

TOTEM

Outlook

- The TOTEM experiment
- LHC special runs and TOTEM data
- pp elastic scattering differential cross-section
 - Large t (0.36-2.5 GeV²)
 - Small t (0.02-0.33 GeV²)
- Total, elastic, and inelastic cross-sections
- Perspectives on diffractive physics & cross-sections

TOTEM EXPERIMENT

TOTEM Physics Overview

Forward physics

$$L\sigma_{tot}^{2} = \frac{16\pi}{1 + \rho^{2}} \times \frac{dN}{dt} \Big|_{t=0}$$

$$L\sigma_{tot} = N_{elastic} + N_{inelastic}$$
Optical
Theorem

$$\sigma_{tot} = \frac{16\pi}{1 + \rho^2} \times \frac{(dN/dt)\big|_{t=0}}{N_{el} + N_{inel}}$$

TOTEM

Experimental Setup @ IP5

Roman Pots: measure elastic & diffractive protons close to outgoing beam

TEM

Marco Bozzo

Detectors

- T1 and T2 detectors are installed and fully operational
- 220 m Roman Pot Silicon detectors are fully operational
- 147 m Roman Pot detectors are installed and tested

TOTEM nella regione forward di CMS

T1 Telescope $3.1 \le \eta \le 4.7$ 5 CSC planes

Anode wires and both cathode strips

T2 Telescopio
10 GEM planes
Strips and pads

 $5.3 \le \eta \le 6.5$

Roman Pots 10 Si planes

 $\sim 9.5 \le \eta \le \sim 11$

u and v strips

The Roman Pots

Detectors in 1 Pot

- 10 Si detector planes
- 512 strips at \pm 45°
- Pitch: 66 μm
- Resolution: ~ 20 μm

Special development: Detectors are efficient already 50 µm from mechanical edge

pp ELASTIC SCATTERING and TOTAL CROSS-SECTION

t-range: 0.36 - 2.5 GeV² 0.02 - 0.33 GeV²

Determination of do/dt at t=0

Measure the exponential slope B in the t-range $0.002 - 0.2 \text{ GeV}^2$

Requires beams with tiny angular spread (or large β^*)

A special optics has to be implemented in the LHC

Special Optics with large β^* and low ε

A precise measurement of scattering angles down to a few μ rad requires a very large β *

beam angular spread:

$$\sigma(\theta^*) = \sqrt{\epsilon} / \beta^* = 0.3 \,\mu rad$$

beam size at the IP:

$$σ^* = \sqrt{ε β^*}$$
 = 0.4 mm (large)

- ⇒ Large beam size requires parallel-to-point focussing
- ⇒ Independence of measurement from vertex position

Min detector distance from the beam determines minimum t.

=> Si-detector as close as possible to the beam

(NEEDS edgeless detectors!)

Proton reconstruction

- \cdot Both scattering angle projections reconstructed: $\Theta_{\mathsf{x}}^{\;*}$ and $\Theta_{\mathsf{y}}^{\;*}$
 - Θ_x^* from Θ_x @ RP220 (through dL_x/ds)

$$\Theta_x = dL_x/ds \Theta_x^*$$

- Θ_y^* from y @ RP220 (through L_y)

$$y = L_y \Theta_y^*$$

→ Excellent beam optics understanding

- Magnet currents measured
- Measurements of actual beam optics parameters with elastic scattering
 - $\Theta_{left}^* = \Theta_{right}^*$ (proton pair colinearity)

 - $L_x=0$ determination, coupling corrections

Alignment between pots with overlapping tracks (~1µm)

- Alignment with respect to the beam scraping exercise (\sim 20 μ m)
- $-\,$ Mechanical constraints between top and bottom pots ($\sim\!10\mu$ m)

Track based alignment

Proton reconstruction

- Both scattering angle projections reconstructed: Θ_x^* and Θ_v^*
 - Θ_x^* from Θ_x @ RP220 (through dL_x/ds) $\Theta_x = dL_x/ds \Theta_x^*$

lhcb1

- Magnet cu_{40}
- Measurem_{35.} parameter
 - Protoi^{25.}
 - $L_x = 0 c^{20}$.

