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Abstract. We review recent derivations of formulas for conformal mépsn finitely connected domains with
circular holes to canonical radial or circular slit domaififie formulas are infinite products based on simple reflec-
tion arguments. An earlier similar derivation of the Schav&hristoffel formula for the bounded multiply connected
case and recent progress in its numerical implementatielap reviewed. We give some sample calculations with
a reflection method and an estimate of its accuracy. We ateoiss the relation of our approach to that of D. Crowdy
and J. Marshall. In addition, a slit map calculation usingileat series computed by the least squares method in
place of the reflection method is given as an example of alplesdirection for future improvements in the numerics.
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1. Introduction. Conformal mapping has been a topic of theoretical intenedteause-
ful tool for solving boundary value problems of classicatgygial theory in the plane for
over 100 years. With the development of modern computeraymamerical methods have
been proposed for approximating conformal maps. The bopkaaier 7] and Henrici BQ|
provide introductions to this field. The survey paper by Wagm [38] and the book on
Schwarz-Christoffel mapping by Driscoll and Trefeth@g][review more recent work espe-
cially relevant to computations. In spite of the ability ofify’s computers to solve many
fully three dimensional problems, there is a continuingiast in these inherently two di-
mensional methods of function theory due the power of thertiegies and the clarity of the
understanding that they bring to many important applicetio

In the last several years there have been a number of advamcethods for multiply
connected domains; see, e.®, 38]. In particular, the Schwarz-Christoffel transformation
for domains with polygonal boundaries has been extendea tuttiply connected domains
in [17, 20, 21] using reflection arguments and i, [9] using the closely related Schottky-
Klein prime function; see alsd.{]. These results were the topic of a recent article in SIAM
Review [6]. The methods use multiply connected domains with circhtarndaries as their
computational domains and involve infinite products. Esipformulas for conformal maps
from the circular domains to the canonical slit domaig4, [35] for the multiply case case
can be derived using the same techniqu&s 19]. Canonical slit maps can be used to repre-
sent Green'’s functions for the Dirichlet, Neumann, and miikReundary value problems for
the Laplace equation in multiply connected domains; €k [One advantage of using cir-
cle domains is the possibility of using fast computationatimods based on Fourier/Laurent
expansions centered at the circles.

In this paper, we review these results for multiply conndgtelygonal and slit domains
and attempt to clarify some of the relations among the adtitre approaches. We will discuss
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mainly the case of bounded multiply connected domains. &kelts for unbounded domains
are similar and most of them have already been treated inefleeences. In Sectio, we
recall some useful preliminary facts about conformal maps @&flections in circles. We
include a listing of a simplified version of our NMiLAB code for calculating these reflections.
All of the computed examples in this paper, except for therbatiseries example in the last
section, are performed using variations of this reflectigoathm. Sectior8 discusses maps
to canonical circular and radial slit domains. As an exangfleur techniques, we derive
the formula for the map from a disk with circular holes to aflméne with radial slits. The
derivation is based on extension of analytic functions biyv&az reflection through circular
arcs and radial slits leading to infinite product formulaslisting of a short MaTLAB code
for computing this map is given. We prove that the produciseage and satisfy the required
boundary conditions, namely, that the arguments of the mape@circles are constant. The
convergence is based on an estimate of the rate at which fileetesl circles shrink. We
also relate the slit maps to the Schottky-Klein prime fumeti In addition, we give a brief
discussion of Green'’s functions, which, for circular dongican be given explicitly in terms
of our product formulas for maps to circular slit disks andgs. In Sectiort, we discuss
the Schwarz-Christoffel map to multiply connected polyglaomains. The derivative of the
map is represented as an infinite product based on reflectitlassuggest some alternative
representations of this transformation which may allow aisefplace the infinite products
with finite products yielding a completely general formulehese alternatives are based on
the maps to radial slit half planes derived in Secioin Sectiorb, we review recent progress
on the numerical implementation of the Schwarz-Christdafnsformation £3]. (We only
discuss the cases of connectivity greater thagince the simply and doubly connected cases
have been thoroughly treated elsewhere by somewhat moc&aéped techniques.) We give
a practical error estimate in terms of the radii of the re@édatircles. We also discuss some
potential difficulties; for instance, in cases where slitpolygonal boundaries form narrow
channels, the corresponding circles in the computationadain are close-to-touching. This
may be thought of as a form of tlegowding phenomenofi6, 24] for multiply connected
domains. In the final subsection, we discuss a method for atimgppmaps to radial slit
half-planes using least squares to find a Laurent serieoaippation to the map satisfying
the boundary conditions. We expect that such techniquédeai to improvements in our
numerical solutions.

2. Preliminaries. In the cases below, we are seeking a conformal thémm D, the
interior of the unit disk,Dy, minusm closed nonintersecting diskBy,, in the interior of Dy,
onto a regiorf) with exterior boundant’y, andm nonintersecting interior boundary curves,
T'y,1 < k < m. Therefore, theconnectivityof D and(2 is m + 1. For the slit maps in
Section3, 2 will be a half-plane (or disk)["y will be a straight line through the origin (or the
unit circle), and thd™,’s, & # 0 will be radial or circular slits. For the Schwarz-Christelff
maps in Sectiod, I'y will be the outer polygonal boundary and thg’s, k& # 0, will be the
inner polygonal boundaries. The boundaries of the ciralikls, Dy, are the circlesy, with
centersex (= si), and radii;;, and are parametrized 6, : ¢, +rre?. The boundary oD
isthusC = Cy+C1+---+C,,. Theboundaryof) isT = Tg+T'1 +---+T,. f extends to
the boundaryf (Cy) = T'y. If Qis given, then fixing the value @i = f(z) at three boundary
points on the unit circl€ or at an interior point and one boundary point uniquely datees
the mapf and the other circles’;,, k& # 0 [30, 34]. (For the unbounded case, the outer
boundaried, andT’, are notincluded, the connectivitysis, andw = f(z) = O(z), z = cc.

In this case, fixingv = f(z) = z + O(1/z), z & oo uniquely determines the map and the
circles. In either case, the domains are conformally edemtdo an annulus with circular slits
(or holes) B4]. For connectivityn = 2, there is one conformal modulus, the ratio of the outer
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FiG. 2.1.N = 2 levels of reflected circles and zerasdnd poles (x) on the outer boundary for the map to the
radial slit half-plane in Figure3.1 The outer unit circle and its reflections are plotted wittsdad boundaries.

to inner radii. Form = 3, two more moduli are needed to determine the length and saufiu
the circular slit (or center and radius of the circular hpl)ice the annulus can be rotated to
place the tip of the slit (or center of the hole) on the positiwal axis. For connectivity, > 3,
each additional slit (or hole) is determined by three reahpeeters: its length, radius, and tip
location (or center and radius). Therefore, for connetstivi > 3 the number of conformal
moduli needed to uniquely determine the class of confognemuivalent domains i3m — 6.
We will mainly discuss the cases of connectivity > 3 here, since the simply and doubly
connected cases are thoroughly treate@#) B(].)

Next, we introduce notation and recall basic facts abougcgtins in circles from17,
18, 21]. Thereflectionof z through a circleC;, with centerc;, and radiusy, is given by

2
.
pk(2) = poy (2) = ¢ + —E—.
zZ — Ck

The set of multi-indices of length will be denoteds,, := {viva - v, : 0 < v < m,
vk £ Vkt1, k=1,..,n—1}, n>0,andoy = ¢, in which case/i = i. Note that consec-
utive indices are not equal, since two consecutive reflasttrough the same circle is just
the identity,or. (pr(2)) = z. Inadditiono,, (i) = {v € oy, : v, # i} denotes sequencesin
whose last factor never equal®.g., form+1 = 3, 03 = {010, 012,020,012, 101,102, ...},
o3(0) = {101,121,012,...}. The following lemma 21, Lemma 1] says that just indexes
successive reflections through thg’s.

