Constraining Extended Higgs Sectors at the LHC and beyond

Tania Robens
based on work with
A. Ilnicka, M. Krawczyk (Phys.Rev. D93 (2016) no.5, 055026)

Michigan State University

Wichita State University

Physics Seminar

04/19/2017
Introduction and motivation: Higgs discovery and the Nobel Prize

As you all know, extraordinary success of particle physics in recent years

⇒ Discovery of "a" Higgs boson (by ATLAS and CMS, Phys.Lett. B716 (2012))

... leading to the Nobel Prize for Higgs/Englert

⇒ !! Particle physics is more exciting than ever !!
1 Introduction and Motivation

2 Singlet
 - Parameter space including bounds
 - m_W at NLO
 - LHC
 - Renormalization
 - Summary

3 Inert Doublet Model
The Standard Model of particle physics: a brief introduction

- **SM of particle physics**: describes known particle content of the universe
- **quarks/ leptons**: fundamental constituents of matter [quarks: building blocks of hadrons]
- **forces which act on them**, coming with **gauge bosons**
- **properties/ quantum numbers**: mass, spin, charges under gauge groups

\[m_H \sim 125 \text{ GeV} \]
Question: Is this all there is??

SM Langrangian

[quantumdiaries.org]

with a SM Higgs

[particlezoo.net]
After Higgs discovery: Open questions

Higgs discovery in 2012 ⇒ last building block discovered

? Any remaining questions?

- Why is the SM the way it is??
 ⇒ search for underlying principles/ symmetries
- find explanations for observations not described by the SM
 ⇒ e.g. dark matter, flavour structure, ...
- ad hoc approach: Test which other models still comply with experimental and theoretical precision
 for all: Search for Physics beyond the SM (BSM)

⇒ main test ground for this: particle colliders
Current major focus: Physics at the LHC

first run: 2009-2014, 7/8 TeV cm energy
second run: start in 2015, 13/14 TeV cm energy
Theorists tasks in the LHC era

⇒ Tasks at LHC ⇐

⇒ (re)discovery of the Standard Model of particle physics, especially Higgs
⇒ precision measurements of SM particles
⇒ discovery/ limit setting on BSM physics

⇒ Tasks for theorists ⇐

⇒ accurate predictions for SM processes
⇒ rendering ideas/ insight where and how to look for new physics
A first example of Higgs sector extension: Electroweak singlet

(in other words: what else can be out there...)

a crack in the SM

[quantumdiaries.org]
Singlet extension:
The model
Higgs Singlet extension (aka The Higgs portal)

The model

- Singlet extension: simplest extension of the SM Higgs sector
- add an additional scalar, singlet under SM gauge groups
 (further reduction of terms: impose additional symmetries)

⇒ potential (H doublet, χ real singlet)

$$V = -m^2 H^\dagger H - \mu^2 \chi^2 + \lambda_1 (H^\dagger H)^2 + \lambda_2 \chi^4 + \lambda_3 H^\dagger H \chi^2,$$

- collider phenomenology studied by many authors: Schabinger, Wells; Patt, Wilzcek; Barger ea; Bhattacharyya ea; Bock ea; Fox ea; Englert ea; Batell ea; Bertolini/ McCullough; ...

- our approach: minimal: no hidden sector interactions
- equally: Singlet acquires VeV
Singlet extension: free parameters in the potential

\[\text{VeVs: } H \equiv \begin{pmatrix} 0 \\ \tilde{h} + v \\ \frac{\sqrt{2}}{2} \end{pmatrix}, \quad \chi \equiv \frac{h' + x}{\sqrt{2}}. \]

- potential: 5 free parameters: 3 couplings, 2 VeVs
 \[\lambda_1, \lambda_2, \lambda_3, v, x \]

- rewrite as
 \[m_h, m_H, \sin \alpha, v, \tan \beta \]

- fixed, free
 \[\sin \alpha: \text{mixing angle}, \tan \beta = \frac{v}{x} \]

- physical states \((m_h < m_H)\):
 \[\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \tilde{h} \\ h' \end{pmatrix}, \]
Question 1: Modifcation for SM-like final states at tree level?

In case we neglect the new Hhh coupling:

- light/ heavy Higgs non-singlet component $\sim \cos \alpha / \sin \alpha$

\Rightarrow for light/ heavy Higgs: every SM-like coupling is rescaled by $\cos \alpha / \sin \alpha$

\Rightarrow this alone would lead to “global” $\cos^4 \alpha / \sin^4 \alpha$

$(\cos^2 \alpha / \sin^2 \alpha)$ for full production and decay (production or decay)

- BRs stay the same
Tree-level rescaling (2)

- in addition: **new physics channel:**
 \[H \to h h \]

- effect:
 \[\Gamma_{\text{tot}}(H) = \sin^2 \alpha \Gamma_{\text{SM}}(H) + \Gamma_{H \to h h}, \]
 needs to be included for SM like decays

\[\kappa \equiv \frac{\sigma_{\text{BSM}} \times \text{BR}_{\text{BSM}}}{\sigma_{\text{SM}} \times \text{BR}_{\text{SM}}} = \frac{\sin^4 \alpha \Gamma_{\text{tot,SM}}}{\Gamma_{\text{tot}}} \]

- breakdown:
 \[\sigma_{\text{prod}} = \sin^2 \alpha \times \sigma_{\text{prod,SM}}, \text{BR}_{H \to ...} = \sin^2 \alpha \frac{\Gamma_{\text{tot,SM}}}{\Gamma_{\text{tot}}} \times \text{BR}_{H \to ...} \]

\[\Rightarrow \text{ sufficient for tree level rescaling} \]
Bounds

G.M. Pruna, TR, PRD 88 (2013) 115012;
D. Lopez-Val, TR, PRD 90 (2014) 114018;
Theoretical and experimental constraints on the model

our studies: \(m_{h,H} = 125.09 \, \text{GeV} \), \(0 \, \text{GeV} \leq m_{H,h} \leq 1 \, \text{TeV} \)