Fine geometr¹⁵.

- Alignment 10.
- Alignment 5.
- Mechanicc^{0.0} -5.

s (m)

MAD-X 5.00.06 07/06/11 15.53.19

Track based alignment

2010: first Runs with RPs at 25σ (1.5nb⁻¹)

First p-p Elastic Scattering Event Candidate [LPCC July 2010]

Proton tracks in one diagonal (left-right coincidences)

Elastic colinearity cuts

Data outside the 3 σ cuts used for background estimation

Acceptance (1)

y-acceptance corrections

Near edge efficiency transition 60 μm (removed)

TOTEM

Acceptance (2)

φ-acceptance corrections

Total φ-acceptance correction

No.	t [GeV²]	Θ* [rad]	Accepted φ (2 diag.) [°]	φ accept. correct. factor
1	0.33	1.65E-04	38.6	9.3
2	0.36	1.71E-04	76.4	4.7
3	0.60	2.21E-04	162.5	2.2
4	1.00	2.86E-04	209.8	1.7
5	1.80	3.83E-04	246.3	1.5
6	3.00	4.95E-04	269.0	1.3

TOTEM

Background determination

Signal to background normalisation (also as a function of $\Delta\Theta_{v}$)

$\sigma^* \rightarrow \text{t-reconstruction resolution}$:

$$\frac{\sigma(t)}{t} = \frac{\sqrt{2}p\sigma^*}{\sqrt{t}}: \quad 0.4 \text{ GeV}^2: 14\%$$

$$1 \text{ GeV}^2: 8.8\%$$

1 GeV²: 8.8%

3 GeV2: 5.1%

Signal vs. background (t)

 $|t|=0.4GeV^2$: B/S = (11 ± 2) %

 $|t|=0.5GeV^2$: B/S = (19 ± 3) %

 $|+|=1.5GeV^2$: B/S = (0.8 ± 0.3) %

Efficiency (1)

Method 3T/4:

full elastic analysis with 3 track segments instead of 4

3 pots out of 4 used to determine efficiency of missing pot

4 pot-diagonal efficiency computed via consequent combinations

Efficiency correction t-independent = 1.18 - 1.19

 $5.9\% + 2.9\% + 4.3\% + 4.7\% + (5.9\% + 2.9\%) \cdot (4.3\% + 4.7\%) = 17.8\% + 0.792\% = 18.6\%$

Huge data reduction factor before analysis sample?

Checked:

Correlated inefficiencies pots for 2T/4

Goal: Understand the data reduction step-by-step

Criteria: select pp candidates (elastic, 2*SD, DPE)

reject MB, background,.....

Determine inefficiency in detection of pp

TOTEM

Events' scan

- MiniDST (pots empty, shower, hits)
- Multi-track algorithm
- Theoretical rates vs observed
- Trigger vs detector acceptance
- Mini-bunch data reduction
- Events topology and rates

>>> triggers: ~90% on background (showers); ~5% cut by RP acceptance; ~5% pp pairs

Marco Bozzo 2:

Optics

adl

56dLx/dsLy [m]ROT [mrad]RP215-0.31196222.14646760.0432331RP220-0.31196222.61917550.0396463Δ RP215-2.84%+0.78%Λ RP220-2.84%+0.81%

<u>45</u>	dLx/ds	<u>Ly [m]</u>	ROT [mrad]
RP215	-0.314508	20.3883272	0.0400268

RP220 -0.314508 20.6709463 0.0372828 Δ RP215 -4.51% +10.19% Δ RP220 -4.51% +10.79%

18

20

Principle Component Analysis (PCA)

should ideally be applied.

Results checked with MAD-X.

$$\chi^2/NDF = 25.8/(36-26)=2.6$$

(lower if correlations elmininated)

Mean pull = 0.043

Pull RMS = 0.86

Full nonlinear fitting with harmonics and displacements.

