Name:
Math 451 ... Exam 3 - In Class

1) Write function $\operatorname{gauss}(A)$ that will take as input a matrix A and perform gaussian elimination with pivoting on the matrix and then return the modified A .
2) For the Lagrange interpolating polynomial function ...
function [y] = lagrange ($\mathrm{x}, \mathrm{xc}, \mathrm{yc}$)
$\mathrm{n}=$ length (xc);
$\mathrm{y}=0$;
for $k=1: n$
pt = 1;
for $j=[1: k-1 k+1: n]$
pt $=$ pt.*($\mathrm{x}-\mathrm{xc}(\mathrm{j})) . /(\mathrm{xc}(\mathrm{k})-\mathrm{xc}(\mathrm{j}))$;
end
$\mathrm{t}=\mathrm{pt} . * \mathrm{yc}(\mathrm{k})$;
$\mathrm{y}=\mathrm{y}+\mathrm{t}$;
end
... comment on each of the variables, explain what they represent, and explain what each line is doing.
3) Assume you have a function $\mathrm{c}=$ linearsolver (A, b) that solves $A c=b$, a square systems of equations (number of equations $=$ number of variables). Write a script that will find the coefficlients of the least squares fit quadratic polynomial to the data $(-1,0),(0,1),(1,1),(2,2),(3,2)$, $(4,0)$. It will then plot, in the same figure window, the data points with red circles and the quadratic polynomial with a blue curve.

4) Write the function $\operatorname{simpint}(f, a, b)$ for the adaptive quadrature formula using Simpson's rule. Gomment your code and explain the technique.

 Lion has an improved approximate for the area ...

$$
\mathrm{A}=\mathrm{S} 4+(\mathrm{S} 4-\mathrm{S} 2) \cdot / 15
$$

... find a simliar formula for the trapazoidal rule. Show all algebra work.

6) Write a seff-recursive function called recseq(n) that returns the following sequence as a 7 vector:
$a_{1}=2, a_{2}=2$ and for $n=3,4,5, \ldots$ the recursive formula is $a_{n}=2 a_{n-1}+a_{n-2}+1$.

