NAME:
Math 451 ... Exam 2 (In Class)

1) Explain what the following commands do and draw a rough version of the figure window you would sec after each command.
, »subplot $(2,1,1) ; \operatorname{ezplot}\left(@(\mathrm{x}) \mathrm{x} . \wedge 2,\left[\begin{array}{ll}-1 & 1\end{array}\right]\right)$
» $\operatorname{subplot}(2,2,3) ; \operatorname{ezplot}\left(@(\mathrm{x}) \mathrm{x} .{ }^{\wedge} 3-\mathrm{x},[-11]\right)$
» $\operatorname{subplot}(2,2,4) ; \mathrm{x}=\operatorname{linspace}(-2,2,20) ; \mathrm{y}=\mathrm{x} .{ }^{\wedge} 2-1 ; \operatorname{plot}\left(\mathrm{x}, \mathrm{y},{ }^{\prime} \mathrm{bo}{ }^{\prime}\right)$
» subplot(1,2,1); $[\mathrm{X} \mathrm{Y}]=$ meshgrid(linspace(-2,2,20);linspace(-2,2,20)); $\operatorname{surf}(\mathrm{X}, \mathrm{Y}, \mathrm{X}+\mathrm{Y})$

2 Explain what the following commands do and give the output after each command.
() $x=\operatorname{zeros}(1,5)$
» $\mathrm{x}=\mathrm{x}+-3: 2: 6$
$\gg \mathrm{x}=\operatorname{abs}(\mathrm{x})+2$
»s1 $=\operatorname{sum}(\mathrm{x})$
» $\mathrm{p} 1=\operatorname{prod}(\mathrm{x})$
$» s 2=\operatorname{sum}(\operatorname{abs}(-3: 2: 6)+2)$
$» \mathrm{p} 2=\operatorname{prod}(\operatorname{abs}(-3: 2: 6)+2)$

7 3) You vant to create a figure with 4 plots in it. Write the commands that would plot x^{2} in the U upper left from $\mathrm{x}=-2$ to $2, x^{3}-x$ in the upper right from $\mathrm{x}=-2$ to 2 , the mesh surface of $x^{2}+$ y^{2} in the lower left from $\mathrm{x}, \mathrm{y}=-2$ to 2 , and the contour plot of $x^{2}+y^{2}$ in the lower right from $\mathrm{x}, \mathrm{y}=-2$ to 2 . DO NOT use any ez-functions.

5) For a vector x you can create a matrix D whose elements are the sum between the elements ر of $x)\left(D=\left[d_{i j}\right]\right.$ where $\left.d_{i j}=x_{i}-x_{j}\right)$. The following finds D using loops ...

```
        for i = 1:length(x)
        for j = 1:length(x)
            D(i,j) = x(i) + x(j);
        end
```


a) Vectorize thy code by removing the inner loop and include preallocation. Explain each line of your code.

6) The sequence $(1 / 1!+1 / 3!+1 / 5!+1 / 7!+\ldots+1 / 101!)$ is evaluated using the given script \ldots $\%$ s will store the value of the sequence $\mathrm{s}=1$; p = 1;
for $i=3: 2: 101$
$\mathrm{p}=\mathrm{p} *(\mathrm{i}-1) * \mathrm{i} ;$
$\mathrm{s}=\mathrm{s}+1 . / \mathrm{p} ;$
end
Explain each of the lines (are they partial products? partial sums? etc) and rewrite the code
using vectors and no loops.

It returns the following when run ...

```
>> badgauss([1 2 3 ; 1 -2 1])
    error: badgauss: A(I,J): row index out of bounds; value 3 out of bound 2
    error: called from
        badgauss at line 7 column 5
```

Fix the function and explain each line of your code.
8) The following shuffle function will mix a deck of cards by removing the top 1 or 2 or 3 cards and putting them on top of the shuffled deck ...

while length(x) > 3 $\mathrm{n}=\operatorname{randi}(3,1) ;$ $\mathrm{s}=[\mathrm{x}(1: \mathrm{n}) \mathrm{s}]$; $x(1: n)=[] ;$
end
end
... is it doing what is requested? (hint: it misses some cards) Modify the function to first split the deck into a left deck and a right deck. And then shuffle by taking 1 or 2 or 3 cards from the left, 1 or 2 or 3 cards from the right, and putting them on top of the shuffled deck.

