
2) Solve the system of equations. Use Gaussian Elimination on an augmented matrix.

$$
\begin{aligned}
x+y+u & =4 \\
2 y+u & =4 \\
x-2 y+z+u & =2 \\
2 x+y+z-u & =2
\end{aligned}
$$

3) Solve the system of equations by using Gauss-Jordan elimination on an augmented matrix.

$$
\begin{aligned}
x-y & =16 \\
y-z & =-4 \\
z-u & =21 \\
u-x & =-33
\end{aligned}
$$

4) Perform the indicated operations.

0 a) $\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)^{T}-3\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)^{2}$
b) Perform and name this operation: $\left(\begin{array}{lll}1 & -2 & 3\end{array}\right)\left(\begin{array}{lll}1 & -2 & 3\end{array}\right)^{T}$
c) Perform and name this operation: $\left(\begin{array}{ccc}1 & -2 & 3\end{array}\right)^{T}\left(\begin{array}{lll}1 & -2 & 3\end{array}\right)$

10) Let X and B be 10×10 matrices that are partitioned into submatriges as follows:

Il A_{11} is a 6×5 matrix and B_{11} is a $k \times r$ matrix, what conditions, if any, must k and r satisfy in order to make the block multiplication of A and B possible?

$$
A=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 2 & 0 & 0 \\
4 & 3 & 1 & 1 \\
1 & 1 & 0 & 2
\end{array}\right)
$$

a) Find $\operatorname{det}(A)$ by co-factors.
b) Does A have an inverse? Explain.

$$
A=\left(\begin{array}{lll}
1 & x_{1} & 1 \\
1 & x_{2} & 2 \\
1 & x_{3} & 3
\end{array}\right)
$$

Find the determinate by using elimination. What conditions must the three scalars x_{i} satisfy for A to be non-singular?

Exam 2 Problems

$\left\{\begin{array}{l}\text { (1) jor the set of vectors in }-i^{2} \text { define addition normally but scalar multiplication by } \alpha \boldsymbol{x}=\left[\alpha x_{1}, x_{2}\right]^{T} \text {. Does this form a vector } \text { Explain. (Note :Axioms ore given on the last page of the exam) }\end{array}\right.$
aa) Is the set of all polynomials in P_{4} of odd degree subspace of P_{4} ? Explain.
(ab) Let A be an $m \times n$ matrix. Show that $N(A)$ sa subspace of $-t^{n}$.
how that $\left\{(1),\left(e^{x}+e^{-x}\right),\left(e^{x}-e^{-x}\right)\right\}$ are linearly independent in $C[0,1]$.
4) Determine whether $[1,1,3]^{T}$ and $[0,2,1]^{T}$ are linearly independent in $-\ell^{3}$.
5) Consider the vectors $\boldsymbol{x}_{1}=[1,2]^{T}, \boldsymbol{x}_{2}=[2,5]^{T}, \boldsymbol{x}_{3}=[3,7]^{T}$, and $\boldsymbol{x}_{4}=[3,4]^{T}$. Pare down or extend the vectors to make a basis for $-{ }^{2}$.
6) For a vector space V with bases B_{1} and B_{2}, find the transition matrix, S, representing the change of base from B_{2} to B_{1}. Find the transition matrix, T, representing the change of base from B_{1} to B_{2}. Explain the action of multiplying $S[\boldsymbol{x}]_{B_{2}}$ and $T[\boldsymbol{x}]_{B_{1}}$.
7) Determine if $L(\boldsymbol{x})=\left[x_{2}, x_{1}, x_{1}+x_{2}^{2}\right]^{T}$ from $-\ell^{2}$ to $-\ell^{3}$ is a linear transform.

