Understanding the dangers of blue light: thermal and photochemical damage models

C.D. Clark III, Ph.D.

Assistant Professor

Fort Hays State University

Overview

- The General Problem
- Motivation
- Laser light and the retina
- Damage models: predicting the threshold for damage
- A new model
- Conclusions

The General Problem

- Based on the exposure parameters at the cornea, will the retina be injured?
- What is the threshold for causing injury?

Motivation

- Demonstrate an understanding of the underlying processes
- Supplement experiment
- Safety
 - Standards (ANSI Z136.1)
 - Laser classifications
 - Hazard zones
 - Protection
 - If we understand the process, we may be able to prevent it
- Medical
 - Surgery: controlled damage
 - Therapy: sub-threshold stimulation

Laser light and the retina

My Work

- Propagation
 - Thermal lensing
 - Ultrashort pulses
- Multiple pulse damage thresholds
- Rate Process Models
 - Photochemical damage

 $\rho c \frac{\partial T(r, z, t)}{\partial t} - \nabla \cdot \kappa \nabla T(r, z, t) = A(r, z, t)$

Buffer

Cell layer

Laser interaction

 $\rho c \frac{\partial T(r, z, t)}{\partial t} - \nabla \cdot \kappa \nabla T(r, z, t) = \boxed{A(r, z, t)}$ $\boldsymbol{\leftarrow}$

 $\rho c \frac{\partial T(r, z, t)}{\partial t} - \nabla \cdot \kappa \nabla T(r, z, t) = A(r, z, t)$

Buffer

 $\rho c \frac{\partial T(r, z, t)}{\partial t} - \nabla \cdot \kappa \nabla T(r, z, t) = A(r, z, t)$

Buffer

Cell layer

• Peak temperature rise is linearly dependent on incident laser power

$$\rho c \frac{\partial T}{\partial t} - \nabla \cdot \kappa \nabla T = I_0 e^{-\mu_a z}$$

$$\downarrow$$

$$T = mI_0 + T_0$$

• For "long" exposures, the temperature can be considered constant

Damage Models: Thermal

- Proteins collide with each other and unfold
- Accumulation of unfolded protein is a chemical reaction
- Damage occurs if enough proteins are denatured

Damage Models: Thermal

- Proteins collide with each other and unfold
- Accumulation of unfolded protein is a chemical reaction
- Damage occurs if enough proteins are denatured

$$\frac{d\Omega}{dt} = Ae^{-\frac{E_a}{RT}}$$

Arrhenius Rate

The Famous Arrhenius Rate

 The rate of a "zeroth-order" chemical reaction

$$\frac{d\Omega}{dt} = Ae^{-\frac{E_a}{RT(t)}}$$

Damage Models: Photochemical

- Molecule absorbs photon of (sufficient energy) and creates a free radical
- Highly reactive product goes on to disrupt cell function
- Cell death occurs if enough free radicals are produced

Damage Models: Photochemical

- Molecule absorbs photon of (sufficient energy) and creates a free radical
- Highly reactive product goes on to disrupt cell function
- Cell death occurs if enough free radicals are produced

 $\frac{d\Omega_p}{dt} = \epsilon \phi$

Photon flux: number of photons passing through a surface, per unit type

• Peak temperature rise is linearly dependent on incident laser power

$$\rho c \frac{\partial T}{\partial t} - \nabla \cdot \kappa \nabla T = I_0 e^{-\mu_a z}$$

$$\downarrow$$

$$T = mI_0 + T_0$$

- For "long" exposures, the temperature can be considered constant
- Given the temperature, we can compute the accumulated damage

$$\frac{d\Omega}{dt} = Ae^{-\frac{E_a}{RT}}$$
$$\Omega(\tau) = \int_{0}^{\tau} Ae^{-\frac{E_a}{R(mI_0+T_0)}} dt \longleftarrow$$

tine

• We need the incident laser power as a function of damage

Notes

• Warning: possibly boring derivation to follow

 $mI_0 + T_0$ $\Omega(\tau) = A e^{-\frac{E_a}{R(mI_0+T_0)}} \tau$ $\Omega(\tau) = 1$ $1 = A e^{-\frac{E_a}{R(mI_0 + T_0)}} \tau$ $0 = \ln(A\tau) - \frac{E_a}{R(mI_0 + T_0)}$ $(mI_0 + T_0) = \frac{E_a}{R\ln(A\tau)}$ $I_0 = \frac{1}{m} \left(\frac{E_a}{R \ln(A\tau)} - T_0 \right)$

