Ch.4 One-way classification: Random effects model (One-way ANOVA: Random factor effects model)

1 Assumptions and model

1.1 Random cell means model

$$Y_{ij} = \mu_i + \varepsilon_{ij}, \quad i = 1, \dots, r, \quad j = 1, \dots, n_i$$

 μ_1, \ldots, μ_r are independent $N(\mu_i, \sigma_{\mu}^2)$; Error terms ε_{ij} , $i = 1, \ldots, r$, $j = 1, \ldots, n_i$, are independent $N(0, \sigma^2)$; $\{\mu_k, \quad k = 1, \ldots, r\}$ and $\{\varepsilon_{ij}, \quad i = 1, \ldots, r, \quad j = 1, \ldots, n_i\}$ are independent

Important features of model

 $1^{\circ}~$ The response variable Y_{ij} is normally distributed with

$$EY_{ij} = \mu.,$$

$$Var(Y_{ij}) = \sigma_{\mu}^2 + \sigma^2.$$

 2° Unlike for the fixed factor levels model where all observations Y_{ij} are independent, the Y_{ij} for the random factor levels model are only independent if they pertain to different factor levels.

$$Cov(Y_{ij}, Y_{i'j'}) = \begin{cases} \sigma_{\mu}^2 + \sigma^2, & i = i', j = j', \\ \sigma_{\mu}^2, & i = i', j \neq j', \\ 0, & i \neq i'. \end{cases}$$

1.2 Questions of interest

1° About σ_{μ}^2 :

Point estimation of σ_{μ}^2 ;

Interval estimation of σ_{μ}^2 ;

Test whether $\sigma_{\mu}^2=0;$ $(\sigma_{\mu}^2=0 \text{ implies that all } \mu_i \text{ are equal, i.e., } \mu_i\equiv \mu.)$

Estimation of $\frac{\sigma_{\mu}^2}{\sigma_{\mu}^2 + \sigma^2}$, which is the correlation coefficient between two observations Y_{ij} and $Y_{ij'}$ from the same factor level.

 2° About μ .:

Point estimation;

Interval estimation.

1.3 Notations

$$n_T \triangleq \sum_{i=1}^r n_i$$
 (The total number of cases in the study)
$$\bar{Y}_i. \triangleq \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij} \qquad \text{(Sample mean of the i-th factor level)}$$

$$\bar{Y}_i. \triangleq \frac{1}{n_T} \sum_{i=1}^r \sum_{j=1}^{n_i} Y_{ij} = \frac{1}{n_T} \sum_{i=1}^r n_i \bar{Y}_i. \quad \text{(The overall mean for all responses)}$$

$$SS_B \triangleq \sum_{i=1}^r n_i (\bar{Y}_{i\cdot} - \bar{Y}_{\cdot\cdot})^2 \qquad \text{(Sum of squares "between groups" (Treatment sum of squares))}$$

$$SS_W \triangleq \sum_{i=1}^r \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i\cdot})^2 \qquad \text{(Sum of squares "within groups" (Error sum of squares))}$$

$$SS_T \triangleq \sum_{i=1}^r \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{\cdot\cdot})^2 \qquad \text{(Total sum of squares)}$$

Breakdown of degrees of freedom

$$\underbrace{SS_{T}}_{(n_{T}-1 \text{ degrees of freedom})} = \underbrace{SS_{W}}_{(n_{T}-r \text{ degree of freedom})} + \underbrace{SS_{B}}_{(r-1 \text{ degrees of freedom})}$$

2 Inference on σ^2

2.1 Test whether $\sigma_{\mu}^2 = 0$

$$\mathcal{H}_0: \sigma_\mu^2 = 0 \iff \mathcal{H}_a: \sigma_\mu^2 > 0$$

If \mathcal{H}_0 then all μ_i are equal.