LEMMA 2.1.a, = py, (pu, (- (pu,,_,(ay,)) ) forv =1qve - v, € 0y

Similarly, reflections of a circle’, will be also be circles denoted Wy, = p,(Ck)
with centers and radii denoted; andr,;, respectively. Our figures are produced with a
MATLAB code which performs all reflections to level= N. The reflections to two levels
N = 2 of m + 1 = 3 circles and two points on the boundary of the unit circle dreven
in Figure2.1. Note that the number of new reflections of thes at a given level isn times
that at the previous level.

Here is a simplified MTLAB code illustrating the reflection procedure and used to pro-
duce Figure®.1and3.1
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ALGORITHM 2.2.
function [anu,cnu,rnu,jla,jir] = reflect_circ(a,c,r,N)
% This code reflects circles through each other N times
% cnu(nu,j) = center of reflection nu of circle j
% rnu(nu,j) = radius of reflection nu of circle j
% anu(k,nu,j) = reflections of a(k)
% jlr(nu,j) = leading index = index of circle of last reflecti on
m = length(r); cnu(1,1:m)=c; snu=cnu; rnu(l,1:m)=r; ma = le ngth(a);
anu(l,1:ma) = a; % place vector a in first row of anu
jla(1)=1;
for j=1:m
jir(L.j)=j;
end
num = 0O;
for level=1:N
nul = num+1,;

if m ™= 2

num = ((m-1)7level - 1)/(m-2);
elseif m == 2

num = nul;
end

nuja=num; nujc(l:m)=num  *ones(1,m);
for nu = nul:num

for jl=1:m
if j| = jla(nu) % do not reflect over same circle twice in a row
nuja=nuja+1;
jla(nuja)=jl;
% reflect a_nu thru C_j1
anu(nuja,1:ma)= c(jl) + r(jl)"2./conj(anu(nu,1:ma) - c(j N);
end
for j=1:m
if j| "= jlr(nu,j) % do not reflect over same circle twice in a r ow

nujc(j)=nujc(j)+1;
jir(nuje(j),j)=jl; % save index of current reflection
% compute centers and radii of reflected circles:
cnu(nujc(j),j) = c(@h + r(h"2 *(cnu(nu,j) - c(h) ...
/(@abs(cnu(nu,j) - c(jl))"2 - rnu(nu,j)"2);
rnu(nujc(j),j) = ...
r(jl)"2 *rnu(nu,j)/abs(abs(cnu(nu,j) - c(jl))"2 - rnu(nu,j)"2);
end
end
end
end
end
In order to state our convergence results, we need the foltpwefinition and lemma.
Theseparation parametesf the region is
ey T4

A := max

<L 0<i,j<m,
ijiii [ei — ¢
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for the assembly ofn + 1 mutually exterior circles that form the boundary @f see B0,
p. 501]. (OurA is actually defined by’y and the first reflections of the interict,’s, k # 0,
throughCy.) Let C; denote the circle with center, and radius-;/A. Then geometrically,

1/A is the smallest magnification of the radii such that at least tw6';’s just touch. Our

proof of convergence of the infinite products is based omegtng how fast the successively

reflected circles shrink. For this estimate, we use the fotig inequality from B0, p. 505].
LEMMA 2.3.

Z 7“3 < A irf
=0

VEOTH 1 3

3. Slit maps. This section uses simple reflection arguments to deriveiiafproduct
formulas for the maps from circular domains to canonicatwar and radial slit domains;
see B4]. These techniques were used itf] to derive the maps for unbounded domains.
Convergence of the infinite products is proven if the cirdes sufficiently well-separated.
We will present the details only for the map from a boundedleidomain to a radially slit
half plane where selected points on a circle are mapped ta @@nThis case has not been
treated in detail before. However, the methods we use ate gimilar to our previous results
for the slit maps 19] and Schwarz-Christoffel map47, 21] and will serve to illustrate our
proofs for this overview paper. We also derive an expres&iothe radial slit map in terms of
the Schottky-Klein prime function. This expression allawgsto relate our formulas to those
of [13, 14], where the canonical maps and the related Green’s furctomgiven in terms of
Schottky-Klein prime functions]. The formulas for other canonical maps are stated without
proofs.

3.1. Radial slit map-bounded caseln this section, we discuss the map= f(z) from
interior of a disk with circular holes to the a half plane witte origin on boundary and with
slits radial with respect to the origin; see Figurd. We will show that, for circle domains
satisfying our separation criterion, the map can be reptesby an infinite product formula.
This map will be useful as a basic factor in our derivation wfadternative representation of
the Schwarz-Christoffel transformation for multiply cauted domains in Sectiah follow-
ing in the framework of 26].

The idea for the product formula for the map is based on a @mgflection argument.
Letw = f(z) map a bounded circle domain of connectivityto an unbounded radial slit
domain. Letz andb be the two distinct points on one of the circles such thaf) = co and
f(b) = 0. By the Reflection Principle we can exterido the z—plane. Since reflections
across the radial slits in the—plane will just leave) andocc fixed, reflections, = p, (b) of
b will be all of the (simple) zeros and reflections = p, (a) of a will be all of the (simple)
poles off. The function therefore has the form

f(z)_CHL”Eb)).

z—pu(a

A MATLAB code implementing this formula is given in Algorithéil, which uses Algo-
rithm 2.2
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ALGORITHM 3.1.

% reflect_circ_driver.m % brief code for map to slit half-pl ane
% centers ¢ and radii r of m mutually exterior circles
m=3; c¢(1)=0; r(1)=1; c(2)=.5 *i; 1(2)=0.2; c(3)=-.5; r(3)=.25;
theta 0=3 =+ pi/4; theta_inf=0; % arg of pts mapped to 0 and \infty
= [exp(i +theta_inf) exp(i *theta_0)];

N = 4; % compute N levels of reflections:
[anu,cnu,rnu,jla,jir] = reflect_circ(a,c,r,N);

z(1,:)) = cnu(1,1)+rnu(1,1) »exp(i * (theta_inf+2 *pi *[1:101]/102));
for j=2:m

z(j,:) = cnu(l1,j)+rnu(l,j) xexp(i *2*pi *[0:100]/100);

end

% evaluate product formula for map on circles:
zprod = ones(size(z));
for nu = l:length(anu(;,1))
zprod = zprod. =*(z-anu(nu,2))./(z-anu(nu,l));
end
for j=1:m
plot(real(zprod(j,:)),imag(zprod(j,:))); % plot map
hold on; axis equal;
end
We will now prove these statements. Our proof is similar t phoof of the Schwarz-
Christoffel formula in 1], but easier. Note that, if a radial slit in the-plane is at anglé,
thenw reflects tae*2w. Therefore, an even number successive reflections thrauihlslits
will take w = f(z) to Aw = Af(z), for someA with |[A| = 1. As a result, the extended
function f'(z2)/f(z) = Af'(z)/Af(2) is invariant under even numbers of reflections and is
single-valued. (For the case of the multiply connected SchvChristoffel map, below the
preSchwarziarf” (z)/ f'(z) is invariant under reflections, and we used this same “metifiod
images” to construct a singularity functiofi(z) = f”(z)/f’(z), as an infinite sum satisfying
appropriate boundary conditions.) Here, our singulauitydtion is

S(2) = F/(2)/F(2) = - log f(2) = Z( L )

z=pu(b) 2= py(a)

v

- Z ( (2 - py(b(i )_(py—(ap)u(b))) '

Since f(z) maps to radial slitsarg f(z) =constant, for: € C,. This boundary condition is
given in the following lemma.

LEMMA 3.2.Re{(z —c) f'(2)/f(2)} = 0,z € C.

