
Electronic Transactions on Numerical Analysis.
Volume 36, pp. 195-223, 2010.
Copyright  2010, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 

http://etna.math.kent.edu

SLIT MAPS AND SCHWARZ-CHRISTOFFEL MAPS
FOR MULTIPLY CONNECTED DOMAINS ∗

THOMAS K. DELILLO† AND EVERETT H. KROPF†

Dedicated to Richard Varga on his 80th birthday
and to the memory of Dieter Gaier and their Oberwolfach meetings

on Constructive Methods in Complex Analysis.

Abstract. We review recent derivations of formulas for conformal mapsfrom finitely connected domains with
circular holes to canonical radial or circular slit domains. The formulas are infinite products based on simple reflec-
tion arguments. An earlier similar derivation of the Schwarz-Christoffel formula for the bounded multiply connected
case and recent progress in its numerical implementation are also reviewed. We give some sample calculations with
a reflection method and an estimate of its accuracy. We also discuss the relation of our approach to that of D. Crowdy
and J. Marshall. In addition, a slit map calculation using Laurent series computed by the least squares method in
place of the reflection method is given as an example of a possible direction for future improvements in the numerics.
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1. Introduction. Conformal mapping has been a topic of theoretical interest and a use-
ful tool for solving boundary value problems of classical potential theory in the plane for
over 100 years. With the development of modern computers, many numerical methods have
been proposed for approximating conformal maps. The books by Gaier [27] and Henrici [30]
provide introductions to this field. The survey paper by Wegmann [38] and the book on
Schwarz-Christoffel mapping by Driscoll and Trefethen [26] review more recent work espe-
cially relevant to computations. In spite of the ability of today’s computers to solve many
fully three dimensional problems, there is a continuing interest in these inherently two di-
mensional methods of function theory due the power of the techniques and the clarity of the
understanding that they bring to many important applications.

In the last several years there have been a number of advancesin methods for multiply
connected domains; see, e.g., [3, 38]. In particular, the Schwarz-Christoffel transformation
for domains with polygonal boundaries has been extended to to multiply connected domains
in [17, 20, 21] using reflection arguments and in [8, 9] using the closely related Schottky-
Klein prime function; see also [10]. These results were the topic of a recent article in SIAM
Review [6]. The methods use multiply connected domains with circularboundaries as their
computational domains and involve infinite products. Explicit formulas for conformal maps
from the circular domains to the canonical slit domains [34, 35] for the multiply case case
can be derived using the same techniques [13, 19]. Canonical slit maps can be used to repre-
sent Green’s functions for the Dirichlet, Neumann, and mixed boundary value problems for
the Laplace equation in multiply connected domains; see [14]. One advantage of using cir-
cle domains is the possibility of using fast computational methods based on Fourier/Laurent
expansions centered at the circles.

In this paper, we review these results for multiply connected polygonal and slit domains
and attempt to clarify some of the relations among the alternative approaches. We will discuss
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mainly the case of bounded multiply connected domains. The results for unbounded domains
are similar and most of them have already been treated in the references. In Section2, we
recall some useful preliminary facts about conformal maps and reflections in circles. We
include a listing of a simplified version of our MATLAB code for calculating these reflections.
All of the computed examples in this paper, except for the Laurent series example in the last
section, are performed using variations of this reflection algorithm. Section3 discusses maps
to canonical circular and radial slit domains. As an exampleof our techniques, we derive
the formula for the map from a disk with circular holes to a half plane with radial slits. The
derivation is based on extension of analytic functions by Schwarz reflection through circular
arcs and radial slits leading to infinite product formulas. Alisting of a short MATLAB code
for computing this map is given. We prove that the products converge and satisfy the required
boundary conditions, namely, that the arguments of the map on the circles are constant. The
convergence is based on an estimate of the rate at which the reflected circles shrink. We
also relate the slit maps to the Schottky-Klein prime function. In addition, we give a brief
discussion of Green’s functions, which, for circular domains, can be given explicitly in terms
of our product formulas for maps to circular slit disks and rings. In Section4, we discuss
the Schwarz-Christoffel map to multiply connected polygonal domains. The derivative of the
map is represented as an infinite product based on reflections. We suggest some alternative
representations of this transformation which may allow us to replace the infinite products
with finite products yielding a completely general formula.These alternatives are based on
the maps to radial slit half planes derived in Section3. In Section5, we review recent progress
on the numerical implementation of the Schwarz-Christoffel transformation [23]. (We only
discuss the cases of connectivity greater than2, since the simply and doubly connected cases
have been thoroughly treated elsewhere by somewhat more specialized techniques.) We give
a practical error estimate in terms of the radii of the reflected circles. We also discuss some
potential difficulties; for instance, in cases where slits or polygonal boundaries form narrow
channels, the corresponding circles in the computational domain are close-to-touching. This
may be thought of as a form of thecrowding phenomenon[16, 24] for multiply connected
domains. In the final subsection, we discuss a method for computing maps to radial slit
half-planes using least squares to find a Laurent series approximation to the map satisfying
the boundary conditions. We expect that such techniques will lead to improvements in our
numerical solutions.

