Chapter 3

Analysis of one-way (fixed) factor level
effects

Two major questions for one-way classification

(1) Determine whether or not the factor level means are the same. A recommended strategy is

Diagnostics — Transformation — ANOV A table
We are done if H is accepted.

(2) If the factor level means differ (i.e. H, is true), examine

(i) how they differ
(ii) what the implications of the difference are

Inferences for factor level effects are generally concerned with one or more of the following

(i) A single factor level mean p;

(ii) A difference between two factor level means p; — g

r T
(iii) A contrast among factor level means Y ¢;u; where > ¢; =0
i=1 i=1

T
(iv) A linear combination of factor level means > c¢;u;
i=1

o4



3.1. SINGLE FACTOR LEVEL MEAN puy

3.1 Single factor level mean pu;

Point estimator of pu;:

=
Il

Two pivotal quantities for u;:

(4) g?/i?/“n% ~tn,—1  (one sample case)

(i1) —M=li_ ~¢, ., (from the ANOV A table)

From these we can construct two Cls for p;. The question is then: which do you prefer to?
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3.2 Difference between two factor level means u;, — u;

Point estimator of p; — py:  Y; — Y.

Two pivitol quantities for p; — p;:

N Y oY (i)
(1) Zsllﬁ ~tn;4n,—2 (two — sample case)

2 ng n

S;.ir 1s the pooled variance

(11) % ~tpp—r  (from the ANOV A table)

1

For a pairwise comparison, it is often to construct a (1-a)100% confidence interval for pu; — p;:

. 1
Yi.—Y,;:.j:qt(l—a/Q,nT—r)*\/MSE< + )

ng g

Kenton Food Company Example, page 677. There are 4 factor levels: package designs 1-4, with samples
5, 5,4 & 5.

y <- read.table("CH16TAO1.DAT")

data <- y[,1]

package <- factor(rep(LETTERS[1:4],c(5,5,4,5)))
food.df <- data.frame(package,data)

vV V V V

After checking assumptions via various graphs and tests, we obtain the ANOVA table

> anova <- aov(data“package,food.df)
> summary (anova)
Df Sum Sq Mean Sq F value Pr(>F)
package 3 588.22 196.07 18.591 2.585e-05
Residuals 15 158.20 10.55

Since p-value=2.585e-05 is very small, the factor level means differ. The next step is to undertake the analysis
of factor level effects. As an example, consider py3—pu4. For this, we need model.tables(anova,type="means")



3.2. DIFFERENCE BETWEEN TWO FACTOR LEVEL MEANS pu; — pp

> model.tables(anova,type="means")
Tables of means
Grand mean 18.63158

package A B C D
14.6 13.4 19.5 27.2
rep 5.0 5.0 4.0 5.0

> meanC <- 19.5 # <--- model.tables(anova,type='"means")
> meanD <- 27.2

> nC <- 4

>nD <- 5

> MSE <- 10.55 # <--- summary(anova)

> tval <- gqt(1-.05/2, 15)
[1] 2.131450

> ci <- c(meanC-meanD- sqrt(MSE * (1/nC+1/nD))* tval,
meanC-meanD+sqrt (MSE * (1/nC+1/nD))* tval)
[11 -12.344164 -3.055836 # 95} CI

You may try the two sample method.

> t.test(y[,1]1[y[,2]1==31, y[,1]1[y[,2]1==4], var.equal=TRUE, conf.level=1-.05)
Two Sample t-test

data: yl[, 11[y[, 2] == 3] and y[, 11[y[, 2] == 4]
t = -3.3175, df = 7, p-value = 0.01281
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-13.188345 -2.211655
sample estimates:
mean of x mean of y
19.5 27.2

o7

Two methods give different answers. What information they provide for the difference? Which one would

you prefer to?
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3.3 Tukey multiple comparison procedure

{all pairwise comparisons of factor level means}

i i e {1,

The family of interest
= {pi —

Questions of interest
simultaneous confidence intervals for all pairs u; — u;

simultaneous tests of form Hg : p; — py =0

(i7)

(1-a)100 % Tukey simultaneous confidence intervals for all pairwise comparisons p; — p;:

_ _ 1 1
Y,;.Y;,,iT*\/MSE<—+ ) i#idid e {l,.. .,
n; Ny
where )
T & —q(l —a;r,np — 1), Table B.9
ﬁq( ;T — ) ( )
For the balanced case (i.e., all sample sizes are equal, n; = ... = n, = n), the probability

statement is
p{| .= Yo = =)
/MSE
n

where ¢(-;,n7 — r) is the quantile function of the studentized range distribution' with
rynp —r =r(n — 1) for parameters. Thus, the family confidence coefficient for the Tukey

<q(l —a;rynp — 1), 1},73'6{1,...,7"}}:17(1,

method is exactly 1 — « and the family significance level is exactly «.