Proof. Forz € Oy, we haver = ¢, + r,e? and sincef(z) maps to radial slits, we have
arg f(z) =const. Therefore,

/ /
0= 0 arg f(2) = = Imlog f(cx + rpe?) = Im irkei9f7 =Re rkewf?(ck +rre®®). O

a0 00

We show below thaf(z) satisfies this condition and that, indegdz)/ f(z) = S(z).
We now state our main theorem for radial slit maps.
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FiG. 3.1. Conformal mapw = f(z) from the unit disk withm = 2 circular holes (top) to a radial slit
half-plane withV = 2 (lower left) andN = 4 (lower right) reflections using Algorithi.1. Note that increasing

N causes the slits to close.

THEOREM 3.3. Let (2 be an unboundedh + 1-connected radial slit upper half-plane
and D a conformally equivalent bounded circular domainp € Cy. Further, supposé&
satisfies the separation property < m~'/4, for m > 1. ThenD is mapped conformally
onto( by f with f(b) = 0 and f(a) = oo if and only if

_o T 2o
f(Z)—C g Z—py(a)
veo; (0)

for some constant'.
Proof. Once we establish thaty (z) converges t&(z) and satisfies the boundary condi-

tion, we can show thaf(z) = C'exp( [ S(z)dz). The proof follows closely the proof irLp].
In fact, by mapping the circle to the upper half-plane aneéeding the map and the image
slit half-plane to a full plane witl2m radial slits by reflection across the real axis, we may
just use the proof in]9]. We omit the details]

The proof of convergence of thgy (z) also closely follows 19, Theorem 3.3]. We will
show that the sums truncatediolevels of reflection,
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converge uniformly ta5(z) for = € Q asN — oo, provided the circles satisfy our separation
condition. (In the special case when+ 1 = 2, there is no restrictive separation hypothesis,
since thenA < m~'/4 = 1 is equivalent to the fact that the two boundary componers ar
disjoint.)

We now prove the convergence 8§ (z) to S(z) for sufficiently well-separated circles.
Forj =0,1,2,..., we write

me= 3 (- ma)= L oemerts

veo; (0)

and hence, in brief notation,

N
sN(z):ZAj(z), S(z):= lim Sy(z).

N —oo
J=0
Let

= =i — — : > .
0 =0q = inf {|lz —av|, [z = by] : [v] 2 O}

Then, clearlys > 0 holds since the,’s and theb,’s lie inside the circles fofv| # 0.

We have the following result.

THEOREM 3.4. For connectivitym > 1, Sy (z) converges taS(z) uniformly onQ
satisfying the estimate,

5(2) = Sn(2)| = O((A*V/m) 1),
for regions satisfying the separation condition,

1

A< e yre
Proof Note that the number of terms in th&;(z) sum isO(m7). This exponential

increase in the number of terms is the principal difficultgstablishing convergence. Recall

that r, is the radius of circleC,. We boundA;(z) for z € Q by using the inequality
la, — by, | < 2r,. First, note that

a, — b, 2
(3.1) A;(2)) < > —|Z_|a ||Z_|b|§5—2 oo,

veo;(0) veo;(0)

whered = dq. (In practice, the sum of the,’s above at thg = Nth level gives a good esti-
mate of the truncation error. We will give an example of theddw for a Schwarz-Christoffel
map.) In order to prove convergence, we estimate the rateecofedse of the,’s using
Lemma2.3and the Cauchy-Schwarz inequality,

1/2 1/2 1/2

Z r, < Z 7“12, Z 1 = Z 7“3 mi/?

veo;(0) veo;(0) veo;(0) veo;(0)

m 1/2
< A% (Z rf) mi’? < CA%mi/2?,
i=0
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Therefore, the series convergesit/m < 1. |

The proof thatf(z) defined by the (convergent) infinite product formula satsstiee
boundary conditions in Lemm& 2 is nearly identical to ]9, Theorem 3.4]. Again, we will
use the formula

(3.2) Re{ w_, v }_1,

w—1 w*—1

wherew andw* = 1/w are symmetric points with respect to the unit circle. Thea th

following theorem gives the result. We prove the theorenmufdre C; for arbitraryi, but we

can assumé= 0 andC; = Cj is the unit circle, without loss of generality.
THEOREM3.5.1f A < m~Y/4 thenforz € C}, ,

Re{(z — cx)Sn(2)} = O((A*Vm)™)
and
Re{(z —cx)S(z)} = 0.

Proof. The idea of the proof is, fotr € C,,p # 14, to use properties of the reflections,
by = pp(by), to group terms inSy (z) related by reflectiop,, throughC,, with = € C, as

follows:
1 1 1 1
SN(Z)_(z—b+z—bp)_<z—a+z—ap)+.“

1 1 1 1
+ + — + +--
z—b, z—="bpy Z—a, zZ—ap

Then, multiplying byz — ¢, and denoting; := «a, b; := b, we have in more detail,
(2 —cp)/(bi — cp) (2 —cp)/(bpi — cp)
z—cp)Sn(z2) =

G = b= —1 T G /ba—c) -1

_ (2 —cp)/(ai — cp) (2 —cp)/(api — )
(z—cp)/lai—cp) =1 (2 —¢p)/(api —¢p) — 1

N—-1
(2= cp)/(bvi — cp) (2 = cp)/(pp(bui) — cp)
T Z() ((z “e) /G —ep) 1z =)/ (pplbne) — ) - 1)
Vi, v1#p
N—-1
. (z —cp)/(avi — cp) (2 — cp)/(pplavi) — cp)
2 Z() <<z “ep) @i —e) — 1 (2= ) (pplane) — o) - 1>

(3.3) +(z—cp)2m: > ((Z_b;;)_(:j—ubju))'

jl:1, jr€on (i)
J#p

We take the real part of the above expression and, using, fustance,
w = (z — ¢p)/(avi — ¢p) @and noting thatv* = (z — ¢,)/(pp(avi) — cp), (3.2 gives

e { il sl Lol 2ol A oo s 2=

w—1+w*—1
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Taking the real part of3.3), we see that the first four lines sum to 0. The finaterms, all
lying inside circles”;, j # p, approximate the truncation error and are bounded by

Z 7’12, < A4Nirf.
i=0

VETH+1

This gives

Re {(z — ¢,)Sx(2)} = O(m(A>Nm"/2).

Next we prove the boundary condition fer= ¢; + r;e?’ € C;. (In our case = 0 and
C; = Cy is the unit circley; = 1,¢; = 0. However, this is not necessary in general.) Using
z=c;+rie?, a=a; =c;+r;e% € C;,andb = b; = ¢; + r;¢% € C;, we have

(z —ci)Sn(2) =

(z —ci) Lo +t ! + ! - ! + L +
Ylr=bi z—a z—byi 2 — by Z—ayi 2= Qi

_Z=G z—C (z—ci)/(byi — ¢;) (z —¢i)/(bivi — ¢)
T 2—b; z-—uq * <(z—ci)/(bui—ci) -1 + (z—=ci)/(bivi — ;) — 1>
(G —c)/(ai — ) (z — ci)/(aii — ci) -
((2 —ai)/(avi —ci) — 1 - (z —¢i)/(aivi — ) — 1> "

Taking the real parts, we get our boundary condition,

6

Ref(e—es(e) = Re{ b omef S -+

619b

+
i(0—05)/2 i(0—04)/2
{61(9 eb)/Q—e (60— eb)/Q} { i(0—0 )/2—6 (60— Ga)/Q}
)
2%

1 9 0, 1 9—9
{ T3 } Re{i‘ 2 }

REMARK 3.6. The case of the map from the unbounded circle domairagong co
to the unbounded radial slit domajnwith b in the domain andf(b) = 0, was treated
in [19]; see Figure5.5 (left). The formula is nearly identical to the bounded cabeve,
except thatf(a) = o is replaced byf(co) = oo, and hence, for any reflection of a center
pui(00) = pu(ck) = suk, We havef(s,x) = oo. The infinite product formula is then

fe =Gy I )

el -0 Z_pl/(ck)

wl}—'
N>|>—‘ N | =

3.2. The Schottky-Klein prime function. Crowdy [8, 9] expresses his formulain terms
of Moebius map¥, (z) which generate th8chottky groumssociated with the bounded, cir-
cular domains. Here, we relate his maps to our reflections) 57]. Crowdy defines the
maps,

U and ;(2) = 8,(1/2) = 9;(1/%) = ¢ + -2

z—¢j 1/z—7¢'

¢;(2) :==7¢ +
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In terms of our reflectiong;,j # 0, it's easy to see thap;(z) = p;(z) = pc—j(z) and
0;(z) = ¢;(1/Z) = p;j(po(z)), wherepy(z) = 1/Z = reflection through the unit circl€).
Note thatt; ' = pop;.