2. Preliminaries. In the cases below, we are seeking a conformal mapf from D, the
interior of the unit disk,D0, minusm closed nonintersecting disks,Dk, in the interior ofD0,
onto a regionΩ with exterior boundary,Γ0, andm nonintersecting interior boundary curves,
Γk, 1 ≤ k ≤ m. Therefore, theconnectivityof D andΩ is m + 1. For the slit maps in
Section3, Ω will be a half-plane (or disk),Γ0 will be a straight line through the origin (or the
unit circle), and theΓk ’s, k 6= 0 will be radial or circular slits. For the Schwarz-Christoffel
maps in Section4, Γ0 will be the outer polygonal boundary and theΓk’s, k 6= 0, will be the
inner polygonal boundaries. The boundaries of the circulardisks,Dk, are the circles,Ck, with
centers,ck(= sk), and radii,rk, and are parametrized byCk : ck+rke

iθ. The boundary ofD
is thusC = C0 +C1 + · · ·+Cm. The boundary ofΩ is Γ = Γ0 +Γ1 + · · ·+Γm. f extends to
the boundary,f(Ck) = Γk. If Ω is given, then fixing the value ofw = f(z) at three boundary
points on the unit circleC0 or at an interior point and one boundary point uniquely determines
the mapf and the other circlesCk, k 6= 0 [30, 34]. (For the unbounded case, the outer
boundariesD0 andΓ0 are not included, the connectivity ism, andw = f(z) = O(z), z ≈ ∞.
In this case, fixingw = f(z) = z + O(1/z), z ≈ ∞ uniquely determines the map and the
circles. In either case, the domains are conformally equivalent to an annulus with circular slits
(or holes) [34]. For connectivitym = 2, there is one conformal modulus, the ratio of the outer
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FIG. 2.1.N = 2 levels of reflected circles and zeros (·) and poles (x) on the outer boundary for the map to the
radial slit half-plane in Figure3.1. The outer unit circle and its reflections are plotted with dashed boundaries.

to inner radii. Form = 3, two more moduli are needed to determine the length and radius of
the circular slit (or center and radius of the circular hole), since the annulus can be rotated to
place the tip of the slit (or center of the hole) on the positive real axis. For connectivitym > 3,
each additional slit (or hole) is determined by three real parameters: its length, radius, and tip
location (or center and radius). Therefore, for connectivity m ≥ 3 the number of conformal
moduli needed to uniquely determine the class of conformally equivalent domains is3m− 6.
We will mainly discuss the cases of connectivitym ≥ 3 here, since the simply and doubly
connected cases are thoroughly treated in [26, 30].)

Next, we introduce notation and recall basic facts about reflections in circles from [17,
18, 21]. Thereflectionof z through a circleCk with centerck and radiusrk is given by

ρk(z) = ρCk
(z) := ck +

r2k
z − ck

.