TOTEM elastic : 2 "Experiments"

TOTEM: large-t Result

Large β run small-t ELASTIC SCATTERING TOTAL CROSS-SECTIONS

June 2011 $\beta^* = 90$ m optics

Un-squeeze from injection optics β^* from 11m to 90m [Helmut Burkhardt, Andre Verdier]

Very robust optics with high precision (doesn't depend strongly on machine elements parameters)

- Two bunches:
 - 1 and 2 \times 10¹⁰ protons / bunch
- Instantaneous luminosity:
 - $8 \times 10^{26} \text{ cm}^{-2} \text{ s}^{-1}$
- Integrated luminosity: 1.7 μb⁻¹
- Estimated pile-up: ~ 0.5 %
- Vertical Roman Pots at 10 σ from beam center
- Trigger rate: ~ 50 Hz
- Recorded events in vertical Roman Pots: 66950

Fill 1902 Beam process SQUEEZE_HIGHBETA-90M_3.5TeV_IP1_IP5_LONG

Proton tracks in one diagonal (left-right coincidences)

Inel. pile-up ~ 0.005 ev/bx

Colinearity

Colinearity plots - events with tracks in both arms

Angular difference between the two outgoing protons

beam divergence σ_{Θ^*}

$$S_{Q^*} = \sqrt{\frac{e_n}{gb^*}} = 2.4 m \text{rad}$$

Optics, t-scale and acceptance

TOTEM

- Perturbations: optics very robust $(L_v \sim s_{RP})$, better than:
 - $d\Theta_{x}^{*}/\Theta_{x}^{*}=1.3\%^{syst}$
 - $d\Theta_v^*/\Theta_v^*=0.4\%$ syst
- Non-linearities in $\Theta_x^*(y)$ reconstruction due to dLx / ds measured and corrected for: (checked via Lx)
- t systematics: dt/t = 0.8% (at low |t|) up to 2.6% (at large |t|)
- Acceptance cut correction at low | t | is a factor < 3 (\$\phi\$ symmetry)

Efficiency Detector + Tracking

Method: 3 pots out of 4

- Diag. "top56 bot45": 1.5+2.5+1.4+3.3+(1.5+2.5)(1.4+3.3) = 8.9%
- Diag. "bot56 top 45": 1.3+2.7+1.4+3.1+(1.3+2.7)(1.4+3.1)= 8.7%
- Uncorrelated 2 pots out of 4 taken into account
- · No far-far or near-near correlations observed

Detector and tracking efficiency > 91%

Elastic do/dt and σ_{el}

small t and large t data (published in EPL95(2011)41001) superimpose.

Extrapolation to t=0 $d\sigma/dt|_{t=0} = 5.037 \times 10^2 \text{ mb/GeV}^2$

Elastic cross section

$$\sigma_{EL} \begin{cases} = 8.3 \text{ mb}^{(extrap)} + 16.5 \text{ mb}^{(measured)} \\ = 24.8 \text{ mb} \end{cases}$$

Red zone delimits the uncertainty region from the large t measurement

Cross-Section Formulae

33

$$\sigma_{TOT}^2 = \frac{16\pi(\hbar c)^2}{1+\rho^2} \cdot \frac{d\sigma_{EL}}{dt}\Big|_{t=0}$$

Need

luminosity from CMS:
$$\frac{d\sigma_{EL}}{dt} = \frac{1}{L} \cdot \frac{dN_{EL}}{dt}$$

$$\rho = 0.14^{+0.01}_{-0.08}$$

$$\sigma_{TOT} = \sqrt{19.20 \,\text{mb GeV}^2 \cdot \frac{d\sigma_{EL}}{dt}}\Big|_{t=0}$$

$$\sigma_{TOT} = \sigma_{EL} + \sigma_{INEL}$$

TOTEM: pp Total Cross-Section

Elastic exponential slope:

$$B|_{t=0} = (20.1 \pm 0.2^{(stat)} \pm 0.3^{(syst)}) \text{ GeV}^{-2}$$

Elastic diff. cross-section at optical point:

$$\frac{dS_{el}}{dt}\bigg|_{t=0} = (503.7 \pm 1.5^{(stat)} \pm 26.7^{(syst)}) \text{mb / GeV}^2$$

