Chapter 3

Analysis of one-way (fixed) factor level effects

Two major questions for one-way classification

(1) Determine whether or not the factor level means are the same. A recommended strategy is

$$Diagnostics \longrightarrow Transformation \longrightarrow ANOVA \ table$$

We are done if \mathcal{H}_0 is accepted.

- (2) If the factor level means differ (i.e. \mathcal{H}_a is true), examine
 - (i) how they differ
 - (ii) what the implications of the difference are

Inferences for factor level effects are generally concerned with one or more of the following

- (i) A single factor level mean μ_i
- (ii) A difference between two factor level means $\mu_i \mu_{i'}$
- (iii) A contrast among factor level means $\sum_{i=1}^{r} c_i \mu_i$ where $\sum_{i=1}^{r} c_i = 0$
- (iv) A linear combination of factor level means $\sum\limits_{i=1}^{r}c_{i}\mu_{i}$

3.1 Single factor level mean μ_i

Point estimator of μ_i :

$$\hat{\mu}_i = \bar{Y}_i$$
.

Two pivotal quantities for μ_i :

(i)
$$\frac{\bar{Y}_{i.} - \mu_{i}}{S_{i.} / \sqrt{n_{i}}} \sim t_{n_{i}-1}$$
 (one sample case)

(ii)
$$\frac{\bar{Y}_{i.} - \mu_{i}}{\sqrt{MSE/n_{i}}} \sim t_{n_{T}-r}$$
 (from the ANOVA table)

From these we can construct two CIs for μ_i . The question is then: which do you prefer to?

3.2 Difference between two factor level means $\mu_i - \mu_{i'}$

Point estimator of $\mu_i - \mu_{i'}$: $\bar{Y}_{i\cdot} - \bar{Y}_{i'\cdot}$

Two pivitol quantities for $\mu_i - \mu_{i'}$:

$$\begin{array}{ll} (i) & \frac{\bar{Y}_{i\cdot} - \bar{Y}_{i'\cdot} - (\mu_i - \mu_{i'})}{S_{i\cdot i'} \sqrt{\frac{1}{n_i} + \frac{1}{n_{i'}}}} \sim t_{n_i + n_{i'} - 2} & (\text{two} - sample \ case) \\ & S_{i\cdot i'} \ \text{is the pooled } variance \end{array}$$

$$(ii) \qquad \frac{\bar{Y}_{i\cdot} - \bar{Y}_{i'\cdot} - (\mu_i - \mu_{i'})}{\sqrt{MSE(\frac{1}{n_i} + \frac{1}{n_{i'}})}} \sim t_{n_T - r} \qquad (\text{from the } ANOVA \ table)$$

For a pairwise comparison, it is often to construct a $(1-\alpha)100\%$ confidence interval for $\mu_i - \mu_{i'}$:

$$ar{Y}_{i\cdot} - ar{Y}_{i'\cdot} \pm qt(1-lpha/2,n_T-r) * \sqrt{MSEig(rac{1}{n_i} + rac{1}{n_{i'}}ig)}$$

Kenton Food Company Example, page 677. There are 4 factor levels: package designs 1-4, with samples 5, 5, 4 & 5.

- > y <- read.table("CH16TA01.DAT")</pre>
- > data <- y[,1]
- > package <- factor(rep(LETTERS[1:4],c(5,5,4,5)))</pre>
- > food.df <- data.frame(package,data)

After checking assumptions via various graphs and tests, we obtain the ANOVA table

- > anova <- aov(data~package,food.df)</pre>
- > summary(anova)

Df Sum Sq Mean Sq F value Pr(>F)
package 3 588.22 196.07 18.591 2.585e-05
Residuals 15 158.20 10.55

Since p-value=2.585e-05 is very small, the factor level means differ. The next step is to undertake the analysis of factor level effects. As an example, consider $\mu_3 - \mu_4$. For this, we need model.tables(anova, type="means")

```
> model.tables(anova,type="means")
Tables of means
Grand mean
                18.63158
                      C
                           D
package
                 В
          14.6 13.4 19.5 27.2
           5.0 5.0 4.0 5.0
> meanC <- 19.5
                       # <--- model.tables(anova,type="means")</pre>
> meanD <- 27.2
> nC <- 4
> nD <- 5
> MSE <- 10.55
                       # <--- summary(anova)
> tval <- qt(1-.05/2, 15)
   [1] 2.131450
> ci <- c(meanC-meanD- sqrt(MSE * (1/nC+1/nD))* tval,
          meanC-meanD+sqrt(MSE * (1/nC+1/nD))* tval)
  [1]
        -12.344164 -3.055836
                                       # 95% CI
```

You may try the two sample method.

```
> t.test(y[,1][y[,2]==3], y[,1][y[,2]==4], var.equal=TRUE, conf.level=1-.05)

Two Sample t-test

data: y[, 1][y[, 2] == 3] and y[, 1][y[, 2] == 4]
    t = -3.3175, df = 7, p-value = 0.01281
    alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -13.188345 -2.211655
    sample estimates:
    mean of x mean of y
    19.5 27.2
```

Two methods give different answers. What information they provide for the difference? Which one would you prefer to?

