Math 451
extended euclidean alforithr
$\left.m_{0}\right)\left(a_{0}, \bar{a}, \mu\right)=1$
inverres under matroliedian inth nod m

$$
\begin{aligned}
& \operatorname{gcd}(a, b) \longrightarrow a=q \cdot b+r \\
& \operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)
\end{aligned}
$$

(2) Bezat's thm $\operatorname{gcd}(a b)=s \cdot a+t \cdot b$ s.t are integers.
et f $\operatorname{gcd}(a, b)=1$, sis cisinv. wher mosb

$$
\text { So } \quad 1=s \cdot a+t \cdot b
$$

$$
\begin{gathered}
\rightarrow \bmod \left(s \cdot a+6 \cdot b^{\circ}, b\right)=\operatorname{mos}(1, b) \\
\left.m_{0}\right)(s \cdot a, b)=1
\end{gathered}
$$

$$
\begin{array}{ll}
\operatorname{gcd}(a, b) & =\operatorname{gcd}\left(b, r_{1}\right)
\end{array} a=q_{1} b+r_{1} .
$$

$$
\begin{aligned}
& r_{i}=q_{i} \sqrt{r_{i t}}+0 \\
& a=q b+0 \\
& \text { gcd } \\
& \rightarrow g c d=b
\end{aligned}
$$

else $r \neq 0$

$$
\begin{aligned}
& g c d=\operatorname{gcd}(b, r) \\
& a=\frac{g b+0}{\operatorname{gcd}(a, b)}=\frac{b=\frac{(0) a+(1) b}{t}}{\frac{b}{t}}
\end{aligned}
$$

$[g$ st $t]=\operatorname{mygcd}(b, r)$

$$
\text { hare } \quad\left[\begin{array}{l}
g=s l \cdot b+t-r / \cdot \\
a=q \cdot b+r / 4
\end{array}\right.
$$

wat $g=s \cdot a+t-b$

$$
y=51 \cdot b+t \cdot \frac{r^{2}}{} \text { w.s } r=(a-q b)
$$

$$
\begin{aligned}
& y=s 1 \cdot b+t_{1}(a-q b) \\
& g={\underset{i}{1-a}}_{t_{1}}^{\left(a+s_{1}-t_{1 q}\right)}+\underbrace{\left(v_{1}\right.}_{t} b
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { octave: } 6>[\mathrm{g} s \mathrm{t}]=\operatorname{mygcd}(13,5) \\
\mathrm{g}=1 \\
\mathrm{~s}=2
\end{array}
\end{array} \rightarrow \quad \rightarrow=(2)(13)+(-5) \\
& 2
\end{aligned}
$$


function $[q r]=$ div_mod $(a, d)$
\% 'Fast' floating point version ...
\% doesn't handle as large of numbers, but
\% for what you are given speed is more important
$\mathrm{pa}=\mathrm{abs}(\mathrm{a})$;
$\mathrm{q}=$ floor(pa/d);
$r=p a-q^{*} d ;$
if $a<0 \& \& r \sim=0$

$$
\begin{aligned}
& \mathrm{q}=-(\mathrm{q}+1) ; \\
& \mathrm{r}=\mathrm{d}-\mathrm{r} ;
\end{aligned}
$$

elseif $a<0 \& \& r==0$

$$
q=-q ;
$$

end
end