Optical Theorem,
$$\rho = 0.14^{+0.01}_{-0.08}$$

Total Cross-Section

$$S_T = \left(98.3 \pm 0.2^{\text{(stat)}} \pm 2.7^{\text{(syst)}} \quad \text{ for } \begin{array}{c} +0.8 \text{ } \\ -0.2 \text{ } \end{array}\right)^{\text{(syst from } \Gamma)}$$
 mb

TOTEM: pp Inelastic Cross-Section

$$\sigma_{\rm el} = \left(24.8 \pm 0.2^{\rm (stat)} \pm 1.2^{\rm (syst)}\right) \, {\rm mb} \qquad S_T = \left(98.3 \pm 0.2^{\rm (stat)} \pm 2.7^{\rm (syst)} \, \left| \, \dot{\xi}^{+0.8}_{-0.2} \, \dot{\xi} \right|^{\rm (syst \, from \, \Gamma)} \right) \, {\rm mb}$$

Inelastic Cross-Section

$$\sigma_{inel} = \sigma_{tot} - \sigma_{el} = \left(73.5 \pm 0.6^{\text{(stat)}} \begin{bmatrix} +1.8 \\ -1.3 \end{bmatrix}^{\text{(syst)}}\right) \text{ mb}$$

$$\sigma_{\text{inel}}$$
 (CMS) = $(68.0 \pm 2.0^{(\text{syst})} \pm 2.4^{(\text{lumi})} \pm 4.0^{(\text{extrap})})$ mb σ_{inel} (ATLAS) = $(69.4 \pm 2.4^{(\text{exp})} \pm 6.9^{(\text{extrap})})$ mb σ_{inel} (ALICE) = $(72.7 \pm 1.1^{(\text{mod})} \pm 5.1^{(\text{lumi})})$ mb

Compilation of σ_{tot} and σ_{el}

Energy dependence of the exponential slope B

The proton structure

blacker radius increases edge area increases

Total cross-section

pp Elastic Scattering - ISR to Tevatron

TOTEM

Diffractive minimum: analogous to Fraunhofer diffraction: $|t| \sim p^2 q^2$

- exponential slope B at low |t| increases
- minimum moves to lower |t| with increasing s
 → interaction region grows (as also seen from σ_{tot})
- depth of minimum changes
 → shape of proton profile changes
- depth of minimum differs between pp, p⁻p
 → different mix of processes

Models and TOTEM, a Comparison $\sqrt{s} = 7 \text{ TeV}$

40

Comparison with models

	B (t=-0.4 GeV²)	t _{DIP}	t ^{-x} [1.5–2 GeV ²]
Block	25.3	0.48	10.4
Bourrely	22.0	0.54	8.4
Islam	20.2	0.60	5.0
enkovsky	20.1	0.72	4.2
Petrov	23.3	0.51	7.0
TOTEM	23.6 ± 0.3	0.53 ± 0.01	7.8 ± 0.3

PERSPECTIVES ON DIFFRACTIVE PHYSICS & CROSS-SECTIONS

pp Interactions

Non-diffractive

Diffractive

Colour exchange

Colourless exchange with vacuum quantum numbers

 $dN / d\Delta \eta = exp(-\Delta \eta)$

 $dN / d\Delta \eta = const$

rapidity gap

Incident hadrons acquire colour and break apart

Incident
hadrons retain
their quantum
numbers
remaining
colourless

GOAL: understand the QCD nature of the diffractive exchange

TOTEM

Diffractive forward protons @ RPs

$$y(s) = v_y(s) \cdot y^* + L_y(s) \cdot \Theta_y^*$$

$$x(s) = v_x(s) \cdot x^* + L_x(s) \cdot \Theta_x^* + \xi \cdot D(s)$$

Dispersion shifts diffractive protons in the horizontal direction

Diffractive protons : hit distribution @ RP220

- For low- β * optics L_x , L_y are low
- v_x, v_y are not critical because of small IP beam size

- $L_x=0$, L_y is large
- beam $\sigma = 212 \ \mu m \rightarrow v_x$, v_y important (deterioration of rec. resolution)

Inelastic and Diffractive Processes $(\eta = -\ln tg \theta/2)$

Φ

non-diffractive

Multi

Pomeron Exchange

scattering process which

~60 mb inelastic (ND) ~25 mb Elastic Scattering 10 ~10 mb Single Diffraction 10 ~5 mb Double Diffraction **Double Pomeron** ~1 mb Exchange -10 10 η

Measure o (M, E, t)

<< 1 mb

Marco Bozzo

In case of hard interactions there should be jets

All the drawings show soft interactions

which fall in the same rapidity intervals.