The set of multi-indices of lengthn will be denotedσn := {ν1ν2 · · · νn : 0 ≤ νk ≤ m,
νk 6= νk+1, k = 1, ..., n− 1}, n > 0, andσ0 = φ, in which caseνi = i. Note that consec-
utive indices are not equal, since two consecutive reflections through the same circle is just
the identity,ρk(ρk(z)) = z. In addition,σn (i) = {ν ∈ σn : νn 6= i} denotes sequences inσn
whose last factor never equalsi, e.g., form+1 = 3,σ3 = {010, 012, 020, 012, 101, 102, . . .} ,
σ3(0) = {101, 121, 012, . . .} . The following lemma [21, Lemma 1] says thatν just indexes
successive reflections through theCk ’s.

LEMMA 2.1.aν = ρν1(ρν2(· · · (ρνn−1
(aνn

)) · · · )) for ν = ν1ν2 · · · νn ∈ σn.

Similarly, reflections of a circleCk will be also be circles denoted byCνk = ρν(Ck)
with centers and radii denotedcνk andrνk, respectively. Our figures are produced with a
MATLAB code which performs all reflections to leveln = N . The reflections to two levels
N = 2 of m + 1 = 3 circles and two points on the boundary of the unit circle are shown
in Figure2.1. Note that the number of new reflections of theaν ’s at a given level ism times
that at the previous level.

Here is a simplified MATLAB code illustrating the reflection procedure and used to pro-
duce Figures2.1and3.1.
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ALGORITHM 2.2.
function [anu,cnu,rnu,jla,jlr] = reflect_circ(a,c,r,N)
% This code reflects circles through each other N times
% cnu(nu,j) = center of reflection nu of circle j
% rnu(nu,j) = radius of reflection nu of circle j
% anu(k,nu,j) = reflections of a(k)
% jlr(nu,j) = leading index = index of circle of last reflecti on
m = length(r); cnu(1,1:m)=c; snu=cnu; rnu(1,1:m)=r; ma = le ngth(a);
anu(1,1:ma) = a; % place vector a in first row of anu
jla(1)=1;
for j=1:m

jlr(1,j)=j;
end

num = 0;
for level=1:N

nul = num+1;
if m ˜= 2

num = ((m-1)ˆlevel - 1)/(m-2);
elseif m == 2

num = nul;
end

nuja=num; nujc(1:m)=num * ones(1,m);
for nu = nul:num

for jl=1:m
if jl ˜= jla(nu) % do not reflect over same circle twice in a row

nuja=nuja+1;
jla(nuja)=jl;

% reflect a_nu thru C_j1
anu(nuja,1:ma)= c(jl) + r(jl)ˆ2./conj(anu(nu,1:ma) - c(j l));

end
for j=1:m

if jl ˜= jlr(nu,j) % do not reflect over same circle twice in a r ow
nujc(j)=nujc(j)+1;
jlr(nujc(j),j)=jl; % save index of current reflection

% compute centers and radii of reflected circles:
cnu(nujc(j),j) = c(jl) + r(jl)ˆ2 * (cnu(nu,j) - c(jl)) ...

/(abs(cnu(nu,j) - c(jl))ˆ2 - rnu(nu,j)ˆ2);
rnu(nujc(j),j) = ...

r(jl)ˆ2 * rnu(nu,j)/abs(abs(cnu(nu,j) - c(jl))ˆ2 - rnu(nu,j)ˆ2);
end

end
end

end
end

In order to state our convergence results, we need the following definition and lemma.
Theseparation parameterof the region is

∆ := max
i,j;i6=j

ri + rj
|ci − cj |

< 1, 0 ≤ i, j ≤ m,
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for the assembly ofm + 1 mutually exterior circles that form the boundary ofΩ; see [30,
p. 501]. (Our∆ is actually defined byC0 and the first reflections of the interiorCk ’s, k 6= 0,
throughC0.) Let C̃j denote the circle with centercj and radiusrj/∆. Then geometrically,
1/∆ is the smallest magnification of them radii such that at least twõCj ’s just touch. Our
proof of convergence of the infinite products is based on estimating how fast the successively
reflected circles shrink. For this estimate, we use the following inequality from [30, p. 505].