3.3 Tukey multiple comparison procedure

The family of interest \triangleq {all pairwise comparisons of factor level means}

$$= \{\mu_i - \mu_{i'}: i \neq i', i, i' \in \{1, \dots, r\}\}$$

Questions of interest

- (i) simultaneous confidence intervals for all pairs $\mu_i \mu_{i'}$
- (ii) simultaneous tests of form $\mathcal{H}_0: \mu_i \mu_{i'} = 0$

 $(1-\alpha)100$ % Tukey simultaneous confidence intervals for all pairwise comparisons $\mu_i - \mu_{i'}$:

$$\bar{Y}_{i\cdot} - \bar{Y}_{i'\cdot} \pm T * \sqrt{MSE\left(\frac{1}{n_i} + \frac{1}{n_{i'}}\right)}, \qquad i \neq i', i, i' \in \{1, \dots, r\}$$

where

$$T \triangleq \frac{1}{\sqrt{2}}q(1-\alpha;r,n_T-r),$$
 (Table B.9)

For the balanced case (i.e., all sample sizes are equal, $n_1 = \ldots = n_r = n$), the probability statement is

$$P\left\{\left|\frac{(\bar{Y}_{i\cdot} - \bar{Y}_{i'\cdot}) - (\mu_i - \mu_{i'})}{\sqrt{\frac{MSE}{n}}}\right| \le q(1 - \alpha; r, n_T - r), \quad i, i' \in \{1, \dots, r\}\right\} = 1 - \alpha,$$

where $q(\cdot; r, n_T - r)$ is the quantile function of the studentized range distribution¹ with $r, n_T - r = r(n-1)$ for parameters. Thus, the family confidence coefficient for the Tukey method is exactly $1 - \alpha$ and the family significance level is exactly α .

For the unbalanced case, the Tukey procedure is conservative in the sense that the family confidence coefficient for the Tukey method is greater than $1-\alpha$ and the family significance level is less than α .

 $[\]frac{1 \max_{1 \leq i \leq r} Z_i - \min_{1 \leq i \leq r} Z_i}{\sqrt{\chi_v^2/v}}, \text{ where } Z_1, \dots, Z_r \text{ are independent normal } N(\cdot, 1) \text{ random variables, and independent of } \chi_v^2$

Below is an example to write your own function

where MSE is obtained from the ANOVA table, and qual is obtained from Table B.9.

Rust inhibitor example, page 712.

```
> y <- read.table("CH17TA02.DAT")
> y1 <- y[,1][y[,2]==1]
> y2 <- y[,1][y[,2]==2]
> y3 <- y[,1][y[,2]==3]
> y4 <- y[,1][y[,2]==4]

> data <- y[,1]
> brand <- factor(rep(LETTERS[1:4],c(10,10,10,10)))
> rust.df <- data.frame(brand,data)</pre>
```

After checking assumptions via various graphs and tests, we obtain the ANOVA table via

```
> summary(aov(data~brand, rust.df))
```

or alternatively,

> anova(lm(data~brand, rust.df))
 Analysis of Variance Table

Response: data

```
Df Sum Sq Mean Sq F value Pr(>F)
brand 3 15953.5 5317.8 866.12 < 2.2e-16
Residuals 36 221.0 6.1
```

Now pick up MSE from the above table

```
> MSE <- anova(lm(data~brand, rust.df))[2,3]</pre>
```

```
Let \alpha = 5\%. From Table B.9, q(1-0.05;4, 36)=3.79 —
```

> Tval <- 1/sqrt(2)*3.79

Apply tukey to obtain $\binom{4}{2} = 6$ CIs

- > tukey(y1, y2)
 -49.26973 -43.33027
- > tukey(y1, y3)
 -27.77973 -21.84027
- > tukey(y1, y4)
 -0.2997337 5.6397337
- > tukey(y2, y3)
 18.52027 24.45973
- > tukey(y2, y4)
 46.00027 51.93973
- > tukey(y3, y4) 24.51027 30.44973

Interpret these intervals appropriately.