ผ

Single diffraction low \xi

Correlation between leading proton and forward detector T2

run: 37280003, event: 3000

Single diffraction large \xi

correlation between leading proton and forward detector T2

Double Pomeron Exchange (DPE)

USE the LHC as a Pomeron-Pomeron (Gluon - Gluon) Collider

Double Pomeron Exchange

correlation between leading proton and forward detector T2

run: 37220007, event: 9904

Example of DPE Mass Reconstruction

= 90m Oct'11: Elastic + DPE

RP @ 4.8 σ

~no pile-up

$\beta^* = 90m \ oct'11: Elastic + DPE$

Angular correlations

Preliminary

$\beta^* = 90m \ oct'11: Elastic + DPE$

Resolution

Data Oct'11: Elastic Differential Cross-Section

TEM

DPE (logic complement to the elastic tag)

Preliminary

DPE RP candidates

DPE Cross-Section

CMS + TOTEM: Acceptance

largest acceptance detector ever built at a hadron collider

90% (65%) of all diffractive protons are detected for β * = 1540 (90) m

TOTEM + CMS running scenarios

pp->pX pp->pXp soft diffraction

pp->pjjX pp->pjjXp (semi)-hard diffraction pp->pjj (bosons, heavy pp->pjjp quarks, Higgs...) hard diffraction

Cross section			Luminosity		
β (m)	1540	90	2	0.5	
L (cm ⁻² s ⁻¹)	10 ²⁹	10 ³⁰	10 ³²	10 ³⁴	
TOTEM LHC runs				Standard LHC runs	

Acknowledgments

- Special acknowledgments to the LHC team for their support and for the development of the 90m optics.
- Special acknowledgments to CMS for their collaboration and for providing TOTEM with the luminosity measurements.

Thank you for your attention

EPL, 95 (2011) 41001

Small-*t* elastic and total cross-section published in **EPL**, 96(2011) 21002.

BACKUP

Measurement of ρ in the Coulombnuclear Interference Region?

Obtain the last ingredient for σ_{tot} from measurement rather than from theory

- \rightarrow might be possible at sqrt(s)=7 TeV with RPs at 5 to 6 σ
- \rightarrow incentive to develop very-high- β * optics before reaching 14 TeV! e.g. try to use the same optics principle as for 90m and unsqueeze further.

Possibilities of ρ measurement

Try to reach the Coulomb region and measure interference:

- move the detectors closer to the beam than 10 σ + 0.5 mm
- run at lower energy @ √s < 14 TeV