For the unbalanced case, the Tukey procedure is conservative in the sense that the family
confidence coefficient for the Tukey method is greater than 1 — o and the family significance

level is less than «.

., Z, are independent normal N(-,1) random variables, and independent of x2

1 maxj<; Zi—minj<;<p Z;
<ilr “i <i<r z’ Where Z],--

VX2 /v




3.3. TUKEY MULTIPLE COMPARISON PROCEDURE
Below is an example to write your own function

> tukey <- function(x,y){
nl_length(x);
n2_length(y);
tukey <- c(mean(x)-mean(y)-Tval*sqrt(MSEx(1/n1+1/n2)),
mean (x)-mean(y)+Tval*sqrt (MSEx(1/n1+1/n2)));
tukey
}

where MSE is obtained from the ANOVA table, and qval is obtained from Table B.9.

Rust inhibitor example, page 712.

>y <- read.table("CH17TAO02.DAT")
> y1 <= y[,1]1[y[,2]==1]

> y2 <= y[,11[y[,2]==2]

> y3 <= y[,1]1[y[,2]==3]

> y4 <- y[,11[y[,2]1==4]

> data <- yl[,1]

> brand <- factor(rep(LETTERS[1:4],c¢(10,10,10,10)))
> rust.df <- data.frame(brand,data)

After checking assumptions via various graphs and tests, we obtain the ANOVA table via

> summary(aov(data“brand, rust.df))
or alternatively,

> anova(lm(data~brand, rust.df))
Analysis of Variance Table

Response: data
Df Sum Sq Mean Sq F value Pr (>F)

brand 3 15953.5 5317.8 866.12 < 2.2e-16
Residuals 36 221.0 6.1

Now pick up MSE from the above table
> MSE <- anova(lm(data~brand, rust.df))[2,3]

Let a = 5%. From Table B.9, q(1-0.05;4, 36)=3.79 —

99
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> Tval <- 1/sqrt(2)*3.79
Apply tukey to obtain (3) =6 Cls

> tukey(yl, y2)
-49.26973 -43.33027

> tukey(yl, y3)
-27.77973 -21.84027

> tukey(yl, y4)
-0.2997337 5.6397337

> tukey(y2, y3)
18.52027 24.45973

> tukey(y2, y4)
46.00027 51.93973

> tukey(y3, y4)
24.51027 30.44973

Interpret these intervals appropriately.



3.3. TUKEY MULTIPLE COMPARISON PROCEDURE

Derivation (for the balanced case)

A necessary and sufficient condition that the inequalities

(Yio = Yi) — (pi — pr)] <e
MSE -

be satisfied for all 7,7 € {1,...,r} is for

max; i |(Yi. — Vi) = (i — pir)|
MSE

or

max; i |(YVi. — pi) — (Yir. — pir)| <.
1

VMSE/n B

to hold. Notice that

Vi — ) — (Ve — )| = max (Vs — i) — min (Vs — i
Hzl?;x‘( i Nz) ( i ,uz)| ]rglasxr( i Hz) ]rélilgr( i ,Ufz)a

3

the range of r independent A/ (0,02/n) r.v.s. It is independent of M SE. And % ~7 Thus,

max; ;/ |(Yi—pi) = (Y —pr)|

max;y | (Vi — pi) — (Yo — par)| _ o/
VMSE/n VEE/(r(n - 1))

follows a studentized range distribution with parameters r,r(n — 1).

Question 1: What do parameters r and r(n — 1) refer to ?

Question 2: At which step the above argument is not applicable to the unbalanced case?

61
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3.4 Scheffé multiple comparison procedure

The family of interest 2  {all possible contrasts among the factor level means}
T r
= {L:ZCin’: Zci:0}
i=1 i=1

Questions of interest
(1)  simultaneous confidence intervals for all possible contrasts L

(74)  simultaneous tests of form Hg: L =0

(1-a)100 % Scheffé simultaneous confidence intervals for the family of contrasts L:

where

These simultaneous CIs may be defined as

> scheffe <- function(coef){
s.value <- sqrt((r-1)*qf(1-alpha, r-1, nT-r));
lowbound <- sum(coef*level.mean)-
s.valuexsqrt (MSExsum(coef~2/level.size));
upperbound <- sum(coef*level.mean)+
s.valuexsqrt (MSExsum(coef~2/level.size));
scheffe <- c(lowbound, upperbound);
scheffe
}

where MSE is obtained from the ANOVA table, and level.meanand level.size arefrom model.tables.
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Ex. 17.15 (c), Data set: Chl6prl0.dat