The full Schottky grou® consists of all products of th&’s andei_l’s where
7 bz — dz - bz .
0;(z) = @iz + and 6, 1(z) = BET Gith a;d; — b;c; = 1.

ciz +d; —ciz +a;

Therefore,© is the Moebius group generated by all compositions of théchigs= p;po
and their inverses. Th& (2, ;) generate exactly the reflections,, ;, of the prevertices;, ;
used in the formulas in Sectigh For instance, using our reflection notation and the fadt tha
p? = 1id (the group of reflections is a “free” group), we have

25102320 = P1P0P2P3P2(2k,0) = P1P0P2P0P0P3P2P0(2k0) = 010205 02(2k0)-
The Schottky-Klein (SK) prime functionsed by Crowdy are

(0i(2) —7)(6:(v) — 2)

34 w(z = (z — ) (2 =(z—
wheref; € ©” involve all compositions of the “forward” map = p,po giving “half”
of the Schottky grou®, and©®©” does not include angi‘1 or the identity mapjd; see P,
Chapter 12]. The relation between the slit maps and the 8ghKiein prime functions
from [17] is given by the following theorem, which explicitly statdee relation of the ratios
of the SK prime functions to radial slit maps. The theorenegian alternate representation
of ratios of Schottky-Klein prime functions using the fulti®ttky groupo.

THEOREM3.7.] If A < m~'/4, then the infinite products converge and

w(z,a) u z—0;(a)
w(z,b) Cla,b) 0};[@ 2z —0;(b)’

whereC'(a, b) is a ratio of integration constants. Therefore, fab € C;,

w(z,a) z— pu(a)
w(z,b) Ol:[ z — pu(b)

is aslit mapto a half-plane with radial slits, and so

w(z,a)
' w(z,b)

= constant

forze Cj,j=0,...,m.

Proof. A proof of this of is given in L7], based on a calculation id[5]. Here, we give
a shorter, alternate proof suggested by a refered gflRemark 2]. The idea is to shift the
Moebius transformations),;, from z to ~ in (3.4), so that the infinite product can be taken
over the entire Schottky grou@). This is accomplished using the calculations,

a;z + bl
—0;(2) =~ —
v —0i(z) =7 P
_ Gzt diy —aiz —b;
o Cciz + dz

CiY — a; dl’}/ — bz
= Z _——_—
¢z +d; —ciY +a;

— (%) o)
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and
s o) = (225 (-0,

(ciz—ai> < diz—bi)
= Z_|_
ciz +d; ciz — a;

:( G )(Z—Ai)(Z—Bi),

Cciz + dl

where 4;, B; are distinct fixed points of;, A; = 0,(A;), B; = 60,(B;). Substituting these
results intow in (3.4), gives

(s (2 =0;()(y = 6;())
=6 1 T=560=5m)

o (¢ — a;)(z = 0;(1)(z = 0; (7))
~to U == sn o

1
- K(’Y) 9]16_([9” (Z — AJ)(Z _ BJ) 9]1;[@(’2 - 93(7))7
where
_ (¢jy —aj)

ror= L Se=aen
giving finally

w(z,a)  K(a) z—0;(a)

w(z,b)  K(b) 0}1}@ z—0;(b)

If a € C; andb € C;, by the observations at the beginning of this subsectiorcamereplace
thed,(a)’s by the corresponding reflections,, i.e.,f;(a) = p.(a) andé;(b) = p, (b). This
just yields our formula for the map to a radially slit half p&aQO

REMARK 3.8. Crowdy and Marshalll5] give a Laurent series method for evaluating
the prime function for general circle domains where the evgence condition above need
not hold. In Sectiorb.3, we discuss a similar method for the map to a radial slit hialfip.

REMARK 3.9. In [26, pp. 65-68], the annulus map is derived by taking successive
products of maps that gradually “straighten” the circlegré] we “unwrap” that derivation
and show that, in the general multiply connected case, itlgsls to our radial slit map,
above. We will illustrate this process on an annulus wheeetliter boundary is the the unit
circle Cy for the factors that take prevertex to 0 and 1 taxo. We will denote the succesive
straightening factors byy, ,o. The first factor is

1—z/zk0 22— 2ko
1—2z  zo(z—1)

gr0(2) =

We can ignore constant factors like thg, in the denominator above, since they all be ab-
sorbed in a multiplicative constant in the erd o (=) straightens out the 0 circle, but distorts
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FiG. 3.2.The mapw = f(z) withm + 1 = 3 and f(a) = 0 from the interior circle domain to the interior
circular slit (unit) disk using product formula withv = 4 levels of reflection. The modified (hydrodynamic) Green’s
function is given byog | f(z)/f(z0)| for somezg € Cy. Here f(Cp) =outer circle. In Nehari’s notation34],

Ro(z;a) = f(2)/f(20)-

the other circles in the process. To cancel out this effedtsraighten the image of circle 1
into a list, we multiply by

grk10(2) = gro(p1(2)) = gr.o (Cl b1 )

zZ—C1

2
— 25,0 — - — (Zko0 —C1)

Y (N Ry ‘z,f:(— )
- () () - () ()

Continuing this process, we get a constant multiple of atinsp,

_ _ Az 20)(z = p1(2k0) - pUZk
f(2) = Cgro(2)gk10(2) - = C (z—(lJ)(z—pi(l _CH Z— (1 O

which is just the map in Theore3with a = 1,b = z;, o, and the reflections taken over the
two concentric circular boundaries of the annulus. Thiswple illustrates the fact that our
formulas are, in effect, just the “method of image” with sessive reflections of zeros and
singularities applied to impose desired boundary behavior

3.3. Circular slit map. These maps were derived ihg] for the unbounded case; see
Figure3.2for the bounded case and Figué (right) for the unbounded case. The formulas
are identical. To get the bounded map, one just evaluatefthrila for z in the bounded
circle domain interior to one of the circles. To get the unfbded map, one evaluates the
formula for z in the unbounded circle domain. The map= f(z) from the (un)bounded
circle domain to the conformally equivalent, (un)bound&dudar slit domain with the slits
centered at the origin can be derived in a similar fashioréoradial slit map. Once again
fla) =0andf(o0) = co with f(2) ~ z,z & co. Again,ax = pi(a) is the reflection otz
across circle”y, ande, = s, = pr(0), the center of circle”y, is the reflection obo across
Cy. In thew-plane 0 andx just reflect back and forth to each other. Therefore, when we
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FiG. 3.3.Map to combined radial and circular slit domain.

extendf, we will have f (a,) = oo and f(c;) = 0. In this way, we see that all odd numbers
of reflectionsa,, i, |vo| = 21 + 1, of a;, and all even numbers of reflections, 1, |v.| = 2I,

of ¢, will be simple zeros{ (a,,1) = f(s..x) = 0. Likewise, all odd numbers of reflections,
Suok, Vo] = 20+ 1, of ¢, and all even numbers of reflections, i, |v.| = 21, of a; will be
simple polesf(a, x) = f(s,,k) = oco. The infinite product forw = f(z) therefore has the
form,

B )G pulen)
fo=c-all 1l T atey
ve,vo €0 (k)

(where reflections back t@ or oo are excluded from the product) with(a) = 0, provided
them circles with centers;, satisfy our standard separation criterion.