- We need the incident laser power as a function of damage
- Warning: possibly boring derivation to follow

 $mI_0 + T_0$ $\Omega(\tau) = Ae^{-\frac{E_a}{R(mI_0 + T_0)}}\tau$ $\Omega(\tau) = 1$ $1 = A e^{-\frac{E_a}{R(mI_0 + T_0)}} \tau$ $0 = \ln(A\tau) - \frac{E_a}{R(mI_0 + T_0)}$ $(mI_0 + T_0) = \frac{E_a}{R\ln(A\tau)}$ $I_0 = \frac{1}{m} \left(\frac{E_a}{R \ln(A\tau)} - T_0 \right)$

Notes

• We need the incident laser power as a function of damage

Notes

• Warning: possibly boring derivation to follow

 $mI_0 + T_0$ $\Omega(\tau) = A e^{-\frac{E_a}{R(mI_0+T_0)}} \tau$ $\Omega(\tau) = 1$ $1 = Ae^{-\frac{E_a}{R(mI_0 + T_0)}}\tau$ $0 = \ln(A\tau) - \frac{E_a}{R\left(mI_0 + T_0\right)}$ $(mI_0 + T_0) = \frac{E_a}{R\ln(A\tau)}$ $I_0 = \frac{1}{m} \left(\frac{E_a}{R \ln(A\tau)} - T_0 \right)$

• We need the incident laser power as a function of damage

Notes

• Warning: possibly boring derivation to follow

 $mI_0 + T_0$ $\Omega(\tau) = A e^{-\frac{E_a}{R(mI_0+T_0)}} \tau$ $\Omega(\tau) = 1$ $1 = Ae^{-\frac{E_a}{R(mI_0+T_0)}}\tau$ $0 = \ln(A\tau) - \frac{E_a}{R\left(mI_0 + T_0\right)}$ $(mI_0 + T_0) = \frac{E_a}{R\ln(A\tau)}$ $I_0 = \frac{1}{m} \left(\frac{E_a}{R \ln(A\tau)} - T_0 \right)$

Thermal Damage Thresholds: Dependence on Exposure Duration

Thermal Damage Thresholds: Radiant Exposure (total number of photons)

Experimental Data

So we're done

Denton et al., "In-vitro Retinal Model Reveals a Sharp Transition Between Laser Damage Mechanism", Journal of Biomedical Optics, 2010

Recall

$$I_0 = \frac{E_0}{\tau}$$
$$T = mI_0 + T_0$$

- Constant energy -> lower temperature for longer exposure
- Chemical reaction rates decrease with temperature

Our Hypothesis

- This trend could be explained if the photochemical damage mechanism could be "shut off" for exposures less than 100 seconds
- Exposures less than 100 seconds lead to higher temperature rises
- So, if the photochemical damage mechanism could be shut off for high temperatures, we would expect this effect

A New Model

 Molecule (blue) absorbs a photon (green) and creates a toxic product (red)

A New Model

- Add quenching rate
 - Toxic product reacts with some other molecule (orange) to produce a nontoxic product

$$\frac{d\Omega_p}{dt} = \epsilon \phi - \Omega_p A_p e^{-E_{ap}/RT(t)}$$

A New Model

- Add quenching rate
 - Damage is caused if toxic product is allowed to migrate around the cell.
 - Threshold will correspond to some dangerous level of buildup

$$\frac{d\Omega_p}{dt} = \epsilon \phi - \Omega_p A_p e^{-E_{ap}/RT(t)}$$

Turning off photochemical damage

Turning off photochemical damage

Predicted Damage Thresholds

Future Experiments

- The thermal-photochemical transition could be explained by a simple "minimum time to cause damage" model
- A multiple-pulse experiment could help validate our hypothesis.
- Photochemical damage additivity is greatly reduced under our model

Conclusions

- The disconnect between thermal damage thresholds and photochemical damage thresholds can be explained by considering a temperature dependent photochemical damage rate
- The model we have proposed requires two coefficients, which would need to be determined experimentally, just as the Arrhenius thermal damage model does
- We have neglected the details of the "efficiency" for creating photochemical damage. In reality, this will likely depend on the wavelength and possibly the temperature as well

Acknowlegements

- Air Force Research Lab Optical Radiation Branch
 - Dr. Robert Thomas
 - Dr. Michael Denton
 - Mr. Larry Estlack
 - Dr. Ben Rockwell

Questions