>y <- read.table("CH16PR10.DAT")
>yl <= y[,11[y[,2]==1]

> y2 <- y[,l:l [y[32]==2]

> y3 <- y[’]-] [y[’2]==3]

> data <- y[,1]

> size <- factor(rep(LETTERS[1:3],c(length(yl),length(y2), length(y3))))
> improv.df <- data.frame(data=data, size)

After checking assumptions via various graphs and tests, we obtain the ANOVA table via

> anova(lm(data“size, improv.df))
Response: data
Df Sum Sq Mean Sq F value Pr(>F)
size 2 20.1252 10.0626 15.720 4.331e-05
Residuals 24 15.3622 0.6401

Now pick up MSE from the above table

> MSE <- anova(lm(data“size, improv.df))[2,3]

The sample means and sizes are also needed.

> model.tables(aov(data~size, improv.df), type="'means")
Grand mean 7.951852

size A B C
6.878 8.133 9.2
rep 9.000 12.000 6.0
> level.mean <- c(6.878, 8.133, 9.2) # or c(mean(yl),mean(y2) ,mean(y3))
> level.size <- ¢(9,12,6) # or c(length(yl),length(y2),length(y3))

Let a = 5%. Apply scheffe to obtain ClIs for various contrasts

> scheffe(c(0,-1,1)) # for mu3-mu2
0.02308538 2.11024795
> scheffe(c(.5,.5,-1)) # for 1/2(mul+mu2)-mu3

-2.662847 -0.726042

Interpret these intervals appropriately.
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Derivation

r R r _ r 2
An unbiased estimator of L =Y cipiis L=3 ¢;Y;. ~ N(L, 0y ). Thus,
i=1 i=1 i=1"
r B r
> ciYio— D cipti
=1 i=1 ~ N(O, 1)
r {22
o
i=1
As before,
SSE

2
2 ~ XTLTfT'

Notice that L and SSE are independent. A pivotal quantity for a single contrast L is

r _ r
oY — ) il
= =1

=1 7 ~ tanr-
r {22
\ |IMSE Y~ ~
i=1 "

What we really need is simultaneous confidence intervals for the family of contrasts L. A necessary and
sufficient condition that the inequalities

be satisfied for all possible contrasts L is for?

T _
ni (Y. — pi)?
-1

MSE

)

<c2

to hold. Check

7

;nim. — )2/ = 1)

~

MSE

r—l,np—r-
The probability statement for all possible contrasts is

<(r—1)xqF(1 —a;r —1,np —r),VYcontrasts ) =1 — «




3.5. BONFERRONI MULTIPLE COMPARISON PROCEDURE

3.5 Bonferroni multiple comparison procedure

65

The family of interest =  {specified pairwise comparisons, contrasts, or linear combinations

among the factor level means}
r

= {L=) cm}
i=1
Questions of interest
(1)  simultaneous confidence intervals forg statements L

(7i)  simultaneous tests of form Hy: L =0

(1-a)100 % Bonferroni simultaneous confidence intervals for the g linear combinations L:

where

B £ qt(1-—

Similar to Scheffé Cls, the Bonferroni simultaneous Cls may be defined as

> bonferroni <- function(coef){
B.value <- gt(1-alpha/(2x*g), nT-r);
lowbound <- sum(coef#*level.mean)-
B.value*sqrt (MSExsum(coef"2/level.size));
upperbound <- sum(coef*level.mean)+
B.value*sqrt (MSExsum(coef"2/level.size));
bonferroni <- c(lowbound, upperbound);
bonferroni

}

where MSE is obtained from the ANOVA table, and level.meanand level.size arefrom model

.tables.
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Derivation

Suppose that there are g statements in the group,

k) . .
where cz( ),7, =1,...,r are coefficients.

A pivotal quantity for the kth statement L®*) is

~

brp—r-

The corresponding probability statement for the kth statement is

By T (k)
¢ 7"
':]
r (k)
\/ MSE z

The question here is how to put all these into a single statement. To this end, we employ the Bonferroni
inequality.? The probability statement for the g statements L is

223

<qt(l —af(2xg);np — r)) =1-a/g.

P( = = Sqt(lfa/(Q*g);nT*T),kzl,---,g)zlfa

Question 1. What is the difference between the Scheffeé multiple comparison procedure and the Bonferroni
multiple comparison procedure?

Question 2. What will happen for the Bonferroni multiple comparison procedure if g is large enough?

3The Bonferroni inequality for g events Aq,... Ay,

9
P(AiNA:N---NAg) >1-> P(A).

i=1