Following [19], we note that, if a circular slit in thev-plane is at radius,, thenw
reflects tor? /w. Reflection through another circular slit with radigswill then takew to
(ro/r1)%w, and so on. Therefore, an even number successive refledtiongyh circular slits
will take w = f(z) to Aw = Af(z), for someA real. As a result, the extended function
f'(2)/f(z) = Af'(2)/Af(z) is invariant under even numbers of reflections and hence is
single-valued. Here, our singularity function is

S(:) = /()] () = loa (2) =

zi(ﬁé i (z—pi,(ak)‘z—p,l,o<ck>)+<z—p,1/e<ck>_z—pie<ak>)’

Ve,Vo€0j (k)

Forz € Cy, sincef(z) maps to circular slits, we haveg | f(z)| = Relog f(z) =const. Our
boundary conditions are given by the following lemma.
LEMMA 3.10.Im{(z — ¢k ) f'(2)/f(2)} = 0,2 € C}.

3.4. Combined circular and radial slit map. Here we consider the map = f(z)
from the bounded circle domain to the interior a disk bounbgdx mixture of radial and
circular slits with f(a) = 0. This map was also given irL§] for the unbounded case and
is identical to that case, except, again one evaluates tipamtae interior ofCyy instead of
in the exterior; see Figurg.3 This map will lead to the Robin function, i.e., the Green’s
function for the mixed boundary value problem. The log of ttection maps to a domain
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exterior to horizontal and vertical slits. Reflections thgh radial slits will keep) and co
fixed, whereas, reflections through circular slits will swisandoo as in the circular slit map
above. Letp,, denote a sequence of reflections with an even number of riefisdthrough
circular slits and lep,,, denote a sequence with an odd number of reflections througiin&i
slits. Thenp,, (a) andp,, (o0o) are simple zeros of (z) andp,, (oo) andp,, (a) are simple
poles. Therefore, we have

(2 — pv. () (z — pu,(0))
f(z)=(2~a) : )
VH (2 = pu.(0))(z = pu, (@)

3.5. Green'sfunctions. Itis interesting to note that Green'’s functions for circttains
for the Dirichlet, Neumann, and mixed cas84,[32, 34, 35, 39] can be written explicitly in
terms of the slit maps. For instance, the Dirichlet Greearscfion would have the forngg,
p. 357]

9(z,a) = =G(z,a) + Z%wi(z)
i=1

whereG(z,a) = Re{log f(2)} = log|f(z)| and f(z) is the map of the circle domain onto
the circular slit unit disk with the”y mapped to the unit circle anf{a) = 0, so thatG(z, a)
has exactly one logarithmic singularity atand G(z,a) = 0,z € Cy. Since f(z) maps
the circles,C;,i = 1,...,m, to concentric arcsz(z,a) = log|f(z)| = =, constant, for
z € Cy. (G(#,a) is the so-called modified or hydrodynamic Green’s funcliorhew; (z)’s
are theharmonic measuresf the C;’s. That is, w;(z) is harmonic in the circle domain
with w;(2) = 1,z € C; andw;(z) = 0for z € C;,5 # i, = 0,1,...,m. Therefore,
g(z,a)+log|z—al is harmonicin the circle domain agdz,a) = 0,z € C;,i = 0,1, ..., m,
i.e.,g(z,a) is the (Dirichlet) Green’s function for the circle domain.

Nehari [34, Chap. VII, Sec. 3] shows how to construct the harmonic messusing
maps to canonical slit domains. We will outline this briefré in order to show how these
functions can be explicitly constructed for circle domailmsNehari’s notation34], the map
to the circular slit unit disk taking thg¢th boundary to the unit circle is denoted By (z; a)
with R(a;a) = 0 and the normalizatio®’(a; a) > 1. In [34, Chap. VII, Sec. 1], it is shown
that the map to a circular slit annulus, taking ttile boundary to the outer circle and thth
boundary to the inner circle and the other boundaries tolttss san be written as a ratio of
maps to circular slit disks$;x(z) := R;(z;a)/Ri(z;a). For circle domainsS;(z) can,
therefore, be given explicitly using our infinite productrfaulas. A computed example is
shown in Figure3.4. Note thatS;;(z) # 0. Now leto,(z) := log|S;jo(#)|. Nehari shows
that constants;; can be found, such that

wl(z) :Zajmj(z), 1= 1,...,m.
j=1

Theaj;’s can be found as solutions to linear systems, but we willkdigxtuss this here.
Similar expressions using the Schottky-Klein prime fuoes are given in12, 13, 14].

In cases where reflections are not feasible, all of these capbe computed efficiently using

the least squares/Laurent series approach;¥ee p, 36] and Sectiorb.3. These functions

could potentially be combined with conformal maps of cidtenains B, 23] and Sectiorb.1,

below, to provide Green’s functions for general multiplynoected domains.
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FIG. 3.4. The mapw = f(z), f(z) # 0, from interior circle domain to interior circular slit ring dmain
using product formulas witt' = 5 levels of reflection. Her¢(Cq) = outer circle andf(C1) = inner circle. In
Nehari's notationf (z) = So1(z) = Ro(z;a)/Ri1(z;a).

4. Schwarz-Christoffel maps for multiply connected domairs. In this section, we re-
view results for the Schwarz-Christoffel maps from cireud@mains to multiply connected
polygonal domains 17, 18, 21] and further clarify the relation of the formulation of
Crowdy [8, 9] to ours. We will concentrate on the bounded cakg here, since the un-
bounded case?fl] is similar. Our treatment attempts to unify three formsluége formulas:
(i) the original formulas in terms of infinite products invaig reflections of the mapping
parameters as first derived b3 for the annulus,21] for the unbounded case, anti/] for
the bounded case, using the invariance of the preSchwargian = f”(z)/f'(z), under
extension by Schwarz reflection, (ii) the formulas 8f §] for expressing the bounded and
unbounded cases in terms of (finite) products of Schottksirkprime functionsy(z, a), and
(iii) a new form of the formulas for the bounded and unboundases expressed in terms of
(finite) products of maps from the circle domains to radiglddmains. The last form fits into
the framework of £6] wherein the derivative of the mapping functiofi(z), is expressed as
a product,

(4.1) f'(z) = A]] fi(2),
k

of factorsf;(z) that guarantee thgt’ has piecewise constant argument for the given geome-
try. For instance, for the case of simply connected maps trandisk, f1.(z) := (z — z1)"*,
—pBrm = the turning angle at prevertex, 8, = oy, — 1, and}_, 5, = —2. In this case, the
mapping function is

1) =4 [ [ ="ic+ 5.
k

where a normalization condition, such as fixing an interiomp and one boundary point,
gives a unique map. (The numerical probletf]fin this case is to findd, B, z;'s by matching
side lengths of the polygon.) There are several variationgshich other domains are used,
e.g., arectangle or an infinite strif2g, Chapter 4].

