Nah 243

Qi A mining company estimates that the marginal cost of extracting x tons of copper ore from a mine is $0.4+0.008 x$, measured in thousands of dollars per ton. Start-up costs are $\$ 100,000$. What is the cost of extracting the first 50 tons of copper?

$$
\begin{aligned}
& C^{\prime}=M C \cdot(x)=(0.4+0.000 x) \\
& \text { Costs }=1 \text { (os,a00 start. } \\
& \text { Rerenve }=\text { (Sales) } x \\
& \text { Posit }=\text { Rex }- \text { Costs } \\
& \int_{0}^{50}(0.4 x .000 x) d x=.4 x+\left..004 x^{2}\right|_{0} ^{50} \\
& =(.4(50)+.004(50)-(0) \\
& =20+10=30(1 \mid k)=\$ 30,000
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3}{3} x^{x_{2}}-x^{y_{2}} \\
& f(x)=\frac{1}{3} \sqrt{x}(x-3) \text { between } x \in[16,25] \\
& \begin{array}{l}
L=\int_{a}^{b} \sqrt{1+\left(t^{\prime}\right)^{2}} \\
f^{\prime}=\frac{1}{2} x^{x_{2}}-\frac{1}{2} x^{-y_{2}}
\end{array} \\
& \text { So } L=\int_{16}^{15} \sqrt{1+\left(\frac{1}{2} x^{1_{2}}-\frac{1}{2} x^{-x_{2}}\right)^{2}} d x \\
& L=\int_{16}^{25} \sqrt{1+\frac{1}{4} x-\frac{1}{2}+\frac{1}{4} x^{-1}} d x \\
& L=\int_{16}^{25} \sqrt{\frac{1}{4} x+\frac{1}{2}+\frac{1}{4} x^{-1}} d x=\frac{1}{2} \int_{16}^{25} \sqrt{x+2+x^{-1}} d x \\
& \text { N.xi } x+2+x^{-1}=(\sqrt{x})^{2}+2+\left(\frac{1}{\sqrt{x}}\right)^{2} \\
& =\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2} \\
& L=\frac{1}{2} \int_{16}^{25} \sqrt{\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2}} d x=\frac{1}{2} \int_{16}^{25}\left|\sqrt{x}+\frac{1}{\sqrt{x}}\right| d x \\
& L=\frac{1}{2} \int_{16}^{25} x^{1 / 2}+x^{-1 / 2} d x=\frac{1}{x}\left(\frac{4}{3} x^{3 / 2}+x x^{1 / 2}\right)_{16}^{25} \\
& L=\left(\frac{1}{3} 25^{3 / 2}+25^{1 / 2}\right)-\left(\frac{1}{3} 16^{3 / 2}+16^{1 / 2}\right) \\
& L=\frac{125}{3}+5-\frac{64}{3}-4=\frac{61}{3}+1=\frac{64}{3}
\end{aligned}
$$

Q $\int 7 \sin ^{6} x \cos (x) \ln (\sin x) d x$ $l+a=\sin x \quad d u=\cos x d x$

$$
-D=\frac{7}{a} n^{a} \ln (a)-\frac{7}{81} u^{a}+c
$$

$$
=\frac{7}{a} \sin ^{a} x \ln (\sin x)-\frac{7}{81} \sin ^{a} x+c
$$

Exan2 Monday 17 prods e lopts eah

$$
+160 \mathrm{pls}=100 \%
$$

$7.1-7.8$
and

$$
8.1-8.4
$$

$$
\begin{aligned}
& \text { Q. } \int 7 e^{5 x+e^{8 t}} d x \quad a^{b+c}=a^{b} \cdot a^{c} \\
& =7 \int e^{5 x} \cdot e^{\left(e^{5 x}\right)} d x=\frac{7}{5} \int e^{n} d u=\frac{7}{5} e^{n}+c \\
& \left|\begin{array}{rl}
h+u & =e^{5 x} \\
d u & =5 e^{5 x} d x
\end{array}\right|=\frac{7}{5} e^{e^{5 x}}+C
\end{aligned}
$$

$$
\begin{aligned}
& \int 7 a^{8} \ln (a) d u=\frac{7}{9} a^{a} \ln (a)-\int \frac{7}{9} u^{8} d u \\
& f(n)=\ln (u) \operatorname{xas} f^{\prime}(n)=\frac{1}{u} \\
& g^{\prime}(u)=7 u^{8} d u \Rightarrow \vec{x} \text {)g } g(n)=\frac{7}{9} u^{a}
\end{aligned}
$$