1. limits from **perturbative unitarity**
2. limits from EW precision observables through \(S, T, U \)
3. special: **limits from W-boson mass** as precision observable
4. **perturbativity** of the couplings (up to certain scales\(^*\))
5. **vacuum stability and minimum condition** (up to certain scales\(^*\))
6. **collider limits** using HiggsBounds
7. measurement of **light Higgs signal rates** using HiggsSignals and ATLAS-CONF-2015-044 [signal strength combination]

(debatable: minimization up to arbitrary scales, \(\Rightarrow \) perturbative unitarity to arbitrary high scales [these are common procedures though in the SM case])

\(^*\): only for \(m_h = 125.09 \, \text{GeV} \)
Results

- **strongest constraints:**

 \[m_H \gtrsim 800 \text{ GeV} : \text{perturbativity of couplings} \]
 \[m_H \in [270; 800] \text{ GeV} : m_W \ @ \ NLO \]
 \[m_H \in [175; 270] \text{ GeV} : \text{experimental searches} \]
 \[m_H \in [120; 175] \text{ GeV} : \text{signal strength} \]
 \[m_h \lesssim 120 \text{ GeV} : \text{SM-like Higgs coupling rates (+ LEP)} \]

⇒ \(\kappa \leq 0.25 \) for all masses considered here

\[\Gamma_{\text{tot}} \lesssim 0.02 \, m_H \]

⇒ Highly (?) suppressed, narrow(er) heavy scalars ⇐
⇒ new (easier ?) strategies needed wrt searches for SM-like Higgs bosons in this mass range ⇐

[width studies (~ 2015): cf. Maina; Kauer, O’Brien; Kauer, O’Brien, Vryonidou; Ballestrero, Maina; Dawson, Lewis; ...]

Tania Robens
Higgs extended
Wichita State, 04/19/17
Comments on constraints (1) - Perturbativity issues

Perturbative unitarity:

- tests combined system of all (relevant) $2 \rightarrow 2$ scattering amplitudes for $s \rightarrow \infty$
- **we considered:**

 $WW, ZZ, HH, Hh, hh \rightarrow WW, ZZ, HH, Hh, hh$

- makes sure that the largest eigenvalue for the "0"-mode partial wave of the diagonalized system ≤ 0.5
- "crude" check that unitarity is not violated

(Literature: Lee/ Quigg/ Thacker, Phys. Rev. D 16, 1519 (1977))
(in the end: all "beaten" by perturbativity of running couplings)
Comments on constraints (2) - running couplings and vacuum

Vacuum stability and perturbativity of couplings at arbitrary scales

- clear: vacuum should be stable for large scales
- unclear: do we need ew-like breaking everywhere? perturbativity?

⇒ check at relative low scale

⇒ bottom line: small mixings excluded from stability for larger scales (for \(m_H \leq 1 \text{ TeV} \) !! for the model-builders...)

- arbitrary large \(m_H \) can cure this!! cf Lebedev, Elias-Miro ea.

Out of collider range though (\(\sim 10^8 \text{ GeV} \)) (...like SUSY, this model can never be excluded...)

- perturbativity of couplings severely restricts parameter space, even for low scales
Comments on constraints (2) - running couplings and vacuum

1. **Perturbativity:** \(|\lambda_{1,2,3}(\mu_{\text{run}})| \leq 4\pi \)

2. **Potential bounded from below:** \(\lambda_1, \lambda_2 > 0 \)

3. **Potential has local minimum:** \(4\lambda_1\lambda_2 - \lambda_3^2 > 0 \)

\[\Rightarrow \text{need (2), can debate about (1), (3) at all scales} \]
m_W at NLO

NLO corrections to m_W

[D. Lopez-Val, TR, (PRD 90 (2014) 114018)]

- electroweak fits: fit $\mathcal{O}(20)$ parameters, constraining S, T, U
- idea here: single out m_W, measured with error $\sim 10^{-4}$
- **setup renormalization for Higgs and Gauge boson masses**
- EW gauge and matter sector: on-shell scheme
- Higgs sector: several choices, currently a mixture of onshell/\overline{MS}

(in this case: $\delta \lambda$ only enter at 2-loop \Rightarrow not relevant here)

\Rightarrow **first step on the road to full renormalization** \Leftarrow
NLO corrections to \(m_W \)

Contribution to \(m_W \) for different Higgs masses

\[
\Delta m_W \quad [\text{MeV}] \quad \text{SM} \quad \text{Exp.}
\]

\[
m_h = 125.7 \text{ GeV}
\]

\[
m_H = 125.7 \text{ GeV}
\]

\[
\implies \text{low } m_h \text{ bring } m_W^{\text{NLO}} \text{ close to } m_W^{\text{exp}}
\]

Tania Robens
Higgs extended
Wichita State, 04/19/17
LHC

TR, T. Stefaniak,
EPJC75 (2015)3, 104; EPJC76 (2016)5, 268
Combined limits on $|\sin \alpha|$

W boson mass
EW observables (S,T,U)
λ_1 perturbativity ($\tan \beta = 0.1$)
perturbative unitarity ($\tan \beta = 0.1$)
LHC SM Higgs searches
Higgs signal rates

several bounds on $|\sin \alpha|$

m_W, perturbativity, LHC direct searches, Higgs Signal strength

Tania Robens

Higgs extended

Wichita State, 04/19/17
One more word about $H \rightarrow hh$

- **viable alternative:** search for

 $$H \rightarrow hh \rightarrow \ldots$$

- in our case: $\text{BR}(H \rightarrow hh) \lesssim 0.4$

- **widely discussed in the literature**
 (for recent work, cf Gouzevitch, Oliveira, Rojo, Rosenfeld, Salam, Sanz; Cooper, Konstantinidis, Lambourne, Wardrope; ...)

