Radial Limits of Bounded Nonparametric PMC Surfaces

Mozhgan Entekhabi & Kirk E. Lancaster
Department of Mathematics, Statistics & Physics
Wichita State University
Wichita, Kansas, 67260-0033

Dedicated to the memory of Alan Ross Elcrat

Abstract
Consider a solution \(f \in C^2(\Omega) \) of a prescribed mean curvature equation

\[
\text{div} \left(\frac{\nabla f}{\sqrt{1 + |\nabla f|^2}} \right) = 2H(x, f) \quad \text{in} \; \Omega,
\]

where \(\Omega \subset \mathbb{R}^2 \) is a domain whose boundary has a corner at \(C = (0, 0) \in \partial \Omega \). If \(\sup_{x \in \Omega} |f(x)| \) and \(\sup_{x \in \Omega} |H(x, f(x))| \) are both finite and \(\Omega \) has a reentrant corner at \(C \), then the (nontangential) radial limits of \(f \) at \(C \),

\[
Rf(\theta) \equiv \lim_{r \to 0} f(r \cos(\theta), r \sin(\theta)),
\]

are shown to exist, independent of the boundary behavior of \(f \) on \(\partial \Omega \), and to have a specific type of behavior. If \(\sup_{x \in \Omega} |f(x)| \) and \(\sup_{x \in \Omega} |H(x, f(x))| \) are both finite and the trace of \(f \) on one side has a limit at \(C \), then the (nontangential) radial limits of \(f \) at \(C \) exist, the tangential radial limit of \(f \) at \(C \) from one side exists and the radial limits have a specific type of behavior.