Proton-proton elastic scattering at the LHC energy of $\sqrt{s}=$ 7 TeV

THE TOTEM COLLABORATION

- G. Antchev^(a), P. Aspell⁸, I. Atanassov⁸ ^(a), V. Avati⁸, J. Baechler⁸, V. Berardi^{5b,5a}, M. Berretti^{7b}, M. Bozzo^{6b,6a}, E. Brücken^{3a,3b}, A. Buzzo^{6a}, F. S. Cafagna^{5a}, M. Calicchio^{5b,5a}, M. G. Catanesi^{5a}, C. Covault⁹, M. Csanád⁴ ^(b), T. Csörgö⁴, M. Deile⁸, E. Dimovasili⁸, M. Doubek^{1b}, K. Eggert⁹, V.Eremin^(c), F. Ferro^{6a}, A. Fiergolski^(d), F. Garcia^{3a}, S. Giani⁸, V. Greco^{7b,8}, L. Grzanka⁸ ^(e), J. Heino^{3a}, T. Hilden^{3a,3b}, M. Janda^{1b}, J. Kašpar^{1a,8}, J. Kopal^{1a,8}, V. Kundrát^{1a}, K. Kurvinen^{3a}, S. Lami^{7a}, G. Latino^{7b}, R. Lauhakangas^{3a}, T. Leszko^(d), E. Lippmaa², M. Lokajíček^{1a}, M. Lo Vetere^{6b,6a}, F. Lucas Rodríguez⁸, M. Macrí^{6a}, L. Magaletti^{5b,5a}, G. Magazzù^{7a}, A. Mercadante^{5b,5a}, S. Minutoli^{6a}, F. Nemes⁴ ^(b), H. Niewiadomski⁸, E. Noschis⁸, T. Novák⁴ ^(f), E. Oliveri^{7b}, F. Oljemark^{3a,3b}, R. Orava^{3a,3b}, M. Oriunno⁸ ^(g), K. Österberg^{3a,3b}, A.-L. Perrot⁸, P. Palazzi^{7b}, E. Pedreschi^{7a}, J. Petäjäjärvi^{3a}, J. Procházka^{1a}, M. Quinto^{5a}, E. Radermacher⁸, E. Radicioni^{5a}, F. Ravotti⁸, E. Robutti^{6a}, L. Ropelewski⁸, G. Ruggiero⁸, H. Saarikko^{3a,3b}, A. Santroni^{6b,6a}, A. Scribano^{7b}, G. Sette^{7b,7a}, W. Snoeys⁸, F. Spinella^{7a}, J. Sziklai⁴, C. Taylor⁹, N. Turini^{7b}, V. Vacek^{1b}, M. Vitek^{1b}, J. Welti^{3a,3b} and J. Whitmore¹⁰
- ^{1a} Institute of Physics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic.
- 1b Czech Technical University, Praha, Czech Republic.
- ² National Institute of Chemical Physics and Biophysics NICPB, Tallinn, Estonia.
- 3a Helsinki Institute of Physics, Finland.
- $^{3b}\ Department\ of\ Physics,\ University\ of\ Helsinki,\ Finland.$
- ⁴ MTA KFKI RMKI, Budapest, Hungary.
- ^{5a} INFN Sezione di Bari, Italy.
- ^{5b} Dipartimento Interateneo di Fisica di Bari, Italy.
- ^{6a} Sezione INFN, Genova, Italy.
- ^{6b} Università degli Studi di Genova, Italy.
- ^{7a} INFN Sezione di Pisa, Italy.
- ^{7b} Università degli Studi di Siena and Gruppo Collegato INFN di Siena, Italy.
- ⁸ CERN, Geneva, Switzerland.
- ⁹ Case Western Reserve University, Dept. of Physics, Cleveland, OH, USA.
- Penn State University, Dept. of Physics, University Park, PA, USA.

A Letters Journal Exploring the Frontiers of Physics

OFFPRINT

First measurement of the total proton-proton cross-section at the LHC energy of $\sqrt{s}=7$ TeV

THE TOTEM COLLABORATION (G. ANTCHEV et al.)

EPL, **96** (2011) 21002

Background Subtraction

Extrapolation of the background of the EPL paper should be an upper limit (2SD + DPE +...) for the real contamination of the low t-distribution: found to be <=1% @ |+|<0.1 GeV²

Data confirm that there is no measurable background.

TOTEM

Statistical and Systematic uncertainties for the t and do/dt results

Table 3: Statistical and systematic errors on t and $d\sigma/dt$.

