Chapter 1

Introduction

Objective of Ch.1

To review basic methods in the organization, summarization, and description of data set

To introduce R, an integrated suite of software facilities for data manipulation, calculation and
graphical display. !

To recall some useful facts of the normal and related distributions

To study one and two samples problems

'R is a free software. For details see http : //cran.stat.wisc.edu/



1.1 Data

1.1.1 Data collection and preparation

o Four types of studies

Experimental studies:

1 Controlled experiments

2 Controlled experiments with supplemental variables
Observational studies:

3 Confirmatory observational studies

4 Exploratory observational studies

o Types of data

Quantitative data

Continuous

Discrete (or Categorical)

Qualitative (or Categorical) data
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1.1. DATA 3
1.1.2 Descriptive statistics
Graphical methods

e Pie chart, boxplot, stem-and-leaf display, histogram, scatter plot, etc.

Airfreight breakage, Problem 1.21, page 39. A substance used in biological and medical research is
shipped by airfreight to users in cartons of 1,000 ampules. The data below, involving 10 shipments, were
collected on the number of times the carton was transferred from one aircraftto another over the shipment
route (X) and the number of ampules found to be broken upon arrival (Y).

Table 1.1: Airfreight breakage

X102 0 3 1 01 2 0
Y 16 9 17 12 22 13 8 15 19 11

There are a couple of methods to get this data set. For instance, you may type it as

>x <-c¢(1, 0, 2, 0, 3, 1, 0, 1, 2, 0)

>y <- c(16, 9, 17, 12, 22, 13, 8, 15, 19, 11)

or read it via

mydata <- read.table("CHO1PR21.DAT")
mydata <- read.table("A:CHO1PR21.DAT")
x <- mydatal,2]

y <- mydatal,1]

The data is named as'mydata"
For Windows

pick up 2nd column of "mydata"
pick up 1st column of "mydata"

vV V V V
H OH O H

A scatter plot of the data set is obtained by

> plot(x, y)

Let us get a graphical impression of the distribution of Y. A boxplot is a graph of the five-number
summary (minimum, the first or lower quartile, median, the third or upper quartile, maximum).

> boxplot(y)

Working best for small numbers of observations, a stem-and-leaf display gives a quick picture of the shape
of a distribution while including the actual numerical values in the graph.
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Scatter plot for the Airfreight Breakage data
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> stem(y)
The decimal point is 1 digit(s) to the right of the |
| 89
| 123
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A histogram is a more popular graph.

> hist(y) # histogram of Y in terms of frequency
> hist(y, freq=FALSE) # in terms of relative frequency
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Numerical methods

o Measures of central tendency

Mean
n
_ a1
n “
=1

Median
T 1y, if n is odd,
2
. A
median of z =

Ty +rn g, . .
%, if n is even,

where z(1) < (9) < ... < 1, is the ordered sample of z1, 79, ...

o Measures of variation:

Range

range of = T(n) — X(1)

Variance

Standard deviation

L L 7)2
S = — Z(wz z)
i=1
o Measures of relative standing:
The 100pth quantile (or percentile)
The 1st or lower quartile
The 3rd or upper quartile
> summary (y)
Min. 1st Qu. Median Mean 3rd Qu. Max.
8.00 11.25 14.00 14.20 16.75 22.00
> var(y) # sample variance of Y
[1] 19.73333
> sd(y) # sample standard deviation of Y

[1] 4.442222
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1.2 The normal and related distributions

1.2.1 The normal distribution
Density function

@) = <o exp{—goz(a — )%}

where 4 is the mean, and o is the standard deviation (sd). In symbol, X ~ N (u,0?)