(i) The multiply connected Schwarz-Christoffel (MCSC) rfmulas can be written in
terms of reflections. We will only discuss the bounded cdsé liere. The outer circle
Cy is the unit circle. Hereg;, ;7 are the interior angles of the polygons at the cornejs;,
Brimk =1,...,K;,i = 0,...,m are the turning angles of , with 5, ; = ax,; — 1 and
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EkK:OI Bro = —2, ZkK;'l Bri=2,i=1,...,m, z; = ¢; + ;¢ are the prevertices and
wy,; are the corners, withvy, ; = f(zg,:). AlSo, z; . = p,(zk,:) denotes reflections of the
kth prevertexz;, ; on thesth circle. The MCSC formula for in this case (i) is

Ko o m K; o
(4.2) FEO=A] TI G-z TTTI TII (2= 2ew)™ .
k=1 j=o0 i=1k=1 j=0
veo;(0) veo;(i)

The derivation 17] of the mapping formula for the bounded case is similar todbeva-
tion for the unbounded cas@1]. We repeat some of the details and main theorems here.
As in the slit map cases, we analytically contintit'om D by reflection across an arg, ;
between prevertices; ;, zx+1,; onC;. This extensionfm, has the form

fri(2) = apif(ci +12/(Z —G) + bri

for z in the reflected domain withy, ;, by, ; determined by the line containing the edffey. ;)
joining wy, ; andwyg41; in the boundary of the polygor;;. This extendedf maps the re-
flected circle domain conformally onto the reflected polyagjatomain. By repeated appli-
cation of the reflection process one obtains from the inftialction in D a global (many-
valued) analytic functiorf defined onC..\{z.,}. Any two valuesf, (z) and f, (z) of |

at a pointz € C\ {z,} are related by an even number of reflections in lines and hence
fs(z) =cf, (z) + d for somec, d € C. Therefore, thereSchwarziawof f, f”(z)/f'(z),is
invariant under affine maps — aw + b; that is,

(af(z)+0)" _ f"(2)
(af(z)+0)  f'(2)
is defined andingle-valuedn C\{z; , }.
The preSchwarzian is determined by its singularitigs,. By the usual argument
(F(2) = Flai)) /™ = (2 = 20) b (2),

wherehy, ; (z) is analytic and nonvanishing neay ;. This gives the local expansion,

f"(z) _ Brg _ o
f(z) (2= zra) + Hpi (2), Bri = aki — 1,

whereHy, ; (=) is analytic in a neighborhood af, ;. Thesingularity function S (z), of the
global preSchwarzian is, in nonconvergent form,

sEH=33 3 3 P

Zz—Z 1
=0 i=0 vea, (i) k=1 kovi

To give the correct form, we truncatgz) and regroup terms as

g 7K0 Br,0 Y& o Br,i ol Br,0
N R0 % DD Dl DETRS SR

j=0 i=1 vea; (i) Lk=1 kv k,vi0

We then show tha$y (z) converges and we defirfz) := limy_.o Sy (z). We also show
thatS(z) obeys the same boundary conditions as the preSchwarzigivgssby the following
lemma from R1].
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LEMMA 4.1.Re{(z — ) " (2) /[ (2)}._¢; )=, = —1,i=0,1,...m

Proof ~We repeat the proof for the reader’s convenience. The tangeagle,
¥(0) = arg{irie? f'(c; + rie??)} = Im{log(ir;e” f'(c; + r;€'?))}, of the boundanC;
is constant on each of the arcs between prevertices. Heorce, + ¢;| = r;, 2 # 2zj, We
havey'(0) = Re{(z — ¢;) f"(2)/f'(z)+ 1} =0. O

Our main theorem for the bounded polygonal case is as follows

THEOREM4.2. Let(2 be an bounded m+1-connected polygonal region, &hd con-
formally equivalent circle domain. Further, suppoBesatisfies the separation property
A < m~Y*form > 1. ThenD is mapped conformally ont@ by a function of the form
Af (z) + B, where

Br,i
P m Kl oo
9= [THIL| 1T €|
= Ok 1 Ji=0
veo;(i)

The turning parameters satisfyl < 3,; < land> ", Bki = 2,> p—y Br,o = —2. The
separation parametexr), is given explicitly in terms of the radii and centers of tegtérior)
circular boundary components 6%, C1, ..., Cy,.

The proof of convergence is given in the following theorem.

THEOREM 4.3. For connectivitym + 1 > 2, Sy(z) converges t&5(z) uniformly on
closed set& C H = Q\ {2} by the following estimate

5(2) = Sn(2)| = O((A*V/m)¥ 1)
for regions satisfying the separation condition

1

A<W'

The next theorem, like the corresponding one for the unbedrudse in%1], shows,
for generalm, thatS(z) satisfies the boundary condition, Lemid, for f”(z)/f'(z) for
well-separated domains.

THEOREM4.4.If A < m~Y*thenforz € C;, » # 21

Re{(z — ¢;)Sn(2)} = =1+ O((A*y/m)™)
and

Re{(z —¢;)S(2)} = —1.

(i) Crowdy’s formula for the bounded casg][is

Ko m K;

(4.3) f'(z) = AS.(2) H (2, 2k,0)] OHH (2, 2k,4)] 5’”,

k=1 i=1k=1
wherew(z, a) are the SK prime functions (above) and

w.(z,w(z, @ ) —w.(z,@ Hw(z, a)

S.(z) = _ :
( ) H?:l w(z,v{)w(z,'yg)
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In[17], formula @.3) is reduced to the infinite product formulé&.p) above.

(i) The text [26, pp. 65—68] gives a “geometric” derivation §f(z) for the annulus21].
We now generalize this for arbitrary connectivity. Pick one point;, not a prevertex, on
each circleC;. Then we define the radial slit map to a half-plane as in Se@jon

Jri(z) == H E Ptk pV(Zk’i),

Z = pu(ai)

v

with fx ;(z;) = 0 and fy ;(a;) = co. Note, that the radial slit maps do not directly satisfy
the condition of Lemmad.1 (their derivatives do), since they have constant argunmntbe
circles,C;. TheDT framework(4.1) for the bounded case is, thus,

m  K;
F'(z) = Afa) [T T fri2)%,

=0 k=1

where
fa(z) Z - aO H H Z — auzO (Z - al/’i)2
=1 o-: )

gives the correct boundary behavior. We have u@ﬁ;’l Bri = 2,1 = 1,...,m and
EkK:OI Bro = —2 to collect thea; terms in f,(z). Properties off,(z) defined indepen-

dently of the infinite product representation, above, wdaddneeded to prove the theorem
below, in the general case, without the separation conditfocalculation shows thaf, (z)
has the correct boundary behavior. With these observatiomsan link the three approaches
based on reflections, slit maps, and SK prime functien€(owdy) roughly as follows.
THEOREMA4.5. (DEP=DT~Cr for bounded case) If the infinite products converge, then

%) m  K; o
AH H zZ = 2k, OﬁkOHH H (Z_Zk:,ui)ﬁk’i
' eay(0) R
m  K;
= Afa(2) [T TT £r.4(2)%
i=0 k=1
m K Br,i
2y Zkyi
H)kl_[l < (z,a;) ) '

Proof. This is an obvious consequence of the previous redlllts.

Similar expressions can be given for the unbounded caseslitmeaps exist in all cases
independently of their infinite product expansion and caeuzuated efficiently with Laurent
series [L9]. Crowdy and Marshall15] have developed an efficient Laurent series expansion of
the SK functions for general domains which do not necegssatisfy the separation criterion.
The last form in the theorem above is close&pd] in the sense that the SK prime functions
are used. Note that additional parameters, dfi® must be selected. In effect, they take
the place of the zerw}’2 of the derivatives of the circular slit maps in the factgn(z)
in Crowdy’s original formulation §]. It is hoped that better understanding of these various
formulations will lead to efficient numerical methods foeteneral mapping problem in
cases when connectivity is too high or the circles are tosesto-touching to make use of
reflections feasible.
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5. Numerical and theoretical issues.In this section, we will discuss numerical as-
pects of the Schwarz-Christoffel map, including the solutio the parameter problem, ill-
conditioning due to crowding of the circles, and possiblpiovements to the reflection pro-
cedure using Laurent series and least squares techniques.

