre>
```

Look at the data set graphically.

```
> plot.factor(coat,data)
> plot.factor(batch,data)
> plot.data.frame(pearls.df)
```

The ANOVA table is obtained by

```
> myfit <- anova(lm(data~coat+batch+coat*batch, pearls.df))</pre>
                            Mean Sq F value
              Df
                   Sum Sq
                                                 Pr(>F)
                   150.388 75.194
                                      15.591
   coat
               2
                                                 1.327e-05
   batch
               3
                   152.852 50.951
                                      10.564
                                                 3.984e-05
   coat:batch 6
                   1.852
                            0.309
                                      0.064
                                                 0.9988
   Residuals
               36 173.625 4.823
```

Be careful: the F-value for coat is not 15.591. The corresponding F-value and p-values are

```
> F.a <- myfit[1,3]/myfit[3,3]
> p.a <- 1-pf(F.a, myfit[1,1], myfit[3,1])
[1] 1.806033e-06</pre>
```

8.2.2 Estimation of variance components

• Expected mean squares

$$E(MSA) = \sigma^{2} + nb\frac{\sum_{i=1}^{a}\alpha_{i}^{2}}{a-1} + n\sigma_{\alpha\beta}^{2}$$
$$E(MSB) = \sigma^{2} + na\sigma_{\beta}^{2}$$
$$E(MSAB) = \sigma^{2} + n\sigma_{\alpha\beta}^{2}$$
$$E(MSE) = \sigma^{2}$$

• Unbiased estimators:

$$\hat{\sigma}^2 = MSE \hat{\sigma}^2_{\alpha\beta} = \frac{MSAB - MSE}{n} \hat{\sigma}^2_{\beta} = \frac{MSB - MSE}{na}$$

Occasionally, one of last three estimators may be negative.

• It is not possible to construct an exact CI for variance components.