• One-way ANOVA Table (for the balanced case)

Source of Variation	df	Sum of Squares (SS)	Mean Square (MS)	F^* -value	$ \begin{array}{c} \Pr(>F^*) \\ \text{(p-value)} \end{array} $
Between treatments	r-1	SS_B	$MS_B = \frac{SS_B}{r-1}$	$F^* = \frac{MS_B}{MS_W}$	
Error or Residuals (within treatments)	r(n-1)	SS_W	$MS_W = \frac{SS_W}{r(n-1)}$		
Total	rn-1	SS_T			

• Derivation

$$SS_{W} \triangleq \sum_{i=1}^{r} \sum_{j=1}^{n} (Y_{ij} - \bar{Y}_{i.})^{2} = \sum_{i=1}^{r} \sum_{j=1}^{n} \{\mu_{i} + \varepsilon_{ij} - \frac{1}{n} \sum_{j=1}^{n} (\mu_{i} + \varepsilon_{ij})\}^{2} = \sum_{i=1}^{r} \sum_{j=1}^{n} \{\varepsilon_{ij} - \bar{\varepsilon}_{i.}\}^{2}$$

$$SS_{B} \triangleq \sum_{i=1}^{r} n(\bar{Y}_{i.} - \bar{Y}_{..})^{2} = \sum_{i=1}^{r} n \left\{ \frac{1}{n} \sum_{j=1}^{n} (\mu_{i} + \varepsilon_{ij}) - \frac{1}{rn} \sum_{i=1}^{r} \sum_{j=1}^{n} (\mu_{i} + \varepsilon_{ij}) \right\}^{2}$$

$$= \sum_{i=1}^{r} n \left\{ (\mu_{i} - \bar{\mu}_{.}) + (\bar{\varepsilon}_{i.} - \bar{\varepsilon}_{..}) \right\}^{2}$$

$$SS_W$$
 and SS_B are independent, $\frac{SS_W}{\sigma^2} \sim \chi^2_{r(n-1)}, \frac{SS_B}{\sigma^2 + n\sigma^2_\mu} \sim \chi^2_{r-1}.$

Under \mathcal{H}_0 ,

$$F^* = \frac{MS_B}{MS_W} \sim F_{r-1,r(n-1)}$$

4

Apex Enterprises Example, page 1036.

Set up the data frame, as in the fixed factor levels case.

Look at the data set graphically.

```
> plot(officer,data)
> plot(candidate.df)
```

The ANOVA table is obtained by

> summary(aov(data~officer,candidate.df))

```
Df Sum Sq Mean Sq F value Pr(>F)
officer 4 1579.70 394.93 5.389 0.006803
Residuals 15 1099.25 73.28
```

What's your conclusion?

2.2 Estimation of σ_{μ}^2

• An unbiased estimator of σ_{μ}^2 :

$$\hat{\sigma}_{\mu}^{2} \triangleq \frac{MS_{W} - MS_{B}}{n}$$

Occasionally, $\hat{\sigma}_{\mu}^2 < 0$.

• It is not possible to construct an exact CI for σ_{μ}^2 .

2.3 Confidence interval for $\frac{\sigma_{\mu}^2}{\sigma_{\mu}^2 + \sigma^2}$

A pivotal quantity

$$\frac{MS_W/(\sigma_\mu^2 + \sigma^2)}{MS_B/\sigma^2} \sim F_{r-1,r(n-1)}$$

The probability statement for $\frac{\sigma_{\mu}^2}{\sigma_{\mu}^2 + \sigma^2}$:

$$P\left(\frac{L}{1+L} \le \frac{\sigma_{\mu}^2}{\sigma_{\mu}^2 + \sigma^2} \le \frac{U}{1+U}\right) = 1 - \alpha,$$

where

$$L = \frac{1}{n} \left[\frac{MS_W}{MS_B} \left(\frac{1}{qf(1-\alpha/2;r-1,r(n-1))} \right) - 1 \right],$$

$$U = \frac{1}{n} \left[\frac{MS_W}{MS_B} \left(\frac{1}{qf(\alpha/2;r-1,r(n-1))} \right) - 1 \right].$$

Question: Is it possible to obtain L < 0? What are you going to do in such a case?

3 Inference on μ .

• An unbiased estimator of μ .:

$$\hat{\mu}$$
. $\triangleq \bar{Y}$.. $\sim N\left(\mu_{\cdot}, \frac{n\sigma_{\mu}^2 + \sigma^2}{rn}\right)$.

• A pivotal quantity

$$\frac{\bar{Y}_{\cdot \cdot} - \mu_{\cdot}}{MS_W/rn} \sim t_{r-1}$$

The $1 - \alpha$ CI for μ .

$$\bar{Y}$$
.. $\pm qt(1-\alpha/2;r-1)\frac{MS_W}{rn}$