Basic facts:

(i) X ~N(u,0?) = aX+b~ N(ap+b,a’0?)
(i) If X1 ~N(u1,0%), Xo ~N(ug,03), and X; and X, are independent, then

X1+ Xy ~ N(p+ p2, 07 +03)

(iii)  If Xi,...,X, isarandom sample from N (u,0?), then
(X ~ N, %)
(180" ~ X2,

X and S? are independent

X—p
L S7vn

Some useful R codes for the normal distribution:

dnorm(x, mean, sd) # density function

pnorm(q, mean, sd) # cumulative distribution function (cdf)
gnorm(p, mean, sd) # quantile function

rnorm(m, mean, sd) # generate m normal random numbers

The Normal Q-Q plot or Normal probability plot is often used to check whether a data set comes
from a normal distribution.

> qgnorm(x) # Normal Q-Q plot

> qqline(x) # add a straight line to the normal Q-Q plot
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v Vv

A\

Ezample 1. Generate 200 normal random numbers, and then check the normality via various plots.

x <- rnorm(200,3,2)

qgnorm(x)
qgline(x, col=2)

hist(x, freq=FALSE)

# generate 200 normal random numbers with mean=3, sd=2

# check the normality

# histogram, or
# > hist(x, freq=FALSE, ylim=c(0,0.28))

lines(seq(-3, 9, length=200), dnorm(seq(-3, 9, length=200), 3,2), col=2)

Normal Q-Q Plot

# add the normal density curve (mean=3,sd=2)

Histogram of x
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Ezample 2. Generate two groups of normal random numbers, and then look at their sum.

x1 <- rnorm(1000,1,0.4) # generate 1000 normal random numbers with mean=1, sd=0.4
x2 <- rnorm(1000,2,0.3) # generate 1000 normal random numbers with mean=2, sd=0.3
x <- x1+x2 # the sum of x1 and x2

> qgnorm(x)
> qqline(x, col=3)

hist(x, freq=FALSE, ylim=c(0,0.8))
lines(seq(-1, 6, length=200), dnorm(seq(-1, 6, length=200), 3,0.5), col=2)
# add the normal density curve (mean=3, sd=0.5)

Normal Q-Q Plot Histogram of x
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e Correlation test & Q-Q plot for normality

Consider a set of observations z1,...,z,. Denote the ordered sample as z1., < ... < Zp.y.

An approximation of the expected value of the kth smallest order statistic under normality is

k — 0.375)
n+025"

where ® () is the quantile function (or inverse function) of the standard normal distribution.

sd(z) - ®1(

The correlation test is based on the coefficient of correlation between the ordered sample and their ex-
pected values under normality.

> x <- rnorm(50, 1, 2)
> x.order <- sort(x) # ordered sample of x

Their expected values are
> x.exp <- sd(x)*qnorm((1:length(x)-0.375)/(length(x)+0.25))

The coefficient of correlation between the ordered sample and their expected values under nor-
mality is

> cor(x.order, x.exp)
[1] 0.9909029

For the level of significance a = 5%, the critical value for n = 50 is 0.977 (Table B.6). Since
0.9909 > 0.977, we conclude that the distribution of x doesn’t depart substantially from a normal
distribution.

Compare the normal Q-Q plot of x with the plot of x.order against x.exp. What do you see?

> par (mfrow=c(2,1))
> plot(x.exp, x.order)
> qgqnorm(x)
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1.2.2  Chi-square distribution

A random variable X is said to have a chi-square distribution with & degrees of
freedom, if it has the density

_ 1 k/2-1 1

where k is called the number of degrees of freedom (df). In symbol, X ~ x?2

<& Some useful codes:

dchisq(x, df) # density function

pchisq(q, df) # cumulative distribution function (cdf)
gchisq(p, df) # quantile function

rchisq(m, df) # generate m chi-square random numbers

o Graphs for the density and cdf of Chi-square (df=k)

k <- # select the df

x <- seq(0, 10, length=5000) # 0<x<10

density <- dchisq(x,k) # density

plot(x, density, type="b", xlab="", ylab="density", col=2)
cdf <- pchisq(x, k) # cdf

plot(x, cdf, type="s", xlab="", ylab="cdf", col=3)
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Theorem. If Xqp,..., Xg i'ir\'JdN(O,l), then X2~ x3.