ft A be a 3×4 matrix and U is the reduced row echelon form of A. If \ldots

$$
\rightarrow \overbrace{\sigma}^{\sim \omega} \quad U=\left(\begin{array}{llll}
1 & 0 & 2 & 4 \\
0 & 1 & 3 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

a) determine the $\operatorname{rank}(A)$, the nullity of A , and the dependency equations.
b) if $\boldsymbol{a}_{1}=[1,2,3]^{T}, \boldsymbol{a}_{2}=[1,1,1]^{T}$ find \boldsymbol{a}_{3} and \boldsymbol{a}_{4}.
c) find a basis for the column space of A and a basis for the row space of A .
d) find a basis for $N(A)$.
9) Determine the kernel and range of the linear transform $L(p(x))=p^{\prime}(x)$ on P_{3}.
10) For the linear transformation $L(\boldsymbol{x})=\left[x_{1}+x_{2}, x_{2}+x_{3}\right]^{T}$ from $-\ell^{3}$ to $-t^{2}$ find the standard linear transformation matrix, A.

2) Let A be a 4×3 matrix. Considering A as a linear transform describe its domain, codomain, and the relationships between $N(A), N\left(A^{T}\right), R(A)$, and $R\left(A^{T}\right)$. For its domain, is it possible for A to have the vector $(3,1,2)$ in its row space and $(-1,1,1)^{T}$ its null space? Explain.
$(00) \times$ Exam 3 Problems

(11) For the linear tran

For the linear transformation $L(\boldsymbol{p})$ for $\boldsymbol{p}^{\prime}+\boldsymbol{p}^{\prime \prime}$ on P_{3}. Find

(3) For an experiment you collect the following (x, y)-data points: $\{(0,0),(1,1),(2,0)\}$. Solve the least-squares fit to the data by

$$
y=c x+b
$$

$a \cdot 0+b=0$

$$
y=\sqrt{3}
$$

$$
\begin{aligned}
& a \cdot 0+b=0 \\
& a \cdot 1+b=1 \\
& a .2+b=0
\end{aligned} A^{\top}\left[\begin{array}{ll}
0 & \vdots \\
1 & 1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\mathbb{1}\left[\begin{array}{l}
0 \\
10
\end{array}\right]
$$

Given inner product space $C[-1,1]$ with $<f, g>=\int_{-1}^{1} f(x) g(x) d x$, find the projection of $f(x)=x^{2}+1$ onto $g(x)=x+1$.

$$
\int_{-1}^{1} \frac{\left(x^{2}+1\right)(x+1) d x}{\int(x+1)^{2} d x}(x+1)
$$

5) Given inner product space : $\rightarrow \underset{: i^{2 \times 2}}{\rightarrow} \underset{\text { with }}{ }\langle A, B\rangle=a_{11} b_{11}+a_{12} b_{12}+a_{21} b_{21}+a_{22} b_{22}$

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right)
$$

\bigcirc
for an inner product space $\cos (\theta)=\frac{\langle\boldsymbol{u}, \boldsymbol{v}\rangle}{\|\boldsymbol{u}\| \boldsymbol{v} \|}$, find the angle between A and B. (Note: leave your answer in marcos form)

(6) Do the functions $\sqrt{3} x$ and $\sqrt{5} x^{2}$ form an orthonormal set in $C[-1,1]$ with the inner product defined by $<f, g>=$ $\frac{1}{2} \int_{1}^{1} f(x) g(x) d x$? (Explain)

0

9) Find the eigenvalues and corresponding eigenvectors for the matrix $A=\left(\begin{array}{ccc}3 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 1\end{array}\right)$

11) Reading a word problem you work out that the system of differential equations with initial values is given by:

$$
\begin{aligned}
y^{\prime} & =-y_{1}-y_{2}+y_{3} \\
y^{\prime}{ }_{2} & =-2 y_{2}-y_{3} \\
y^{\prime}{ }_{3} & =-3 y_{3}
\end{aligned}
$$

with initial values of $y_{1}(0)=1, y_{2}(0)=1$, and $y_{3}(0)=1$. Solve the system.

2. Fgr the given matrix A, find the diagonal factorization of A.

$$
A=\left(\begin{array}{ccc}9 & -5 & 3 \\ 0 & 4 & 3 \\ 0 & 0 & 1\end{array}\right)
$$