5.1. Numerics for Schwarz-Christoffel maps. We will briefly review here some recent
progress on the numerical computation of Schwarz-Chfistafaps for multiply connected
domains reported ir?[3]. We will give an example of the computations for a boundehdim;
see Figure$.1and5.2 Several examples of both bounded and unbounded domains are
computed in 23]. Preliminary work on this problem was done ihg for the unbounded
case. A highly symmetric example for the bounded case waputed in [L7].

In order to compute of the MCSC maps for given polygonal bauies, one must solve
the so-callecharameter problenof finding the prevertices and the centers and radii of the
circles. This is done by solving a nonlinear set of equatittrag guarantee that the side
lengths of the polygons and their locations are correct. &tammples computed irl}, 18]
were particularly sensitive to initial guesses and sma#ingfes in the polygonal domains.
This was due to the use of constrained variables gihés which must remain in order on
the circles. In 23], a transformation to unconstrained coordinates simiaf26, p. 25] is
used. The method proves to be extremely robust and rarééytéaconverge. The selection
of integration paths between circles (required to positluncircles so that the locations of
the polygons are correct) rarely causes problems, unlegsdths pass between or very close
to singularities in the inside of the circles. This situatican generally be avoided by an
expedient choice of integration intervals. As i, a homotopy search method, [Program
3] is used in 23] and found to be very effective compared to other solversav@mence is
almost always achieved even with a deliberately poor irgliess. Some additional code used
here, such as Gauss-Jacobi integration routines to hahnellsingularities in the Schwarz-
Christoffel integrals, is taken from SC ToolboRH, 26], an existing MaTLAB package for
computing Schwarz-Christoffel maps for various simply @odbly connected geometries.

We will summarize some details for the bounded maps frdgh [The prevertices o;

are parametrized b, ;, wherez, ; = ¢; + r;e'i fork = 1,..., K;, and constrained to lie
in order,
(51) 6‘171' < 6‘271' < ... < QKM.

The unknowry;’s, r;'s, anddy, ;'s amount to a total of{y + K; + - - - + K,,, + 3m + 3 real
parameters. Since the circles determine the reflectiomsetlare precisely the parameters
needed to determine the infinite product fti(z). We approximate the infinite product by a
finite product truncated afte¥ levels of reflection  + 1 for the outer unit circle),

Ko m N Ko K;
() =[[E-z0™ [ ]I (H(z — zwi0) 0 [[ (2 - Zk,ui)ﬁk'i> :

k=1 i=1 j=0 k=1 k=1
veo;(i)

In the bounded case, the map can be normalized by fixing onedaoy point,f (1) = w1 o,
and one interior pointf(zo) = wy. Letting
wa,0 — W1,0

21,0

C:

we have

fz)=cC / ph(C) d¢ + D,
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with f(z1,0) = D = wy,0. We require thaty = 0 andry = 1, and fixing f(1) = wy o is
equivalent to setting, o = 0. This amounts to fixing four of the real parameters, so we have

Ko+ +Kp+3m—1

unknowns parameters to determine.
The remaining parameters are determined from the geométhegolygonal domain.
First, we have thside-length conditions

|f(zk41,6) = f(2r)| = Wkt — Wk,

fori =0,...,mandk =1,..., K;, where here and below
Zk+1,i
fenn) = 1) =€ [ (O
Zk,i

is calculated by numerical integration from ; to 241 ; using the Gauss-Jacobi weights.
These side-length conditions giv&, + - - - + K, real equations, but the calculation ©f
removes one from this count. In addition, we leave off thewlaltion of the last two side-
lengths of the outer boundary polygon=£ 0), which can be done since the known turning
angles of the polygon allow the last vertex to be uniquelyedained by the intersection
of lines drawn from the adjacent vertices; s@é,[Fig. 3.1, p. 24]. The final side-length
conditions then add up t&y + - - - + K,, — 3 real equations. Thpositionsof Iy through
I',,, with respect tav are fixed by requiring that

f(z1,4) — f(20) = w1,i — wo

fori =0,...,m. These conditions givem + 2 real equations. The integration paths for our
example below withn = 3 are shown in Figur&.3 (left) as the three straight line segments
connecting andz; o = 1, 21,1, andz; 2. The circles and paths move during the iterations of
the solver and can be monitored. Finally, tméentationsof I'; throughl',,, (the orientation

of I'y is determined by the calculation 6f) are given by then real equations,

arg(f(z2,i) — f(21,4)) = arg(wa,; — w1,)
fori =0,...,m. Therefore, the side-length, position, and orientatiomditions give
Ko+ -+ Kp+3m-—1

real equations. This is exactly want is needed. Other Setexbf conditions are possible
and useful; for instance, the polygons and vertices can bebeted differently or different
integration paths between circles can be chosen. Howgéveimiportant that these equations
give a complete and independent set of conditions.

The constraintsg.1) on thefy, ;s are difficult to enforce. We therefore use a transforma-
tion to unconstrained variables similar ®g p. 25]. Letgy, ; = Ok41,i—0ki, k= 1,..., K.
Then the unconstrained variables are

(5.2) Vi = I DL fork=1,...,K, — 1.

1,i

Givend, ;, the transformationy.2) can be inverted by

L Yy e

(5.3) Ok, = 01, +2m —
BT ST N
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0.8f

0.6

0.4f

0.2f

F1G. 5.1. Schwarz-Christoffel map to a triply connected bounded gmipl domain with a Cartesian grid.
The map is normalized by fixing one boundary point and oneiéantpoint. Note that the upper inner circle maps to
the lower inner polygon.

for k = 2,..., K;. Our unconstrained parameters are, therefore,

01,5, V1,6, V2,5 VK~ 1,0

fori = 0,...,m. (Recall that, o = 0). The parameters are placed in a real vectoof
lengthn := Ky + --- + K., + 3m — 1 and the nonlinear equations form anx n system
F(X) =0, whereF(X) is the objective function for our nonlinear solver.

The solution for a polygon witln = 3 is shown in the figures. Figufe1shows the map
from the circle domain to the polygonal domain evaluated @adesian grid. Cartesian grids
are not necessarily the most natural grids for these magsSigure5.2, we plot a boundary-
fitted orthogonal grid mapped from a polar grid for the confafly equivalent radial slit disk
in Figure5.3(right). Clearly images of polar grids for mixed radial ariccalar slit disks and
annuli could also be used and might be appropriate for thec&ted boundary value prob-
lems. An indication of the accuracy of the mapping funct®given in Figures.4, where the
error || Xy — X n—1]| between solutionX y for successive levels of reflectionis plotted
againstV. The proof of convergence of the infinite product formulasSohwarz-Christoffel
maps [L7, 21] is similar to the proof above of convergence for the slit niapnulas. An
estimate similiar to%.1) is used and we have found i8] that C ZM:N r, gives a good
estimate of the errors. We illustrate this in Figéré. Also, we find in R3] that the sufficient
condition for convergencey < (m — 1)~'/4 for connectivitym, is not necessary in practice.
In such cases3(1) usually gives a good estimate of convergence, even thoogyecgence
may be very slow.

Although reasonable levels of accuracy can be achieveddimaihs of low connectivity
or small A by evaluation of truncated infinite products, for the geheese the reflections
will need to be replaced by much more efficient methods. Ori®wojfs to approximate the
factors in one of the alternative formulations in Theorérh using least squares based on
Laurent series, discussed below in SectioB Since series approximations of functions on
domains with very close-to-touching circles may be inaatejrultimately, some combination
of reflection and series methods, similar to that suggestéd,i will most likely be needed.
Some initial efforts are under developmentiri].
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0.8F

0.6

04

0.21

FiG. 5.2. Schwarz-Christoffel map to a triply connected bounded gmipl domain with a boundary-fitted
orthogonal grid from the radial slit disk map. The map is natized by fixing one boundary point and one interior
point. Note that the upper inner circle maps to the lower mpaygon.

objective function call #82

(m-1)""=08409 A=0.7941

0.06
1 0.04p

0.02

-0.02F
| -0.0at

1 -o.08f

-1
-1 -0.5 0

0.5

1

L L L n
-0.08 -0.06 -0.04 -0.02

FiG. 5.3. The integration paths (left) for the Schwarz-Chrstoffelpmia Figure 5.2 The orthogonal
grid for Figure 5.2 is the inverse image of the polar grid under the infinite prdmap from the circle do-
main to the radial slit disk (right). The connectivity 3shere and the convergence criteria is satisfied since

A =0.7941 < 2—1/4 = 0.8409.