k
=1

7

This theorem presents the relationship between the normal and chi-square distributions. To see this, we
generate 5 groups of normal random numbers, and then compare their squared sum with x2.
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x1 <- rnorm(500,0,1) # generate 500 standard normal random numbers

x2 <- rnorm(500) # same as rnorm(500,0,1)

x3 <- rnorm(500)

x4 <- rnorm(500)

x5 <- rnorm(500)

x <- x172+x272+x372+x4"2+x572

hist(x, freq=FALSE) # or > hist(x, freq=FALSE, ylim=c(0,0.18), col=3)

V V V V V VvV V

> lines(seq(0, 20, length=200), dchisq(seq(0, 20, length=200), 5), col=2)
# add the chi-square density curve (df=5)
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Student’s t distribution

A random variable X is said to have a Student’s t distribution with k& degrees of
freedom, if it has the density

o) — I'((k+1)/2) L2 (k1))

where k is called the number of degrees of freedom (df). In symbol, X ~ ¢

, —oo <z < 00,

<& Some useful codes:

dt (x, df) # density function

pt(q, df) # cumulative distribution function (cdf)
qt(p, df) # quantile function

rt(m, df) # generate m t random numbers

Graphs for the density and cdf of Student’s t (df=k)

k <- # select the df

x <- seq(-4, 4, length=5000)

density <- dt(x,k) # density
plot(x, density, type="b", xlab="", ylab="density", col=2)
cdf <- pt(x, k) # cdf

plot(x, cdf, type="s", xlab="", ylab="cdf", col=3)
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. 2 X
Theorem. If X and Y are independent, X ~ N (0,1) and Y ~ x;, then AT

This theorem presents the relationship among Student’s t, normal and chi-square distributions.

Histogram of t
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x <- rnorm(500,0,1) # generate 500 standard normal random numbers
y <- rchisq(500,12)
>t <- x/sqrt(y/12)

\4

v

hist(t, freq=FALSE, ylim=c(0,0.4))

v

lines(seq(-4, 4, length=200), dt(seq(-4, 4, length=200), 12), col=2)
# add the t density curve (df=12)

13
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Comparison between normal and t density curves

> bounds <- range(qnorm(c(0.05,0.95), qt(c(0.05,0.95),8)))
# cover 5% - 95%

> x <- seq(bounds[1],bounds[2],length=100)

> plot(x, dnorm(x, O, 1),xlim=bounds,ylim=range(c(dnorm(x, 0,1), dt(x,8))),
col=2, pch=".", xlab="", ylab="density function'", sub="normal-dotted, t-solid",
main="Comparison between normal and t density curves")

# Standard normal density curve

> lines(x, dt(x, 8), col=3, pch="%") # Student’s t with df=8

Comparison between normal and t density curves
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1.2.4 F distribution

A random variable X is said to have an F distribution with degrees of freedom k;
and ko, if it has the density

_ T((k1 + ko) /2)(k1/k2)k1/2 /21
f(’T') - F(kl/Q)F(k2/2) (1 + klm/kg)(k1+k2)/2’

In symbol, X ~ Fj, f,.

z > 0.

The order of k1 and ks is important, since 1/X ~ Fy, ,, whenever X ~ Fj ..

<& Some useful codes:

df (x, df1, df2) # density function
pf(q, df1l, df2) # cumulative distribution function (cdf)
qf (p, df1, df2) # quantile function

o Graphs for the density and cdf of F

k1l <- # select the df
k2 <-

x <- seq(0, 8, length=5000)

density <- df(x, dfl, df2) # density
plot(x, density, type="b", xlab="", ylab="density", col=2)
cdf <- pf(q, dfl, df2) # cdf

plot(x, cdf, type="s", xlab="", ylab="cdf", col=3)
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The following presents the relationships among F, Student’s t and chi-square distributions.