- **WW always dominant**
Introduction and Motivation

Singlet Inert Doublet Model Appendix

LHC

Results from generic scans and predictions for LHC 14

1 σ, 2 σ, allowed

SM like decays

limits

pred.

BSM decay to hh

Tania Robens

Higgs extended

Wichita State, 04/19/17
What about the “inverse” scenario, ie. $m_H = 125.1 \text{ GeV}$

mainly ruled out by LEP and/or χ^2 fit from HiggsSignals

however, still large number produced due to large $\sigma_{gg \to h}$

| $m_h[\text{GeV}]$ | $|\sin \alpha|_{\text{min, exp}}$ | $|\sin \alpha|_{\text{min, } 2\sigma}$ | $(\tan \beta)_{\text{max}}$ | $\# gg \sim$ |
|-------------------|-----------------|-----------------|-----------------|----------------|
| 110 | 0.82 | 0.94 | 9.3 | 10^5 |
| 100 | 0.85 | 0.90 | 10.1 | 10^5 |
| 90 | 0.90 | --- | 11.2 | 10^5 |
| 80 | 0.97 | --- | 12.6 | 10^4 |
| 70 | 0.99 | --- | 14.4 | 10^4 |
| 60 | 0.98 \gtrsim 0.99 | 16.8 | 10^4 |
| 50 | 0.98 \gtrsim 0.99 | 20.2 | 10^4 |
| 40 | 0.99 \gtrsim 0.99 | 25.2 | 10^4 |

Table: Upper limit on $\tan \beta$ from perturbative unitarity. (--- means no additional constraint)

(side remark: for $m_h \gtrsim 60 \text{ GeV}$, $\tan \beta$ irrelevant for collider observables)

Tania Robens
Higgs extended
Wichita State, 04/19/17
Full Renormalization

F. Bojarski, G. Chalons, D. Lopez-Val, TR
JHEP 1602 (2016) 147
Full renormalization (1)

(F. Bojarski, G. Chalons, D. Lopez-Val, TR, JHEP 1602 (2016) 147)

- next topic: **full electroweak renormalization**
- many parts of ew sector: **follow SM prescriptions**
- **new:** renormalize

\[T_{h,H}; \nu; \chi; m_{h,H}^2; Z_{h,H,hH,Hh}; m_{hH}^2 \]

⇒ in total: **11 parameters in scalar sector**
⇒ need to be determined by **suitable renormalization conditions**
Full renormalization (2)

=⇒ Our choices ⇐=

- Tadpoles: $\delta T = -T$ [$\hat{T} = 0$]
- ν: as in SM, on-shell (i.e. through ew gauge sector)
- $\delta x = 0$ (not fixed by any measurement) !!! choice !!!

[no UV-divergence ! ; Sperling ea, 2013]

- $\delta m_{h,H}, \delta Z_{H,h}$: on-shell
- difficult part off-diagonal terms $m_{hH}^2, \delta Z_{hH}$!!
- we choose: 'improved on-shell scheme' !!

for the experts: leads to gauge-invariant counterterms without resorting to physical measurements; tested via SloopS (Boudjema, Semenov, Temes 2005; Baro, Boudjema, Semenov 2007/ 2008; Baro, Boudjema 2009)

- based on 'Pinch Technique' (Cornwall 1982; Cornwall, Pappavassiliou 1989; Espinosa, Yamada, 2002; Binosi, Papavassiliou 2009;...)

Tania Robens
Higgs extended
Wichita State, 04/19/17
Renormalization

Renormalization: numerical results

\begin{align*}
\Gamma(H \rightarrow hh) \text{ [GeV]} &\quad 400 \quad 600 \quad 800 \\
m_H \text{ [GeV]} &\quad 0 \quad 2 \quad 4 \quad 6
\end{align*}

\begin{align*}
\delta_\alpha \% &\quad 2 \quad 4 \quad 6 \\
tan\beta &\quad 5
\end{align*}

\begin{align*}
\sin\alpha &\quad 0.2 \\
tan\beta &\quad 5
\end{align*}

\begin{align*}
m_h &\quad 125 \text{ GeV}
\end{align*}

\begin{align*}
\sin\alpha &\quad 0.998 \\
tan\beta &\quad 5 \\
m_H &\quad 125.09 \text{ GeV}
\end{align*}

"typical" size of corrections

Tania Robens
Higgs extended
Wichita State, 04/19/17
Renormalization: numerical results, $m_h = 125$ GeV

all results here for $\Gamma_{H \rightarrow hh}$

exclusions (left): m_W, vacuum stability ;
white space (right): corrections $> 100\%$
Summary and Outlook: Singlet
Summary

- **Singlet extension**: *simplest extension of the SM Higgs sector*, easily identified with one of the benchmark scenarios of the HHXWG (cf. also YR3, Snowmass report, YR4)
- *Constraints on maximal mixing* from m_W at NLO ($m_H \in [200 \text{ GeV}; 800 \text{ GeV}]$), *experimental searches and fits* ($m_{H,h} \leq 200 \text{ GeV}$) and/or *running couplings* ($m_H \geq 800 \text{ GeV}$)
- *Quite narrow widths wrt SM-like Higgses* in this mass range ⇒ *better theoretical handle*
- *Quite large suppression* from current experimental/theoretical constraints

!!! still, large numbers could have been produced already !!!

⇒ STAY TUNED ⇐
Other possible extensions

- A priori: no limit to extend Higgs sector
- make sure you
 - have a suitable ew breaking mechanism, including a Higgs candidate at \(\sim 125 \text{ GeV} \)
 - can explain current measurements
 - are not excluded by current searches and precision observables
- nice add ons:
 - can push vacuum breakdown to higher scales
 - can explain additional features, e.g. dark matter, or hierarchies in quark mass sector
 - ...

Another option: Two Higgs Doublet models: 5 Higgses (as eg realized in the MSSM,...)