10

10k

H
O‘

logIX,, - X, ,Il.)

,_.
O‘

FiG. 5.4.The log of the error in the parameters vs. the level of refbestiV for the example in Figuré.2fit

with logz‘u‘:N r, — c; see B.1).
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FI1G. 5.5.Maps from unbounded circle domain to radial and circulat dibmains exhibiting crowding

5.2. Crowding. In the words of Rudolf Wegmanr3§],

The behavior of conformal mapping depends on the local ptypa
smoothness—and the global property of shape.

On small scales a conformal mapping maps disks to disks, buarge
scales a disk can be mapped to any simply-connected bouegied y how-
ever elongated and distorted it may be. But it takes sometdfoa map-
ping which has such a strong tendency to map disks to disksafpa disk
to an elongated region. The mapping suffers, lying on a Rsiean bed,
and the numerical conformal mapper must share the pains.

Difficult cases for computing the maps occur (i) when arcs ofrele map to the ends
of boundaries of elongated regions and (ii) when the ciratesclose to touching. Some of
the first general estimates for (i), the so-caltedwding phenomemdor simply connected
domains, were given inlp, 24] based on Pfliger's Theorem. In this section, we remark
on (ii). How close the circles are to touching, though predeined by the geometry, is not
known in advance. Already in Halse®d, Figure 5], an example was given of (ii) for the map
from the exterior of three circles to the exterior of thremiltlosely-spaced, parallel ellipses.
Numerical examples are also given RP]. As in the simply connected case, the crowding of
the circles is due to elongated or narrow sections in theoretgi be mapped. Ir2P] we use
an estimate8, 37] of harmonic measure(0) with respect to O of, e.g., a boundary arc at
the outer edge of a wedge shaped region with p < R, 0 = 6(p),

8 R dp
u(0) < —exp <—7T/5 pe—(m> )

and similar results to derive asymptotic estimates of tistadicer between the conformally
equivalent circles as the distang¢er angled between the boundaries go to 0. Our estimates,
though somewhat heuristic, are close to the exact asyrapbethavior for explicit maps
(see B)) to parallel slits,r ~ 72d?/2, and to collinear slitsg ~ 8exp(—=r2/y/8r). Such
estimates may be interpreted as the probability that agbauiiti Brownian motion 28, 33
starting at 0 will exit the region through the given boundary. For instance, the probability
that the particle will exit through the, symmetric radial slitd < p < Rin Figure5.5(left) is
bounded by the harmonic measiigen/m) exp(—m In(R)/2) of the gaps in the conformally
equivalent circular arc domain, Figuge5 (right).

5.3. Laurent series/least squares methodslhe use of Laurent series with coefficients
determined by a least squares fit to the boundary conditi@assdiscussed inlp]. It was
demonstrated there that this method was an efficient atieerta the infinite product formu-
las for the map from the exterior of a circle domain to the gateof a radial slit domain.
We will present this method here for the map= f(z) from the bounded circle domain to
the radial slit half plane discussed above in Sec8dnand used in one of the factorizations
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in Theorem4.5. The formulation here is a slight variation of the approaclifli9] in order
to allow a zero and a singularity on one of the boundarigs,The conditions ory(z) from
Lemma3.2and Theoren®.3are, giveru, b € C;, a # b, that

1. f(b) =0andf(a) = oo and

2. f(z) satisfies the boundary conditiomsg f(z) = const.forz € C,,p =0,1,...,m.
For computation of the map, we write

for somey(z) analytic in the (bounded) circle domain. We repregeas the sum of the series
expansions,

oo m oo 4
9(z) =Y a0 +Y > %7%«
= (z = ¢p)

p=1/4=1

Now consider

log(f(2)) = log(z = b) —log(z — a) + g(2).

Sincearg f(z) = Im (log f(2)), the boundary conditions fgr £ i are

Im (log f(2)) = arg - :2 + Im(g(z)) = const.

z

or

—-b
Im g(z) = const. — arg - , forall z € C,,.
z—a

Forp = i, we recall Lemma&.2and express the boundary condition as

)
fe ((c - en ) o,
for z = ¢; + r;¢", where

b = s s = 1 - s o)

Therefore, following the proof of Theoref5, we have

Re (e -e ) =R (15 - T e e <o

and the boundary condition, using= ¢; + €, a = ¢; + ;% andb = ¢; + r;e'%, is

i0 i0
, _ e e 11
Summarizing, the boundary conditions may stated as

—b
(5.4) Im(g(z)) = const. — arg - , forallzeC,, p#i.

zZ—a
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and
(5.5) Re((z —¢i)g'(2)) =0, forallze C;.

Our aim is to calculate the serig$z) truncated to(m + 1)L terms for somel by a
matrix-vector multiplicationAz wherex = [, ] is a((m + 1)L x 1) column vector of the
coefficients ofg and A is given by

A=[" rf/(z— CP)Z}MX(W_H)L .

The factors oﬁ*f, prevent the production of large entriesdrwhen|z —¢,| < 1 and/ s large,
which leads to severe ill-conditioning of. The coefficients will be found using a linear
system of equations given by the boundary conditi@né) @nd 6.5).

Discretize by taking\/ equally spaced pointsaround each circl€’,, p = 0,1,...,m.

Define the matrices

Fy= [z r/(z— CP)Z}MX(m+1)L for ze€Cp, p#1,

and using
L m L Loy, o1
g =) ftaoez ™" 4+> 3
(=1 p=11=1 (2 —cp)
define
G=[lz=c)z""" —lz—ci)ry/(z— Cp)lil]Mx(erl)L for z€C.

With F}, = Fr, +iFj,,G = Gr +iGr andx = xr + iz, @ simple calculation shows that
Im(g(2)) =~ Fr,xr + Fr,zr onany C,
and
Re ((z — ¢i)g'(2))  Grzr — Grz; on C;.

The values ofm(f(z)) may not be known, but the differencebh(f(z)) for any pair
of points on a circle”,, p # i, is zero. Therefore, defining

-1 1
-1 1 (M—1)x M

for z € C,, we have

P [FIP FRP} [Z};:| =-r [arg E:Z](Mfl)xl

by the boundary conditiorb(4). By the boundary conditiorb(5), we also have

Tr

Gn G} 22| = [0].
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For the sake of exposition suppasé {0, m}. Define the coefficient matrices,

Fr, Fr,
F1771 FR'Lfl
FI¢+1 FRi+1
L I, (m+1)Mx (m+1)L L FRo | (m4+1)Mx (m+1)L

P (mA+1)(M=1)+1x(m+1)M

where the identity matrix occupies tlig block-row. This gives the system

arg

z—=b
z—a

z—b
z—a

arg

which can be solved efficiently with the MLAB backslash operator. A computed example
with m = 2 radial slits andL = 16 terms in the series (similar to Figuf1 using the
product formula) is shown in Figure.6. A listing of the least squares code for the exterior
radial slits was included in1[9]. A comparison of the efficiency and accuracy of the series
approach and the infinite product approach and the use oktiessapproximations for the
Schwarz-Christoffel computations will be undertaken itufe work.

Acknowledgment. We thank one of the referees for requesting changes whiehgtn-
ened the paper significantly.
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