Derivation (for the balanced case)

A necessary and sufficient condition that the inequalities

$$\frac{\left|\left(\bar{Y}_{i\cdot} - \bar{Y}_{i'\cdot}\right) - \left(\mu_i - \mu_{i'}\right)\right|}{\sqrt{MSE}} \le c$$

be satisfied for all $i, i' \in \{1, ..., r\}$ is for

$$\frac{\max_{i,i'} |(\bar{Y}_{i\cdot} - \bar{Y}_{i'\cdot}) - (\mu_i - \mu_{i'})|}{\sqrt{MSE}} \le c,$$

or

$$\frac{\max_{i,i'} |(\bar{Y}_{i.} - \mu_i) - (\bar{Y}_{i'.} - \mu_{i'})|}{\sqrt{MSE/n}} \le c_1$$

to hold. Notice that

$$\max_{i,i'} |(\bar{Y}_{i\cdot} - \mu_i) - (\bar{Y}_{i'\cdot} - \mu_{i'})| = \max_{1 \le i \le r} (\bar{Y}_{i\cdot} - \mu_i) - \min_{1 \le i \le r} (\bar{Y}_{i\cdot} - \mu_i),$$

the range of r independent $\mathcal{N}(0, \sigma^2/n)$ r.v.s. It is independent of MSE. And $\frac{SSE}{\sigma^2} \sim$? Thus,

$$\frac{\max_{i,i'} |(\bar{Y}_{i\cdot} - \mu_i) - (\bar{Y}_{i'\cdot} - \mu_{i'})|}{\sqrt{MSE/n}} = \frac{\frac{\max_{i,i'} |(\bar{Y}_{i\cdot} - \mu_i) - (\bar{Y}_{i'\cdot} - \mu_{i'})|}{\sigma/\sqrt{n}}}{\sqrt{\frac{SSE}{\sigma^2}/(r(n-1))}}$$

follows a studentized range distribution with parameters r, r(n-1).

Question 1: What do parameters r and r(n-1) refer to ?

Question 2: At which step the above argument is not applicable to the unbalanced case?

3.4 Scheffé multiple comparison procedure

The family of interest \triangleq {all possible contrasts among the factor level means}

$$= \{L = \sum_{i=1}^{r} c_i \mu_i : \sum_{i=1}^{r} c_i = 0\}$$

Questions of interest

- (i) simultaneous confidence intervals for all possible contrasts L
- (ii) simultaneous tests of form $\mathcal{H}_0: L=0$

 $(1-\alpha)100$ % Scheffé simultaneous confidence intervals for the family of contrasts L:

$$\sum_{i=1}^r c_i ar{Y}_i$$
. $\pm S * \sqrt{MSE \sum_{i=1}^r rac{c_i^2}{n_i}}$,

where

$$S^2 \triangleq (r-1) * qF(1-\alpha; r-1, n_T-r).$$

These simultaneous CIs may be defined as

where MSE is obtained from the ANOVA table, and level.mean and level.size are from model.tables.

Ex. 17.15 (c), Data set: Ch16pr10.dat

```
> y <- read.table("CH16PR10.DAT")
> y1 <- y[,1][y[,2]==1]
> y2 <- y[,1][y[,2]==2]
> y3 <- y[,1][y[,2]==3]

> data <- y[,1]
> size <- factor(rep(LETTERS[1:3],c(length(y1),length(y2), length(y3))))
> improv.df <- data.frame(data=data, size)</pre>
```

After checking assumptions via various graphs and tests, we obtain the ANOVA table via

Now pick up MSE from the above table

```
> MSE <- anova(lm(data~size, improv.df))[2,3]
```

The sample means and sizes are also needed.

Let $\alpha = 5\%$. Apply scheffe to obtain CIs for various contrasts

```
> scheffe(c(0,-1,1))  # for mu3-mu2
0.02308538 2.11024795
> scheffe(c(.5,.5,-1))  # for 1/2(mu1+mu2)-mu3
-2.662847 -0.726042
```

Interpret these intervals appropriately.

Derivation

An unbiased estimator of $L = \sum_{i=1}^r c_i \mu_i$ is $\hat{L} = \sum_{i=1}^r c_i \bar{Y}_i$. $\sim \mathcal{N}(L, \sigma^2 \sum_{i=1}^r \frac{c_i^2}{n_i})$. Thus,

$$\frac{\sum\limits_{i=1}^{r}c_{i}\bar{Y}_{i.}-\sum\limits_{i=1}^{r}c_{i}\mu_{i}}{\sigma\sqrt{\sum\limits_{i=1}^{r}\frac{c_{i}^{2}}{n_{i}}}} \sim \mathcal{N}(0,1).$$

As before,

$$\frac{SSE}{\sigma^2} \sim \chi^2_{n_T-r}.$$

Notice that \hat{L} and SSE are independent. A pivotal quantity for a single contrast L is

$$\frac{\sum\limits_{i=1}^{r}c_{i}\bar{Y}_{i}.-\sum\limits_{i=1}^{r}c_{i}\mu_{i}}{\sqrt{MSE\sum\limits_{i=1}^{r}\frac{c_{i}^{2}}{n_{i}}}} \quad \sim \quad t_{n_{T}-r}.$$