- \(h, H \) CP-even, neutral
- \(A \) CP-odd, neutral
- \(H^\pm \) charged
Inert Doublet Model

A. Ilnicka, M. Kracwzyk, TR

Phys. Rev. D93 (2016) no.5, 055026
Inert doublet model: The model

- idea: take **CP conserving two Higgs doublet model, add additional** \(Z_2\) symmetry

\[
\phi_D \to -\phi_D, \phi_S \to \phi_S, \text{SM} \to \text{SM}
\]

⇒ obtain a **2HDM with (a) dark matter candidate(s)**

- potential

\[
V = -\frac{1}{2} \left[m_{11}^2 (\phi_S^\dagger \phi_S) + m_{22}^2 (\phi_D^\dagger \phi_D) \right] + \frac{\lambda_1}{2} (\phi_S^\dagger \phi_S)^2 + \frac{\lambda_2}{2} (\phi_D^\dagger \phi_D)^2 \\
+ \lambda_3 (\phi_S^\dagger \phi_S)(\phi_D^\dagger \phi_D) + \lambda_4 (\phi_S^\dagger \phi_D)(\phi_D^\dagger \phi_S) + \frac{\lambda_5}{2} \left[(\phi_S^\dagger \phi_D)^2 + (\phi_D^\dagger \phi_S)^2 \right],
\]

- only one doublet acquires VeV \(v\), as in SM

(⇒ implies analogous EWSB)
⇒ then, **go through standard procedure...**

⇒ minimize potential

⇒ determine number of free parameters

Number of free parameters here: 7

- e.g. $v, M_h, M_H, M_A, M_{H^\pm}, \lambda_2, \lambda_{345}$ [$= \lambda_3 + \lambda_4 + \lambda_5$]

- v, M_h fixed ⇒ left with **5 free parameters**
Constraints: Theory

- As before: need to consider all current constraints on the model
- Theory constraints: vacuum stability, positivity, constraints to be in inert vacuum
 \[\Rightarrow \text{limits on (relations of) couplings} \]
- perturbative unitarity, perturbativity of couplings
- choosing \(M_H \) as dark matter:
 \[M_H \leq M_A, \; M_{H^\pm} \]
Constraints: Experiment

\[M_h = 125.1 \text{ GeV}, \, \nu = 246 \text{ GeV} \]

- total width of \(M_h^{(*)} \)
- total width of \(W, Z \)
- collider constraints from signal strength/ direct searches
- electroweak precision through \(S, T, U \)
- unstable \(H^\pm \)
- reinterpreted/ recastet LEP/ LHC SUSY searches (Lundstrom ea 2009; Belanger ea, 2015)
- dark matter relic density (upper bound)
- dark matter direct search limits \((*)\) (LUX)

\[\Rightarrow \text{ tools used: } 2\text{HDMC, HiggsBounds, HiggsSignals, MicrOmegas} \]

\((*)\) updates not yet included

Tania Robens

Higgs extended

Wichita State, 04/19/17
Obvious/ direct constraints on couplings

- some constraints ⇒ direct limits on couplings
- examples: limit on λ_2 from $HHHH$ coupling, limit on $\lambda_{345}(M_H)$ from direct detection

\[
\begin{align*}
\lambda_2, \lambda_{345} \text{ plane and limits from perturbativity, positivity}
\end{align*}
\]

\[
\begin{align*}
M_H, \lambda_{345} \text{ plane, limits from LUX}
\end{align*}
\]
Other constraints less obvious (interplay); result \Rightarrow mass degeneracies

M_A vs $M_{H \pm}$ after all constraints

Tania Robens Higgs extended Wichita State, 04/19/17
... and what if I want exact DM relic density??

[preliminary results]

E.g. this means

- $m_{H^\pm} \in [100\text{ GeV}; 620\text{ GeV}]$ or $> 840\text{ GeV}$
- $m_H \notin [75\text{ GeV}; 120\text{ GeV}]$ or $\sim 54\text{ GeV}$
- ...

sample plot, M_H vs. M_{H^\pm}
Benchmark selection for current LHC run

⇒ points need to have passed all bounds
⇒ total cross sections calculated using Madgraph5, IDM model file from Goudelis ea, 2013 (LO)
⇒ effective ggH vertex implemented by hand
 • highest production cross sections: $HA; H^\pm H; H^\pm A; H^+ H^-$
 • decay $A \to HZ$ always 100 %
 • decay $H^\pm \to HW^\pm$ usually dominant

\[
pp \to HA : \leq 0.03 \text{ pb}, \\
pp \to H^\pm H : \leq 0.03 \text{ pb}, \\
pp \to H^\pm A : \leq 0.015 \text{ pb}, \\
pp \to H^+ H^- : \leq 0.01 \text{ pb}.
\]
Benchmark planes

Figure: Production cross sections in pb at a 13 TeV LHC
Parameters tested at LHC: masses

- side remark: all couplings involving gauge bosons determined by electroweak SM parameters

- LHC@13 TeV does not depend on λ_2, only marginally on λ_{345}

- all relevant couplings follow from ew parameters (+ derivative couplings) ⇒ in the end a kinematic test

- only in exceptional cases λ_{345} important; did not find such points

⇒ high complementarity between astroparticle physics and collider searches

(holds for $M_H \geq \frac{M_{h/2}}{2}$)
Last comment: cases where $M_H \leq M_h/2$

- **discussion so far:** decay $h \rightarrow H H$ kinematically not accessible
- for these cases, discussion along different lines
 ⇒ extremely strong constraints from signal strength, and dark matter requirements

- additional constraints from combination of W, Z decays and recasted analysis at LEP
 no allowed point with $M_H < 45$ GeV
Last comments: publications where scan has been used

- **Production of Inert Scalars at the high energy e^+e^- colliders**, M. Hashemi ea, *JHEP* 1602 (2016) 187

- **Exploring the Inert Doublet Model through the dijet plus missing transverse energy channel at the LHC**, P. Poulouse ea, *arXiv:1604.03045*