Theorem.
If X and Y are independent, X ~ Xil and Y ~ Xzy then % ~ Fi\ k-

T~ tk, then T2 ~ Fl,k-

Histogram of F
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x <- rchisq(500,8) # generate 500 chi-square random numbers

y <- rchisq(500,9)

F <- (x/8)/(y/9)

hist(F, freq=FALSE) # or hist(F, freq=FALSE, ylim=c(0, 0.8), br=20)

lines(seq(0, 8, length=200), df(seq(0, 8, length=200), 8,9),col=2)
# add the F density curve (df1=8, df2=9)
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Comparison between chi-square and F density curves

> x <- seq(0, 10,length=100)

> plot(x, dchisq(x, 5), ylim=c(0, 0.7),
col=2, pch=".", xlab="", ylab="density function'", sub="chi-square-dotted, F-solid",
main="Comparison between chi-square and F density curves")

# chi-square density curve

> lines(x, df(x, 5,3), col=3, pch="F") # F density curve

Comparison between chi—-square and F density curves
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1.3 One sample

1.3.1 The likelihood principle

The basic idea is that only the actual observed data z should be relevant to making conclusions or
evidence about parameter 6.

The key concept in the likelihood principle is that of the likelihood function.

As an example, consider a normal population with unknown mean p and variance 2. Based on a set of

observations z1, ..., z,, the likelihood function of parameters is
G| 1
L(p,0?%) = exp{——=(z; — p)?
(1, 0?) [[1 = exp{—g55 (@i — )’}

oo 5 ol )

To estimate p and o2, a common and reasonable approach is the maximum likelihood method. The
maximum likelihood estimators ji and 2 of y and o? are found by maximizing L(u, 0?). Clearly,

n

1 -1
o=z, (}2:—2(.7;,;7.”7;)2: n g

n - n
=1

To derive tests concerning 4 and/or 02, a wildly used method is the likelihood ratio test, which is based
on likelihood functions.
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1.3.2 One sample (from a single population), known variance

Assumptions:
(1) A random sample Xi,..., X, from N(u,0?);
(ii) o2 is known.

Hypothesis testing problem:
Ho:pu=po (po is a given constant) — He 2 # po (two-sided)
Test statistic:

Uo/\/ﬁ

When H is true, U ~ N(0,1).

Two ways to make a decision

(i)  When controlling the level of significance at «, the decision rule is
If |observed U| < gnorm(1 — «/2), conclude H,
If |observed U| > gnorm(1 — a/2), conclude H,
(ii)  Report p — value, which may be obtained via
p —value = 2 x {1 — pnorm( abs(observed U) )}

A smaller p — value leads us to conclude H,.
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Intuitive idea

Population

Hp:mean =g

Samyling Compare the sample mean with Ho

obtain the sample mean X

The null hypothesis Hy : u = ug says that the population mean is pg. If this is the case, the sample mean z
of observations 1, ..., z, has to be close to ug enough, because the sample is drawn from the population.
Equivalently, |z — pg| or U has to be close to 0 enough. The question is then: how close is “close enough ”?
For this, a threshold is needed and the decision rule is required.

When H, is true, U ~ N (0,1). The decision rule with this test statistic when controlling the level of
significance at « is

If |observed U| < gnorm(1 — «/2), conclude H,

If |observed U| > gnorm(1 — «/2), conclude H,
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e Derive the U-test via the likelihood-ratio-test method

The whole parameter space in this case is © = {u € (—oc,00)};