What we really need is simultaneous confidence intervals for the family of contrasts L. A necessary and sufficient condition that the inequalities

$$\frac{\left|\sum_{i=1}^{r} c_i \bar{Y}_{i\cdot} - \sum_{i=1}^{r} c_i \mu_i\right|}{\sqrt{MSE \sum_{i=1}^{r} \frac{c_i^2}{n_i}}} \le c$$

be satisfied for all possible contrasts L is for²

$$\frac{\sum_{i=1}^{r} n_i (\bar{Y}_{i\cdot} - \mu_i)^2}{MSE} \le c^2$$

to hold. Check

$$\frac{\sum_{i=1}^{r} n_i (\bar{Y}_{i.} - \mu_i)^2 / (r-1)}{MSE} \sim F_{r-1, n_T - r}.$$

The probability statement for all possible contrasts is

$$P\left(\frac{\left|\sum_{i=1}^{r} c_{i} \bar{Y}_{i.} - \sum_{i=1}^{r} c_{i} \mu_{i}\right|}{\sqrt{MSE \sum_{i=1}^{r} \frac{c_{i}^{2}}{n_{i}}}} \leq (r-1) * qF(1-\alpha; r-1, n_{T}-r), \forall \text{contrasts} \right) = 1-\alpha$$

$$\frac{|\sum_{i=1}^r a_i y_i|}{\sqrt{\sum_{i=1}^r a_i^2}} \le c, \ \forall (a_1, \dots, a_r) \quad \Longleftrightarrow \quad \sum_{i=1}^r y_i^2 \le c^2$$

 $^{^{2}}Lemma$: Let c > 0. Then

3.5 Bonferroni multiple comparison procedure

The family of interest \triangleq {specified pairwise comparisons, contrasts, or linear combinations among the factor level means}

$$= \{L = \sum_{i=1}^{r} c_i \mu_i\}$$

Questions of interest

- (i) simultaneous confidence intervals for g statements L
- (ii) simultaneous tests of form $\mathcal{H}_0: L=0$

 $(1-\alpha)100$ % Bonferroni simultaneous confidence intervals for the g linear combinations L:

$$\sum_{i=1}^r c_i \bar{Y}_{i\cdot} \pm B * \sqrt{MSE\sum_{i=1}^r \frac{c_i^2}{n_i}},$$

where

$$B \triangleq qt(1-\frac{\alpha}{2g};n_T-r).$$

Similar to Scheffé CIs, the Bonferroni simultaneous CIs may be defined as

where MSE is obtained from the ANOVA table, and level.mean and level.size are from model.tables.

Derivation

Suppose that there are g statements in the group,

$$L^{(k)} = \sum_{i=1}^{r} c_i^{(k)} \mu_i, \qquad k = 1, \dots, g,$$

where $c_i^{(k)}$, i = 1, ..., r are coefficients.

A pivotal quantity for the kth statement $L^{(k)}$ is

$$\frac{\sum_{i=1}^{r} c_i^{(k)} \bar{Y}_{i.} - \sum_{i=1}^{r} c_i^{(k)} \mu_i}{\sqrt{MSE \sum_{i=1}^{r} \frac{(c_i^{(k)})^2}{n_i}}} \sim t_{n_T - r}.$$

The corresponding probability statement for the kth statement is

$$P\Big(\frac{\Big|\sum_{i=1}^{r} c_i^{(k)} \bar{Y}_{i\cdot} - \sum_{i=1}^{r} c_i^{(k)} \mu_i\Big|}{\sqrt{MSE\sum_{i=1}^{r} \frac{(c_i^{(k)})^2}{n_i}}} \le qt(1 - \alpha/(2 * g); n_T - r)\Big) = 1 - \alpha/g.$$

The question here is how to put all these into a single statement. To this end, we employ the **Bonferroni** inequality.³ The probability statement for the g statements L is

$$P\left(\frac{\left|\sum_{i=1}^{r} c_{i}^{(k)} \bar{Y}_{i.} - \sum_{i=1}^{r} c_{i}^{(k)} \mu_{i}\right|}{\sqrt{MSE \sum_{i=1}^{r} \frac{(c_{i}^{(k)})^{2}}{n_{i}}}} \leq qt(1 - \alpha/(2 * g); n_{T} - r), \ k = 1, \dots, g\right) \geq 1 - \alpha$$

Question 1. What is the difference between the Scheffeé multiple comparison procedure and the Bonferroni multiple comparison procedure?

Question 2. What will happen for the Bonferroni multiple comparison procedure if g is large enough?

$$P(A_1 \cap A_2 \cap \cdots \cap A_g) \ge 1 - \sum_{i=1}^g P(\bar{A}_i).$$

³The **Bonferroni inequality** for g events A_1, \ldots, A_q ,