- **Yellow Report IV of the Higgs Cross Section Working Group**, *to appear*

- S. Moretti ea, *to appear*
Summary

- **LHC run II just started** ⇒ **exciting times ahead of us**
- one important question: **test Higgs sector**, especially wrt extensions/ additional matter content
- from current **LHC and astrophysical data**: **models already highly constrained**
- discussion here: 2 models: **2HDM with dark matter (IDM)**
- **identified viable regions in parameter space**
- from these: **predictions for current LHC run**

 [A. Ilnicka, M. Krawzyk, TR, ”**IDM benchmarks for the 13 TeV run of the LHC**”, for CERN Yellow Report]

!! stay tuned, and thanks for listening !!
Appendix
... and discovery

[ATLAS collaboration, 2 e 2 \mu Higgs candidate]

Finally: collider results

- Incorporation of **collider bounds**: in principle many things need to be considered: Limits from **LEP, Tevatron, LHC, ...**
- same: agreement with **observed coupling strengths**

ATLAS Prelim.

\[m_H = 125.36 \text{ GeV} \]

Signal strength (µ)

<table>
<thead>
<tr>
<th>Process</th>
<th>(\mu)</th>
<th>Total uncertainty</th>
<th>±1σ on µ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H \rightarrow γγ)</td>
<td>1.17 ± 0.27</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>(H \rightarrow ZZ^* \rightarrow 4l)</td>
<td>1.44 ± 0.30</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>(H \rightarrow WW^* \rightarrow ℓνℓν)</td>
<td>1.08 ± 0.20</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>(W,Z H \rightarrow b\bar{b})</td>
<td>0.5 ± 0.4</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>(H \rightarrow ℓ\bar{ℓ})</td>
<td>1.4 ± 0.3</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

\(\sigma_{(stat.)} \)

95% CL limit on \(\sigma/\sigma_{SM} \)

![Graph showing 95% CL limit on \(\sigma/\sigma_{SM} \) vs. \(m_H \) in GeV](image)

(CMS-PAS-HIG-13-002)

approach here: let **HiggsBounds/ HiggsSignals** (Bechtle ea, Bechtle ea*)
do this for you

Tania Robens
Higgs extended
Wichita State, 04/19/17
Coupling and mass relations

\[
m_h^2 = \lambda_1 v^2 + \lambda_2 x^2 - \sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2}, \quad (1)
\]

\[
m_H^2 = \lambda_1 v^2 + \lambda_2 x^2 + \sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2}, \quad (2)
\]

\[
\sin 2\alpha = \frac{\lambda_3 x v}{\sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2}}, \quad (3)
\]

\[
\cos 2\alpha = \frac{\lambda_2 x^2 - \lambda_1 v^2}{\sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2}}. \quad (4)
\]
RGE running in more detail (1)

Question: at which scale did we require perturbativity?
Answer: ”just above” the SM breakdown
(other answers equally valid...)

- **RGEs** for this model well-known (cf eg Lerner, McDonald)
- **decoupling** ($\lambda_3 = 0$): recover SM case
- **in our setup:** $\mu_{SM,\text{break}} \sim 2.5 \times 10^{10}$ GeV
 (remark: just simple NLO running)
- **we took:** $\mu_R \sim 4.0 \times 10^{10}$ GeV
 (higher scales \iff stronger constraints)

- **obvious:** for $m_H \sim 125$ GeV, breakdown “immediate”
 when going to $\mu_{\text{run}} > \nu$
 \Rightarrow disregard constraints from running in this case
RGE running: variation of input parameters

- especially in sensitive cases, but also otherwise: check robustness against input parameters
- here: especially important in decoupling (ie SM-like) case (cf. various discussions in the literature...)
- our check: vary $\alpha_s(m_Z), y_t(m_t)$ for 1 σ around central values
- main impact: on vacuum stability, ie $\lambda_1 > 0$ condition
- no significant change in $\kappa_{\text{max}}(m_H)$, ...

⇒ not relevant for collider studies (at this stage...)
Interim comment on total width

- Total width greatly reduced

- width over mass
- suppression factor of width
we tested: maximal m_H from PU

\Rightarrow strongest constraints from $H H \rightarrow H H \leftrightharpoons$

rule of thumb (exact for $\alpha = 0$): $\tan^2 \beta \leq \frac{16 \pi v^2}{3 m^2_H}$

Maximally allowed heavy Higgs masses from perturbative unitarity

Limits in $\sin \alpha$, $\tan \beta$ plane, maximally allowed m_H from PU

\Rightarrow for realistic $\sin \alpha$ and our m_H range, $\tan \beta \lesssim 8$
Comments on constraints (1) - Perturbativity issues

However...

- For the scenario $m_H = 125.7 \text{ GeV}$, $m_h \leq m_H$:
 - \Rightarrow strongest theory limit on $\tan \beta_{\text{max}}$ from PU
 (will comment on this later in more detail)
 - then: $\tan \beta \lesssim 20$

- remember: $\tan \beta$ only appears in Higgs self-couplings
 \Rightarrow currently only only relevant for an open $H \rightarrow hh$ channel!!