Whow (1) $\int f(x) d x$ by recognitich..

$$
\begin{aligned}
f(x)= & x^{n}, \frac{x}{x}, e^{x}, \sin (x), \cos (x), \\
& \sec ^{2} x, \frac{\left(\csc ^{2} x\right)}{} \sec (x \tan x, \csc x \cot x) \\
& \tan x, \cot x, \sec x, \sinh x) \cosh x, \\
& \frac{1}{a^{2}+x^{2}}, \frac{1}{\sqrt{a^{2}-x^{2}}}
\end{aligned}
$$

(2) Do sobstitution..
71) Integratia by Pals (2pebs)
Trig Intogels (2pobs))

$$
\text { Trig stassitution (} 1 \text { prob) }
$$

7.4 Pathal fractias (1 prob)

7 Everything put rogeter (2 pas)
76 Tablis (\&ts (2 pob)

7,i9) Inpoper Iutegrals (I prob)
poil) Arclengh (2 proh)
9:-) Suiface Area (1 pob)
ois) Hydrostiki Pressue (Force (1pris)
8.4 Consuer Suplos (Producer Surplus (1 prob)

2I）Intagatia by lats（2 pabs）
（1）Use it staight of ．．．

$$
\begin{aligned}
& \int w^{p} \ln (w) d w=\frac{1}{p+1} w^{p+1} \ln (w)-\frac{1}{p+1} \int w^{p} d w \\
& \text { lut } f(\omega)=Y(\omega) \text { 总至 } f^{\prime}=\frac{t}{\omega}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{+}{\rho^{+}+\omega^{p t}}{ }^{p+1} \ln (\omega)-\frac{1}{(p+1)^{2} \omega^{p+1}+c}
\end{aligned}
$$

（2） 4 falts after a subsibution
（et）

$$
\begin{aligned}
& \int 7 \sin ^{3} x \cos (x) \ln (\sin x) d x \\
& l+a=\sin x \text { duc } \cos d x \\
& \Rightarrow \int 7 a^{8} \ln (a) d u=\frac{7}{9} a^{2} \ln (a)-\int \frac{2}{9} u^{3} d u \\
& f(x)=\ln (x) \operatorname{xis} f^{\prime}(x)=\frac{1}{u} \\
& g^{\prime}(u)=7 u^{b} d u-z=g(n)-\frac{7}{a} u^{a} \\
& =\frac{7}{2} u^{a} \ln (a)-\frac{7}{8} u^{a}+c \\
& =\frac{7}{a} \sin ^{2} x \ln (\sin x)-\frac{7}{9} \sin ^{2} x+c
\end{aligned}
$$

(Ti) Ting Integrals (2probs)
(1) $\sin x, \cos x$
(2) $\sec x, \tan x$
(ex)

$$
\left.\begin{array}{rl}
& \int \sin ^{7} x \cos ^{5} x d x \quad\left(\ln \cos ^{2} x=\left(1-\sin ^{2} x\right)\right. \\
= & \int \sin x\left(\cos ^{4} x \cos x d x=\int u^{7}\left(1-u^{2}\right)^{2} d u\right. \\
& \ln x \mid u=\sin x d x \\
d u=\cos x d x
\end{array}=\int u^{2}\left(1-2 u^{2}+u^{4}\right) d u\right\}=\frac{1}{8} u^{8}-\frac{1}{5} u^{10}+\frac{1}{12} u^{12}+C .
$$

7.3 Trig Stoblitation (pros) fou see $\sqrt{a^{2}-x^{2}}$ use $x=a \sin \theta$ $\rightarrow \frac{a / t}{\sqrt{a^{2}-x^{2}}} x$ tow see $\sqrt{a^{2}+x^{2}}$ use $x=a \tan \theta$
you see $\sqrt{x^{2}-x^{2}}$ use $x=a \sec \theta$
(qt) $\int \frac{\sqrt{1-x^{2}}}{x^{2}} d x=\int \frac{\sqrt{1-\sin ^{2} \theta}}{\sin ^{2} \theta} \cos \theta d \theta$
$\ln \frac{x}{T}=\sin \theta \rightarrow \frac{1}{\frac{1}{\sqrt{1-x^{2}}}} \int_{x} d x=\cos \theta \partial \theta$