The parameter space associated with Hg is ©¢ = {uo}-

The likelihood function of parameter y is

tw = T

1 1 & )
= mexp{—m ;(% — 1) }

xp{ - o (2 — 1)?}

1 1
exp{—-—
o0 200

The likelihood ratio is given by

-
[I>

eXp{—QjT% 2:](:52 - z)?}
1=
n o _
= PXP{*W(T - M0)2}
0
2
= exp{—T},

which is a decreasing function of |U|. Note that a smaller A would lead us to conclude H,. (why?)
Equivalently, a larger |U| would lead us to conclude H,,.
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Ezample Generate 50 normal random numbers with mean=3 and sd=2. Assume oy = 2 and Test

Ho: =35 — Hg:p#35

0,3 0,4

N(0, 1) density
0,2

0,1

cceptance regio

rejection rejection

0,0

-2 0 2 A

U-test, alpha=5%

_|4

> x <- rnorm(50, 3, 2)
> u <- (mean(x)-3.5)/(2/sqrt(length(x)))

[1] -3.169392 # observed U value
> 2*(1-pnorm(abs(u))) # p-value
[1] 0.001527584 # What’s your conclusion?

Let a = 5%. To evaluate the acceptance region, use

> acceptance <- c(-gnorm(1-0.05/2), gnorm(1-0.05/2))

> acceptance
[1] -1.959964 1.959964

The observed U-value is —3.169392, in the rejection region. So conclude H,.
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e Pivotal - quantity method for finding a confidence interval

(A statistic £ 4 function of sample X1,..., X,
that does NOT depend on any parameter 6
< (Its distribution may depend on 6)
A pivotal quantity =  its distribution does NOT depend on parameter
L (It may be a function of both Xy,..., X,, and )
As an illustration, consider a random sample X1, ..., X,, from N(u,02), where p is a parameter and o3
a constant. In this case,

v 0'2 . .

X ~ N(p, 52) (a statistic)

X— . .

Un/—\;% ~ N(0,1) (a pivotal quantity)

For a given 0 < a < 1, using the standard normal table or gnorm(1-alpha/2) find ¢ such that

P@;/\/%

From this we form a 100(1 — a)% confidence interval for p,

‘Sq)zl—a.

Question 1.  What are you going to do if of above is a unknown parameter? which is called a nuisance
parameter.

Question 2.  Consider a random sample X1, ..., X, from N(u, 0?), and use the pivotal-quantity method
to form a 100(1 — )% confidence interval for o under the condition

(i) p is a constant;

(ii) p is an unknown parameter.

Question 3. Is there a relationship between an acceptance region and a confidence interval?
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1.3.3 One sample (from a single population), unknown variance

Assumptions:

(1) A random sample X1, ..., X, from N (u,0?);

(ii) o? is unknown.

Hypothesis testing problem:

Ho:p=po (o is a given constant) — Hao o p # po (two-sided)

Test statistic:

%
T 2 adl ( Student’s t test)

S/v/n

When H is true, T' ~ t,, 1.

Two ways to make a decision

(i)  When controlling the level of significance at «, the decision rule is

If |observed T| < qt(1 — a/2,n — 1), conclude Hg
If |observed T| > qt(1 — «/2,n — 1), conclude H,

(ii)  Report p — value, which may be obtained via
p —value = 2 x {1 — pt( abs(observed T), n — 1)}

A smaller p — value leads us to conclude H,.

Question: How to make a decision for one-sided test problem

Ho:p=po (pois a given constant) — Ha : > po (one-sided)
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Derive Student’s t test via the likelihood-ratio-test method

The whole parameter space in this case is © = {(i,0?) : g € (—o0,0),0% € (0,00)};

The parameter space associated with Hg is ©¢ = {(u0,0?) : 02 € (0,00)}.