Tania Robens Higgs extended Wichita State, 04/19/17
Could we have seen them ??

all numbers below: \(\sqrt{S_{\text{hadr}}} = 8\text{TeV}, \int \mathcal{L} = 23\text{ fb}^{-1} \)

<table>
<thead>
<tr>
<th>(m_H) [GeV]</th>
<th>(\kappa_{\text{max}})</th>
<th>#gg (\sim)</th>
<th>(\kappa'_{\text{max}})</th>
<th>#gg (\sim)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.19</td>
<td>(3 \times 10^4)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>0.076</td>
<td>(6 \times 10^3)</td>
<td>0.039</td>
<td>(3 \times 10^3)</td>
</tr>
<tr>
<td>400</td>
<td>0.058</td>
<td>(4 \times 10^3)</td>
<td>0.019</td>
<td>(1 \times 10^3)</td>
</tr>
<tr>
<td>500</td>
<td>0.046</td>
<td>(1 \times 10^3)</td>
<td>0.013</td>
<td>380</td>
</tr>
<tr>
<td>600</td>
<td>0.042</td>
<td>510</td>
<td>0.013</td>
<td>160</td>
</tr>
<tr>
<td>700</td>
<td>0.035</td>
<td>180</td>
<td>0.010</td>
<td>50</td>
</tr>
<tr>
<td>800</td>
<td>0.035</td>
<td>90</td>
<td>0.010</td>
<td>25</td>
</tr>
<tr>
<td>900</td>
<td>0.029</td>
<td>40</td>
<td>0.007</td>
<td>10</td>
</tr>
<tr>
<td>1000</td>
<td>0.023</td>
<td>17</td>
<td>0.006</td>
<td>4</td>
</tr>
</tbody>
</table>

[for specific final state, multiply with SM-like BR (LO approx)]

for \(m_H \lesssim 600\text{ GeV} \), may could already have been produced which are not excluded by current searches !!

Tania Robens

Higgs extended

Wichita State, 04/19/17
Tools which can do it ?? (incomplete list)

(”it”=LO,NLO,...)

- LO: any tool talking to FeynRules (in principle)/ LanHep (in practice)
- implemented (and run): CompHep (M. Pruna), Whizard (J. Reuter), Sherpa (±) (would need some modification, T. Figy), privately modified codes (??)
- NLO: (mb) a modified version of aMC@NLO (R. Frederix) ?? (production only; might be important for VBF)
- higher orders: would need to be implemented in respective tools (I am not aware of any at the moment)
Singlet Extension: Classical Lagrangian

\[\mathcal{L}_{\text{xSM}} = \mathcal{L}_{\text{gauge}} + \mathcal{L}_{\text{fermions}} + \mathcal{L}_{\text{Yukawa}} + \mathcal{L}_{\text{scalar}} + \mathcal{L}_{\text{GF}} + \mathcal{L}_{\text{ghost}} \]

\[\mathcal{L}_{\text{scalar}} = (D^\mu \Phi)^\dagger D_\mu \Phi + \partial^\mu S \partial_\mu S - \mathcal{V}(\Phi, S) \]
\[\mathcal{V}(\Phi, S) = \mu^2 \Phi^\dagger \Phi + \lambda_1 |\Phi^\dagger \Phi|^2 + \mu_s^2 S^2 + \lambda_2 S^4 + \lambda_3 \Phi^\dagger \Phi S^2. \]

- \(\mathcal{L}_{\text{gauge}}, \mathcal{L}_{\text{fermions}}, \mathcal{L}_{\text{Yukawa}} \) as in SM
- BRST invariance \(\Rightarrow \delta_{\text{BRST}} \mathcal{L}_{\text{GF}} = -\delta_{\text{BRST}} \mathcal{L}_{\text{ghost}} \)
- more later...
Renormalization: gauge fixing

Our choice: **non-linear gauge fixing !!**

- **reason:** want to check **gauge-parameter dependence for physical processes**
- **implementation:** **SLOOPS** [Boudjema ea, ’05; Baro ea, ’07-’09]

\[
\mathcal{L}_{GF} = -\frac{1}{\xi_W} F^+ F^- - \frac{1}{2\xi_Z} |F^Z|^2 - \frac{1}{2\xi_A} |F^A|^2
\]

\[
F^\pm = \left(\partial_\mu \mp ie\tilde{\alpha}_A \mp ig \cos\theta_W \tilde{\beta} Z_\mu \right) W^\mu +
\]

\[
\pm i\xi_W g \left(\nu + \delta_1 h + \delta_2 H \pm i\kappa G^0 \right) G^+
\]

\[
F^Z = \partial_\mu Z^\mu + \xi_Z g \frac{2}{2\cos\theta_W} \left(\nu + \tilde{\epsilon}_1 h + \tilde{\epsilon}_2 H \right) G^0
\]

\[
F^A = \partial_\mu A^\mu .
\]

- \(\tilde{\alpha}, \tilde{\beta}, \ldots: \text{non-linear gauge-fixing parameters}\)
- \(\tilde{\alpha} = \tilde{\beta} = \ldots = 0, \xi = 1 \Rightarrow \text{back to t’Hooft-Feynman gauge}\)
Renormalization: SM inheritance

- \(S \): singlet under SM gauge group

- in the electroweak gauge sector: follow SM prescriptions

- parameter count in the scalar sector: 11 counterterms

- renormalize

\[
T_{h,H}; \, v; \, v_s; \, m^2_{h,H}; \, Z_{h,H,hH,Hh}; \, m^2_{hH}
\]

- need to be determined by suitable renormalization conditions

* performed in 2 different electroweak schemes:

\(\alpha_{em} : \alpha_{em}(0), \, m_W, \, m_Z \) as input;

\(G_F : \alpha_{em}(0), \, G_F, \, m_Z \) as input, related via \(\Delta r \)
... and in more detail...

\[
\begin{align*}
\nu_i^0 & \rightarrow \nu_i + \delta \nu_i, \\
T_i^0 & \rightarrow T_i + \delta T_i, \\
M_\phi^2 & \rightarrow M_\phi^2 + \delta M_\phi^2
\end{align*}
\]

where \(\delta M_{hH}^2 = U(\alpha) \cdot \delta M_{\phi_h,\phi_s}^2 \cdot U(-\alpha) = \begin{pmatrix} \delta m_h^2 & \delta m_{hH}^2 \\ \delta m_{hH}^2 & \delta m_H^2 \end{pmatrix} \)

\[
\begin{pmatrix} h \\ H \end{pmatrix}^0 \rightarrow \begin{pmatrix} 1 + \frac{1}{2} \delta Z_h & \frac{1}{2} \delta Z_{hH} \\ \frac{1}{2} \delta Z_{Hh} & 1 + \frac{1}{2} \delta Z_H \end{pmatrix} \begin{pmatrix} h \\ H \end{pmatrix}
\]

NO mixing angle renormalization
Different choices for mixed terms $\delta Z_{Hh,hH}$, δm^2_{hH}

Always: $\text{Re} \hat{\Sigma}_{hH}(m^2_h) = 0$; $\text{Re} \hat{\Sigma}_{hH}(m^2_H) = 0$

- **Onshell scheme**: $\delta Z_{hH} = \delta Z_{Hh}$

 \Rightarrow **drawback**: predictions remain gauge-parameter dependent !!