	$\delta t = \sigma_t^{Stat}(t) \oplus \varepsilon_t^{Syst}(t)$	$\delta(\mathrm{d}\sigma/\mathrm{d}t) = \sigma_{\mathrm{d}\sigma/\mathrm{d}t}^{\mathit{Stat}}(t) \oplus \varepsilon_{\mathrm{d}\sigma/\mathrm{d}t}^{\mathit{Syst}}(t)$
$ t = 0.4 \text{GeV}^2$	$\frac{\delta t}{t} = \pm 0.5\%^{Stat} \pm 2.6\%^{Syst}$	$\frac{\delta(d\sigma/dt)}{d\sigma/dt} = \pm 2.6\%^{Stat} + \frac{25}{-37}\%^{Syst}$
$ t = 0.5 \text{GeV}^2$	$\frac{\delta t}{t} = \pm 0.7\%^{Stat} \pm 2.5\%^{Syst}$	$\frac{\delta(d\sigma/dt)}{d\sigma/dt} = \pm 4.4\%^{Stat} + \frac{28}{-39}\%^{Syst}$
$ t = 1.5 \text{GeV}^2$	$\frac{\delta t}{t} = \pm 0.8\%^{Stat} \pm 2.3\%^{Syst}$	$\frac{\delta(d\sigma/dt)}{d\sigma/dt} = \pm 8.2\%^{Stat} + \frac{27}{-30}\%^{Syst}$

σ_{tot}

Table 1: Results of the TOTEM measurements at the LHC energy of $\sqrt{s} = 7 \, \text{TeV}$.

Table 1. Results of the TOTEM measurements at the Life energy of $\sqrt{s} = i$ lev.						
	Statistical uncertainties	Systematic uncertainties	Result			
t	$\pm[3.4 \div 11.9]\%$ single measurement ^(*)	$\pm [0.6 \div 1.8]\%^{\text{optics}} \pm < 1\%^{\text{alignment}}$				
$\frac{d\sigma}{dt}$	5% / bin	$\pm 4\%^{\text{luminosity}} \pm 1\%^{\text{analysis}} \pm 0.7\%^{\text{unfolding}}$				
В	±1%	$\pm 1\%^{t-\text{scale}} \pm 0.7\%^{\text{unfolding}}$	$(20.1 \pm 0.2^{\rm stat} \pm 0.3^{\rm syst}){ m GeV^{-2}}$			
$\frac{\mathrm{d}\sigma}{\mathrm{d}t} _{t=0}$	±0.3%	$\pm 0.3\%^{\text{optics}} \pm 4\%^{\text{luminosity}} \pm 1\%^{\text{analysis}}$	$(503.7 \pm 1.5^{\rm stat} \pm 26.7^{\rm syst}){ m mb/GeV^2}$			
$\int \frac{\mathrm{d}\sigma}{\mathrm{d}t} \mathrm{d}t$	$\pm 0.8\%^{\rm extrapolation}$	$\pm 4\%^{\text{luminosity}} \pm 1\%^{\text{analysis}}$				
$\sigma_{ m tot}$	±0.2%	$\binom{+0.8\%}{-0.2\%}^{(\rho)} \pm 2.7\%$	$(98.3\pm0.2^{\mathrm{stat}}\pm2.8^{\mathrm{syst}})\mathrm{mb}$			
$\sigma_{\rm el} = \int \frac{\mathrm{d}\sigma}{\mathrm{d}t} \mathrm{d}t$	$\pm 0.8\%$	±5%	$(24.8 \pm 0.2^{\rm stat} \pm 1.2^{\rm syst}){ m mb}$			
$\sigma_{ m inel}$	±0.8%	$\begin{pmatrix} +2.4\% \\ -1.8\% \end{pmatrix}$	$(73.5 \pm 0.6^{\mathrm{stat}} {}^{+1.8}_{-1.3} {}^{\mathrm{syst}}) \mathrm{mb}$			
$\sigma_{\rm inel} ({\rm CMS})$			$(68.0 \pm 2.0^{\rm syst} \pm 2.4^{\rm lumi} \pm 4^{\rm extrap}) \text{mb}$			
$\sigma_{\rm inel}$ (ATLAS)			$(69.4 \pm 2.4^{\rm exp} \pm 6.9^{\rm extrap}) \mathrm{mb}$			
$\sigma_{\rm inel}$ (ALICE)			$(72.7 \pm 1.1^{\text{model}} \pm 5.1^{\text{lumi}}) \text{mb}$			

^(*)corrected after unfolding

^{analysis}(includes tagging, acceptance, efficiency, background)