$$
\begin{aligned}
& =\int \frac{\cos \theta}{\sin ^{2} \theta} \cos \theta d \theta=\int \frac{\cos ^{2} \theta}{\sin ^{2} \theta} d \theta \\
& =\int \cot ^{2} \theta d t \\
& =\int\left(\csc ^{2} \theta-1\right) d \theta \\
& =-\cot \theta-\theta+C \\
& =-\frac{\sqrt{1-x^{2}}}{x}-\sin ^{-1} x+c \\
& \sin t+\hat{\omega} \theta=1 \\
& \cot ^{2} \theta=\csc ^{-} \theta-1 \\
& \frac{18}{\sqrt{1-x^{2}}} \\
& x=\sin \theta
\end{aligned}
$$

7.4 Parhis fractias Iprob
(ex) $\int \frac{1}{x^{3}+x} d x$

$$
\frac{1}{x\left(x^{2}+1\right)}=\frac{a}{x}+\frac{c_{2} x+c_{3}}{x^{2}+1}=\frac{1}{x}+\frac{-x}{x^{2}+1}
$$

In numerates: $1=C_{1}\left(x^{2}+1\right)+x\left(c_{2} x+C_{3}\right)$

$$
1=c_{1} x^{2}+c_{1}+c_{2} x^{2}+c_{3} x
$$

$$
\left.\begin{array}{rl}
\rightarrow x^{2}: & 0=\left(c_{1}+c_{2}\right) \\
x: 0 & 0=c_{3} \\
\text { cost:} & 1=c_{1}
\end{array}\right\} \begin{aligned}
& c_{1}=1 \\
& c_{2}=-1 \\
& c_{3}=0
\end{aligned}
$$

$$
\text { Su } \begin{aligned}
& \int \frac{1}{x^{3}+x} d x=\int\left(\frac{1}{x}-\frac{x}{x^{2}+1}\right) d x \\
&= \int \frac{1}{x} d x-\int \frac{x}{x^{2}+1} d x=\ln |x|-\int \frac{x}{x^{2}+1} d x \\
&=\ln |x|-\frac{1}{2} \int \frac{1}{n} d u \quad\left(\ln +4=x^{2}+1\right. \\
& d u=2 x d x \mid \\
&= \ln |x|-\frac{1}{2} \ln |u|+c \\
& \left.=\ln |x|-\frac{1}{2} \ln \left|x^{2}+1\right|+c \right\rvert\,
\end{aligned}
$$

7.5 7.6 4prbs
(1) S. Similas to pross from 7.1 to 7.4 .

You ar just not told what ushos to use.
(3) Tide o Insegras
\rightarrow recognize the type
\rightarrow after a sưbolitutia yw will uee ihe kble.
(2x) $\int \frac{x^{2}}{(3-\sqrt{2} x)^{2}} d x$

$$
x+d x \frac{x^{2}}{(a+b x)^{2}} d x=\frac{1}{b^{3}}\left(a+b x-2 a \ln (a b x)-\frac{a^{2}}{a b b x}\right)
$$

$$
\Rightarrow=-\frac{1}{2^{* 2}}\left(3-\sqrt{2} x-6 \ln (3-\sqrt{2} x)-\frac{a}{3-\sqrt{2} x}\right)+c
$$

2.7) Nuere Apporinter
(26) $\int_{0}^{1} \sqrt{1+x^{4}} d x$ we $1=1$ intervals

$$
\begin{aligned}
& L_{4}=, 25\left(1+\sqrt{1+, 25^{4}}+\sqrt{1+, 5^{4}}+\sqrt{1+\cdots 3^{4}}\right) \\
& R_{1}=, 25\left(\sqrt{1+, 25^{4}}+\sqrt{1+5^{4}}+\sqrt{1+\cdots 3^{4}}+\sqrt{2}\right) \\
& T_{4}=\frac{25}{2}\left(1+2 \sqrt{1+, 5^{4}}+2 \sqrt{1+5^{4}}+2 \sqrt{1+\cdot 3^{4}}+\sqrt{2}\right) \\
& S_{4}=\frac{25}{3}\left(1+4 \sqrt{1+, 25^{5}}+2 \sqrt{1+, 5^{4}}+4 \sqrt{1+, 3^{3}}+\sqrt{6}\right)
\end{aligned}
$$