- **Mixed $\overline{\text{MS}}$/on-shell**: fix δm^2_{hH} through UV-divergence of λ_2

 \Rightarrow **drawback**: corrections $\sim \sin^{-1} \alpha, \cos^{-1} \alpha$, can get large !!

- **improved onshell**

 $\delta m^2_{hH} = \text{Re} \Sigma_{hH}(p^2) \big|_{\xi_W=\xi_Z=1, \tilde{\delta}_i=0, \ p^2_* = \frac{m^2_h + m^2_H}{2}}$

 [similar result e.g. in Baro, Boudjema, Phys. Rev. D80 (2009) 076010; ...]

 \Rightarrow **drawback**: NONE !!
NLO corrections to $H \rightarrow hh$ decay, gauge-parameter dependence

<table>
<thead>
<tr>
<th>Scheme</th>
<th>$\Delta = 0, {\text{nlgs}} = 0$</th>
<th>$\Delta = 10^7, {\text{nlgs}} = 0$</th>
<th>$\Delta = 10^7, {\text{nlgs}} = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>$+4.26334888 \times 10^{-3}$</td>
<td>$+4.26334886 \times 10^{-3}$</td>
<td>$-5.27015844 \times 10^{3}$</td>
</tr>
<tr>
<td>Mixed $\overline{\text{MS}}$/OS</td>
<td>$+6.8467506 \times 10^{-3}$</td>
<td>$+6.8467504 \times 10^{-3}$</td>
<td>$+6.8467500 \times 10^{-3}$</td>
</tr>
<tr>
<td>Improved OS</td>
<td>$+3.9393569 \times 10^{-3}$</td>
<td>$+3.9393568 \times 10^{-3}$</td>
<td>$+3.9393556 \times 10^{-3}$</td>
</tr>
</tbody>
</table>

Δ : UV-divergence; \{ngls\} : non-linear gauge fixing parameters
Renormalization: numerical results, $m_h = 125$ GeV

all results here for $\Gamma_{H \rightarrow hh}$

Exclusions (left): m_W, vacuum stability; white space (right): corrections $> 100\%$
Results for benchmarks (BR max)

<table>
<thead>
<tr>
<th>high mass region</th>
<th>low mass region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>m_H [GeV]</td>
<td>m_H [GeV]</td>
</tr>
<tr>
<td>$</td>
<td>\sin \alpha</td>
</tr>
<tr>
<td>$BR^{H \rightarrow hh}$</td>
<td>$BR^{H \rightarrow hh}$</td>
</tr>
<tr>
<td>$\tan \beta$</td>
<td>$\tan \beta$</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BHM1</td>
<td>300</td>
<td>0.31</td>
<td>0.34</td>
<td>3.71</td>
<td>BLM1</td>
<td>60</td>
<td>0.9997</td>
<td>0.26</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>BHM2</td>
<td>400</td>
<td>0.27</td>
<td>0.32</td>
<td>1.72</td>
<td>BLM2</td>
<td>50</td>
<td>0.9998</td>
<td>0.26</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>BHM3</td>
<td>500</td>
<td>0.24</td>
<td>0.27</td>
<td>2.17</td>
<td>BLM3</td>
<td>40</td>
<td>0.9998</td>
<td>0.26</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>BHM4</td>
<td>600</td>
<td>0.23</td>
<td>0.25</td>
<td>2.70</td>
<td>BLM4</td>
<td>30</td>
<td>0.9998</td>
<td>0.26</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>BHM5</td>
<td>700</td>
<td>0.21</td>
<td>0.24</td>
<td>3.23</td>
<td>BLM5</td>
<td>20</td>
<td>0.9998</td>
<td>0.26</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>BHM6</td>
<td>800</td>
<td>0.21</td>
<td>0.23</td>
<td>4.00</td>
<td>BLM6</td>
<td>10</td>
<td>0.9998</td>
<td>0.26</td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>

$$\Gamma_{LO}^{H \rightarrow hh} \, \Gamma_{NLO}^{H \rightarrow hh} \, \delta_{\alpha} \, \% \, \delta_{GF} \, \% \, \Gamma_H$$

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BHM1</td>
<td>0.399</td>
<td>0.413</td>
<td>3.411</td>
<td>3.291</td>
<td>1.210</td>
<td>BLM1</td>
</tr>
<tr>
<td>BHM2</td>
<td>0.963</td>
<td>1.026</td>
<td>6.485</td>
<td>6.272</td>
<td>3.092</td>
<td>BLM2</td>
</tr>
<tr>
<td>BHM3</td>
<td>1.383</td>
<td>1.463</td>
<td>5.803</td>
<td>5.604</td>
<td>5.299</td>
<td>BLM3</td>
</tr>
<tr>
<td>BHM4</td>
<td>2.067</td>
<td>2.161</td>
<td>4.520</td>
<td>4.361</td>
<td>8.574</td>
<td>BLM4</td>
</tr>
<tr>
<td>BHM5</td>
<td>2.637</td>
<td>2.717</td>
<td>3.027</td>
<td>2.918</td>
<td>11.413</td>
<td>BLM5</td>
</tr>
<tr>
<td>BHM6</td>
<td>3.798</td>
<td>3.867</td>
<td>1.826</td>
<td>1.759</td>
<td>17.204</td>
<td>BLM6</td>
</tr>
</tbody>
</table>

$$\rightarrow \, "\text{typical}" \, \text{corrections between .2 and 20 \%} \, \leftarrow$$