The likelihood function of parameter (i, 0?) is

n
1 1
L(p, o) = ] = exp{—55 (=i — )’}
i V2no 20

= ﬁ exp{—# Z(Tv - M)Q}-

Check

S(l)lpL(u,(fQ) = L(po, — > (wi — po)?),
20 S i=1

sgpL(u,UQ) = L(z, —Z(wi—i)Q)-

The likelihood ratio is given by
sup L(p, 0?)
(SH)

sup L1, o)
()]

-
[I>

=
S
N
S
—

L(po, (zi —

S|=

q
Il
—

|
81
SN—
[N}
—

(i

=

&

3=
1M

q
Il
—

n(z — po)? /2
= 14+ —-—"
{ > (zi— x)Q}

i=1

T2 —-n/2
= {teimt

n—1

which is a decreasing function of |T'|. Thus, a larger |T'| would lead us to conclude H,.
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A 100(1 — @)% confidence interval for pu,

(qut(lfa/Q,nfl)-i, X +qt(l —a/2,n—1):
vn

S

Imagine a confidence interval

> x1 <- rnorm(7,3,2)
> x2 <- rnorm(3,3,2)
> z <- c(x1, x2)

> mean(z)-qt(1-0.1/2, length(z)-1)*sd(z)/sqrt(length(z))

> mean(z)+qt(1-0.1/2, length(z)-1)*sd(z)/sqrt(length(z))

INTRODUCTION



1.4. TWO SAMPLES 27

1.4 Two samples

1.4.1 Two sample paired t-test

Assumptions:
(i) Two paired samples (X1, Y1),..., (X, Yy), EX = py, EY = pg;
(ii) X1 —Yq,..., X, =Y, are independent and normally distributed random variables with
s.d. o;

(iii) o2 is unknown.

Hypothesis testing problem:

Ho: p = po,
Ho o 1 # po (two-sided) or py > po or py < po (one-sided).

Paired Student’s t-test:
Consider d; = X; — Y;, i =1,...,n, and then use one sample t-test.

R codes for two sample paired t-test:

> t.test(x, y, alternative="two.sided", mu=0, paired=TRUE)
> t.test(x, y, alternative="greater", mu=0, paired=TRUE)

> t.test(x, y, alternative="less", mu=0, paired=TRUE)
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1.4.2 Two samples, equal variances
Assumptions:
(1) Two independent samples X1,...,Xp, and Yq,...,Y,,;
(i)  Xi...,X,, is a random sample from N (u1,0%);
Yi...,Y,, is a random sample from N (p2,03);

(iii)  of = 02, but unknown.
Hypothesis testing problem:

Ho: 1 = po,
Heo o pr # po (two-sided) or py > pg or py < po (one-sided).

Student’s t-test:

where

(m —1)8F + (na — 1)S3

ny+ ny — 2 (the pooled variance).

2 A
Spf

When Hg is true, T' ~ tp, 4n,—2.

R codes for two sample t-test:

> t.test(x, y, alternative="two-sided", mu=0, var.equal=TRUE)
> t.test(x, y, alternative='"greater", mu=0, var.equal=TRUE)

> t.test(x, y, alternative="less", mu=0, var.equal=TRUE)

INTRODUCTION
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For confidence intervals of 1 — pg, a pivotal quantity is

(X —Y) — (1 —pa)

1 1
Spvfnr t s

What is its distribution?

A two-sided 100(1 — )% confidence interval for gy — 9 is

- - /1 1

(How to find qt ?)

29
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1.4.3 Two samples, unequal variances

Assumptions:

(i)  Two independent samples X1,...,Xp, and Y7,...,Y,;
(i)  Xi...,X,, is a random sample from N (u1,0%);

Yi...,Y,, is a random sample from N (p2, 03);

(iii) o # 03, both unknown.

Hypothesis testing problem: the so-called Behrens-Fisher problem

Ho: w1 = po,
Ho: p1 # po (two-sided) or py > pg or py < po (one-sided).

Welch approximate t-test:

XY
T 2 )
52 52
m T

When H is true, T has a good approximate ¢t ~ ¢, where

s2 52,2
A G + ) .
v = 5 , (an approximate number of degrees of freedom).

