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The General Problem 

 Based on the exposure parameters at the cornea, will the 

retina be injured? 

 What is the threshold for causing injury? 

Cornea exposure 
Retina Exposure 

Can measure directly Cannot measure directly 



Motivation 
 Demonstrate an understanding of the underlying 

 processes 

 Supplement experiment 

 Safety 

 Standards (ANSI Z136.1)  
 Laser classifications 

 Hazard zones 

 Protection 
 If we understand the process, we may 

be able to prevent it 

 Medical 

 Surgery: controlled damage 

 Therapy: sub-threshold stimulation 



Laser light and the retina 
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Laser light and the retina 



Laser light and the retina 



My Work 



My Work 

 Propagation 

 Thermal lensing 

 Ultrashort pulses 

 Multiple pulse damage 

thresholds 

 Rate Process Models 

 Photochemical damage 

 

 



Cell Culture 



Cell Culture: Predicting Temperature 
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Energy deposition 

Laser interaction 
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Cell Culture: Predicting Temperature 
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Energy deposition Incident beam profile 
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Cell Culture: Predicting Temperature 

 For “long” exposures, the 
temperature can be considered 
constant 

 Peak temperature rise is linearly 
dependent on incident laser power 

short long 



Damage Models: Thermal 

 Proteins collide with each other 
and unfold 

 Accumulation of unfolded 
protein is a chemical reaction 

 Damage occurs if enough 
proteins are denatured 



Damage Models: Thermal 

 Proteins collide with each other 
and unfold 

 Accumulation of unfolded 
protein is a chemical reaction 

 Damage occurs if enough 
proteins are denatured 

Arrhenius Rate 



The Famous Arrhenius Rate 

 The rate of a “zeroth-order” 

chemical reaction 



Damage Models: Photochemical 

  Molecule absorbs photon of 
(sufficient energy) and creates 
a free radical 

  Highly reactive product goes 
on to disrupt cell function 

 Cell death occurs if enough 
free radicals are produced 

 



Damage Models: Photochemical 

  Molecule absorbs photon of 
(sufficient energy) and creates 
a free radical 

  Highly reactive product goes 
on to disrupt cell function 

 Cell death occurs if enough 
free radicals are produced 

 

Photon flux: number of 

photons passing through a 

surface, per unit type 



Thermal Damage Thresholds 

 For “long” exposures, the 
temperature can be considered 
constant 

 Given the temperature, we can 
compute the accumulated damage 

 Peak temperature rise is linearly 
dependent on incident laser power 



Thermal Damage Thresholds 

 We need the incident laser power as a function 
of damage 

 Warning: possibly boring derivation to follow 
Notes 

Damage Threshold is defined as  = 1 
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Thermal Damage Thresholds 

 We need the incident laser power as a function 
of damage 

 Warning: possibly boring derivation to follow 
Notes 

Damage Threshold is defined as  = 1 



Thermal Damage Thresholds: 

Dependence on Exposure Duration 



Thermal Damage Thresholds: Radiant 

Exposure (total number of photons) 



Experimental Data 

Ham et al., “Sensitivity of the Retina to Radiation Damage as a Function of Wavelength”, Photochemistry and Photobiology,1979 



So we’re done 

Ham et al., “Sensitivity of the Retina to Radiation Damage as a Function of Wavelength”, Photochemistry and Photobiology,1979 

Thermal 

Photochemical 



But wait… 

413 nm 

Denton et al., “In-vitro Retinal Model Reveals a Sharp Transition Between Laser Damage Mechanism”, Journal of Biomedical Optics, 2010 



But wait… 

? 

413 nm 

Denton et al., “In-vitro Retinal Model Reveals a Sharp Transition Between Laser Damage Mechanism”, Journal of Biomedical Optics, 2010 



Recall 

 Constant energy -> lower 

temperature for longer 

exposure 

 Chemical reaction rates 

decrease with temperature 

Energy 

Power 

Temperature 

Power 



Our Hypothesis 
 This trend could be explained 

if the photochemical damage 
mechanism could be “shut 
off ” for exposures less than 
100 seconds 

 Exposures less than 100 
seconds lead to higher 
temperature rises 

 So, if the photochemical 
damage mechanism could be 
shut off for high 
temperatures, we would 
expect this effect 

 



A New Model 

 Molecule (blue) absorbs a 

photon (green) and creates a 

toxic product (red) 

 



A New Model 

 Add quenching rate 

 Toxic product reacts with 

some other molecule 

(orange) to produce a non-

toxic product 

 



A New Model 

 Add quenching rate 

 Damage is caused if toxic 

product is allowed to 

migrate around the cell.  

 Threshold will correspond 

to some dangerous level of 

buildup 

 
BAD! 



Turning off photochemical damage 

Critical temperature 



Turning off photochemical damage 

Critical temperature 

Laser off 



Predicted Damage Thresholds 



Future Experiments 

 The thermal-photochemical 
transition could be 
explained by a simple 
“minimum time to cause 
damage” model 

 A multiple-pulse 
experiment could help 
validate our hypothesis. 

 Photochemical damage 
additivity is greatly reduced 
under our model 



Conclusions 
 The disconnect between thermal damage thresholds and 

photochemical damage thresholds can be explained by 
considering a temperature dependent photochemical 
damage rate 

 The model we have proposed requires two coefficients, 
which would need to be determined experimentally, just 
as the Arrhenius thermal damage model does 

 We have neglected the details of the “efficiency” for 
creating photochemical damage.  In reality, this will likely 
depend on the wavelength and possibly the temperature 
as well 
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Questions 