Tania Robens
Higgs extended
Kansas State, 04/19/17
Very brief: parameters determining couplings (production and decay)

dominant production modes: through Z; Z, γ, h for AH; $H^+ H^-$

important couplings:

- $Z H A$: $\sim \frac{e}{s_W c_W}$
- $Z H^+ H^-$: $\sim e \coth (2 \theta_W)$
- $\gamma H^+ H^-$: $\sim e$
- $h H^+ H^-$: $\lambda_3 v$
- $H^+ W^+ H$: $\sim \frac{e}{s_W}$
- $H^+ W^+ A$: $\sim \frac{e}{s_W}$

!! mainly determined by electroweak SM parameters !!
More direct constraints on couplings

- Constraints on **combination of** M_{H^\pm}/M_h **and** λ_3 from one-loop corrected rate of $h \rightarrow \gamma\gamma$ (constraints: ratio too low !!)

Limits on λ_3, M_{H^\pm}/M_h, plane

... translated to λ_{345}, M_{H^\pm}/M_h
Aside: typical BRs

- decay $A \rightarrow HZ$ always 100 %
- decay $H^\pm \rightarrow HW^\pm$

second channel $H^\pm \rightarrow AW^\pm$

\Rightarrow collider signature: SM particles and MET
Total widths in IDM scenario

Figure: Total widths of unstable dark particles: A and H$^\pm$ in plane of their and dark matter masses.
Dark matter relic density

- $1 \cdot 10^{-5}$
- $1 \cdot 10^{-4}$
- $1 \cdot 10^{-3}$
- $1 \cdot 10^{-2}$
- $1 \cdot 10^{-1}$
- $1 \cdot 10^0$

Ω (Planck)

all but DM constraints

Tania Robens

Higgs extended

Wichita State, 04/19/17
Combination of ew gauge boson total widths and LEP recast

- decays widths W, Z: kinematic regions

$$M_{A,H} + M_{H}^{\pm} \geq m_{W}, \ M_{A} + M_{H} \geq m_{Z}, \ 2 \ M_{H}^{\pm} \geq m_{Z}.$$

- LEP recast (Lundstrom 2008)

$$M_{A} \leq 100 \text{ GeV}, \ M_{H} \leq 80 \text{ GeV}, \ \Delta M \geq 8 \text{ GeV}$$

- combination leads to
 - $M_H \in [0; 41 \text{ GeV}]: M_A \geq 100 \text{ GeV},$
 - $M_H \in [41; 45\text{GeV}]: M_A \in [m_Z - M_H; M_H + 8 \text{ GeV}]$ or $M_A \geq 100 \text{ GeV}$
 - $M_H \in [45; 80\text{GeV}]: M_A \in [M_H; M_H + 8 \text{ GeV}]$ or $M_A \geq 100 \text{ GeV}$
Last comment: IDM tools for LHC phenomenology

- leading order production and decay: Madgraph5, + (currently) private version for ggh (top loop in $m_{\text{top}} \to \infty$ limit)
- in principle available: gg @ NLO, MG5 (needs however modification of current codes, not straightforward)
- IMHO: currently LO sufficient
Benchmarks submitted to Higgs Cross Section Working Group

all benchmarks: $A \rightarrow ZH = 100\%$

- **Benchmark I: low scalar mass**

 $M_H = 57.5$ GeV, $M_A = 113.0$ GeV, $M_{H\pm} = 123$ GeV

 $\Gamma_H = 4.8$ MeV, $\Gamma_A = 1.5 \times 10^{-1}$ MeV, $\Gamma_{H\pm} = 1.0$ MeV

 $HA : 0.371(4) \text{pb}, H^+H^- : 0.097(1) \text{pb}$

- **Benchmark II: low scalar mass**

 $M_H = 85.5$ GeV, $M_A = 111.0$ GeV, $M_{H\pm} = 140$, GeV

 $\Gamma_H = 4.4$ MeV, $\Gamma_A = 1.5 \times 10^{-1}$ MeV, $\Gamma_{H\pm} = 4.6 \times 10^{-1}$ MeV

 $HA : 0.226(2) \text{pb}, H^+H^- : 0.0605(9) \text{pb}$

- **Benchmark III: intermediate scalar mass**

 $M_H = 128.0$ GeV, $M_A = 134.0$ GeV, $M_{H\pm} = 176.0$, GeV

 $\Gamma_H = 4.4$ MeV, $\Gamma_A = 3.9 \times 10^{-6}$ MeV, $\Gamma_{H\pm} = 4.1 \times 10^{-1}$ MeV
Benchmark: high masses

- **Benchmark IV: high scalar mass, mass degeneracy**

 \[M_H = 363.0 \text{ GeV}, \quad M_A = 374.0 \text{ GeV}, \quad M_{H^\pm} = 374.0 \text{ GeV} \]

 \[\Gamma_H = 4.4 \text{ MeV}, \quad \Gamma_A = 8.4 \times 10^{-5} \text{ MeV}, \quad \Gamma_{H^\pm} = 2.0 \times 10^{-4} \text{ MeV} \]

 \(H, A : 0.00122(1) \text{ pb}, \quad H^+ H^- : 0.00124(1) \text{ pb} \)

- **Benchmark V: high scalar mass, no mass degeneracy**

 \[M_H = 311.0 \text{ GeV}, \quad M_A = 415.0 \text{ GeV}, \quad M_{H^\pm} = 447.0 \text{ GeV} \]

 \[\Gamma_H = 4.4 \text{ MeV}, \quad \Gamma_A = 220 \text{ MeV}, \quad \Gamma_{H^\pm} = 2.1 \text{ GeV} \]

 \(H, A : 0.00129(1) \text{ pb}, \quad H^+ H^- : 0.000553(7) \text{ pb} \)