G J = 1)+ () Jna - 1)

R codes:
> t.test(x, y, var.equal=FALSE, conf.level=1-alpha)

> t.test(x, y, var.equal=FALSE, conf.level=1-alpha)
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Intuitive idea

The null hypothesis Hg : 1 = po says that two populations have the same mean. If this is the case, two
sample means z and y have to be close enough, because the sample is drawn from the population.
Equivalently, z — y or T has to be close to 0 enough. The question is then: how close is “close enough "7

Consider the variance of X — Y.

Var(X -Y) = Var(X)+Var(Y) (why?)
2 2
_ g

n1 no

Now the question is that neither o? or 02 is known. By the plug-in principle, we estimate Var(X —Y)

2 2
by % + %, and form the Welch approximate t-test. The reason why it is an approzimate t-test is because

the exact distribution of T' is unknown, and when Hj is true, it has a good approximation t,.
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1.4.4 Equality of variances

Assumptions:

(i) Two independent samples X1,...,Xp, and Y7,...

(i)  Xi...,X,, is a random sample from N (u1,0?);

Yy ...,Y,, is a random sample from N (p2, 03);
(iii)  Both p; and ps are unknown.
Hypothesis testing problem:
Ho : 0% = 03 — Hy : 0% +# 03
F test :
F £ S—i
S3

When Hj is true, F' ~ Fy, 1 5,1.

CHAPTER 1.

aYTLQ;

(two-sided)

INTRODUCTION

Reject H if the observed F value is too much greater than 1 or too much less than 1.
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Derive F test via the likelihood-ratio-test method

The whole parameter space in this case is © = {(u1, p2,0%,03) : p1, po € (—00,0),0%,05 € (0,00)};

The parameter space associated with Hg is ©¢ = { (i1, 2, 02, 0%) : 1, 2 € (—oc,00),02 € (0,00)}.

The likelihood function of parameter (u1, 2, 0%, 03) is

ni na
1 1 1 1
L(p1,pa,01,03) = || m=—exp{ 5=~ m)*}- exp{— = (yi — p2)*}
1‘111 V2moq ! 1111 V21og '

2 9 2
207 205

1 1 n1 ) 1 ng ,
= ex _— T, — o L ]
(V2moyp)" (V2mog)m2 p{ 20’% ZZ]( i) 20% lzl(% p2)”}

Check
supL(,u y 02 0_2) _ L(:i g ny +ng — 2 2 n1+n2—252)
o0 1, 42,001,009 3 ; N+ no D ny + no p/s
_ _ ni1— 1 nog — 1
SupL(:U‘laMQaO—]QaU%) = L(Ta Y, S]Qa S;)a
(C) U2 N2

where Sz is the pooled variance.

The likelihood ratio is given by

SupL(Mlnu‘Qa U%a U%)
B9

Sl(l)pL(Mlﬂu’Qa 0—%’ 0—%)

= constant - {1 - (m1 — 1;}27;_1(”2 - 1)}T . {(m - 1)F1+ (na2 — 1)}

which is a function of F.

N|L\‘J
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A two-step procedure

When testing for equality of the means in two normal samples, there is a two-step procedure.

Step 1. A preliminary F-test for testing equality of the variances.

Step 2. Perform the Student’s t test if the F test does not reject and equality of the variances is acceptable.
Otherwise, use the Welch approximate t-test.

Ezample Generate 20 normal random numbers with mean=7 and sd=2, and another 30 normal
random numbers with mean=5 and sd=3. Test

Ho : p1 = po — Ha 2 p1 F o (two-sided)

> x <- rnorm(20, 7, 2)
> y <- rnorm(30, 5, 3)
# Step 1
> F <- var(x)/var(y)
[1] 0.3933189 # observed F value
> pf (F, 20, 30)
[1] 0.01642092 # p-value

# What are you going to do next?

# Step 2
> t.test(x, y, var.equal=FALSE)

Welch Two Sample t-test

data: x and y

t = 3.4243, df = 47.877, p-value = 0.001273

alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:

0.8303074 3.1924898