7,5 Inpoper Intgges) (1 pob)
$\left.\int_{a}^{b} f(x) d x \rightarrow a \operatorname{an}\right)(a b$ ar $\pm \infty$ $f(x)$ has rerhial asyu.
(ex)

$$
\int_{1}^{\infty} \frac{1}{\sqrt{1+x^{2}}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{\sqrt{1+x^{2}}} d x
$$

$$
\begin{aligned}
h+x & =\tan \theta \\
d x & =\sec ^{2} \theta d \theta
\end{aligned} \quad \int_{x \rightarrow \infty} \int_{x=1}^{x=b} \frac{\sec ^{x} \operatorname{tot} \theta}{\sec t}
$$

$$
\left.\begin{aligned}
& d x=\sec ^{2} \theta d \theta \quad b \rightarrow \infty \\
&=\lim _{b \rightarrow \infty} \int_{x=1}^{x=b} \sec \theta d t=\lim _{b \rightarrow \infty} \sec \theta|\sec \theta+\tan |
\end{aligned}\right|_{x=1} ^{x=b}
$$

$$
=\left.\lim _{b \rightarrow \infty}^{x=1} \ln \left|\sqrt{1+x^{2}}+x\right|\right|_{x=1} ^{x=b}
$$

$$
=\lim _{b \rightarrow \infty}(\ln (\sqrt{1+\sqrt[n]{1}}+\infty)-\ln (\sqrt{2}+1))
$$

(cr) arcsinh
(a) ${ }^{\cos \operatorname{pan} \theta)}=1$
(ex)

$$
\begin{aligned}
& \int_{-1}^{0} \frac{1}{x} d x=\lim _{a \rightarrow 0^{-}} \int_{-1}^{a} \frac{1}{x} d x \\
& =\left.\lim _{a \rightarrow 0^{\circ}} \ln |x|\right|_{-1} ^{a} \\
& =\lim _{a \rightarrow 0^{-}} \ln |a|-\operatorname{ta} t_{-1}^{\circ}\left|=\lim _{\text {i }} \ln \right| a \mid=-\infty \\
& \text { divelges } a \rightarrow 0^{-}
\end{aligned}
$$

8.1) Arelingt (2 pobos)
(1) Set op
(26) Archugt of $f(x)=x^{3}-x$ bitureen wher it intureds $g(x)=-x-2$ ahl $h(x)=3$?

$$
\begin{aligned}
& \text { Solve: }-x-2=x^{3}-x \\
& \rightarrow 20
\end{aligned}
$$

Solve:

$$
\begin{aligned}
& 3=x^{3}-x \\
& b=0
\end{aligned}
$$

$$
\rightarrow L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}\right)^{2}} d x \quad \begin{aligned}
& f=x^{3}-x \\
& L=\int_{a}^{b} \sqrt{1+\left(3 x^{2}-1\right)^{\prime}} d x
\end{aligned}
$$

(2) Do ave
8.2 Surface Area. (1 prods)
(1) Set it up only.

$$
\text { SA= } 2 \pi\left(x_{0}^{3}-x+2\right) \sqrt{1+\left(.3 x^{2}-1\right)^{2}} d x
$$

$$
S A=\int_{0}^{2} 2 \pi\left(x^{3}-x+4\right) \sqrt{1+\left(3 x^{2}-1\right)^{2}} d x
$$

$\sigma y=-2$
8.35 Hydeskhe Presur/face (lpros)
(ब)
8.4) Econ (lpab)
(e.) give $p(x), P_{5}(x)$
\rightarrow find (S. and P,S1
(8x) Ward Paoke. blsh blsh blah..

$$
\begin{aligned}
& p(x)=.1(x-10)^{2} \\
& p_{s}(x)=.2 x^{2}+2
\end{aligned}
$$

(1) Equilibrius.

$$
\begin{aligned}
& 1(x-10)^{2}=12 x^{2}+2 \\
& x^{2}-20 x+100=2 x^{2}+20 \\
& x^{2}+20 x-90=0 \\
& x=\frac{-20 \pm \sqrt{400+320}}{2}=-10 \pm \frac{1}{2} \sqrt{720}
\end{aligned}
$$

$$
\begin{aligned}
& X=-10+\frac{1}{2} \sqrt{720} \pi 3.4 \rightarrow 4=X \\
& P(4)=.1(4-10)^{2}=43.6=P
\end{aligned}
$$

(2) ()$=\int_{0}^{4}\left(.1(x-10)^{2}-3.6\right) d x$

$$
P S=\int_{0}^{4}\left(3.6-\left(.2 x^{2}+2\right)\right) d x
$$