LEMMA 2.3.

∑

ν∈σn+1

r2ν ≤ ∆4n
m∑

i=0

r2i .

3. Slit maps. This section uses simple reflection arguments to derive infinite product
formulas for the maps from circular domains to canonical circular and radial slit domains;
see [34]. These techniques were used in [19] to derive the maps for unbounded domains.
Convergence of the infinite products is proven if the circlesare sufficiently well-separated.
We will present the details only for the map from a bounded circle domain to a radially slit
half plane where selected points on a circle are mapped to 0 and ∞. This case has not been
treated in detail before. However, the methods we use are quite similar to our previous results
for the slit maps [19] and Schwarz-Christoffel maps [17, 21] and will serve to illustrate our
proofs for this overview paper. We also derive an expressionfor the radial slit map in terms of
the Schottky-Klein prime function. This expression allowsus to relate our formulas to those
of [13, 14], where the canonical maps and the related Green’s functions are given in terms of
Schottky-Klein prime functions [2]. The formulas for other canonical maps are stated without
proofs.

3.1. Radial slit map-bounded case.In this section, we discuss the mapw = f(z) from
interior of a disk with circular holes to the a half plane withthe origin on boundary and with
slits radial with respect to the origin; see Figure3.1. We will show that, for circle domains
satisfying our separation criterion, the map can be represented by an infinite product formula.
This map will be useful as a basic factor in our derivation of an alternative representation of
the Schwarz-Christoffel transformation for multiply connected domains in Section4, follow-
ing in the framework of [26].

The idea for the product formula for the map is based on a simple reflection argument.
Let w = f(z) map a bounded circle domain of connectivitym to an unbounded radial slit
domain. Leta andb be the two distinct points on one of the circles such thatf(a) = ∞ and
f(b) = 0. By the Reflection Principle we can extendf to thez−plane. Since reflections
across the radial slits in thew−plane will just leave0 and∞ fixed, reflectionsbν = ρν(b) of
b will be all of the (simple) zeros and reflectionsaν = ρν(a) of a will be all of the (simple)
poles off . The function therefore has the form

f(z) = C
∏

ν

z − ρν(b)

z − ρν(a)
.

A M ATLAB code implementing this formula is given in Algorithm3.1, which uses Algo-
rithm 2.2.
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ALGORITHM 3.1.
% reflect_circ_driver.m % brief code for map to slit half-pl ane
% centers c and radii r of m mutually exterior circles
m=3; c(1)=0; r(1)=1; c(2)=.5 * i; r(2)=0.2; c(3)=-.5; r(3)=.25;
theta_0=3 * pi/4; theta_inf=0; % arg of pts mapped to 0 and \infty
a = [exp(i * theta_inf) exp(i * theta_0)];
N = 4; % compute N levels of reflections:
[anu,cnu,rnu,jla,jlr] = reflect_circ(a,c,r,N);

z(1,:) = cnu(1,1)+rnu(1,1) * exp(i * (theta_inf+2 * pi * [1:101]/102));
for j=2:m

z(j,:) = cnu(1,j)+rnu(1,j) * exp(i * 2* pi * [0:100]/100);
end
% evaluate product formula for map on circles:

zprod = ones(size(z));
for nu = 1:length(anu(:,1))

zprod = zprod. * (z-anu(nu,2))./(z-anu(nu,1));
end
for j=1:m

plot(real(zprod(j,:)),imag(zprod(j,:))); % plot map
hold on; axis equal;

end
We will now prove these statements. Our proof is similar to the proof of the Schwarz-

Christoffel formula in [21], but easier. Note that, if a radial slit in thew-plane is at angleθ,
thenw reflects toei2θw. Therefore, an even number successive reflections through radial slits
will take w = f(z) to Aw = Af(z), for someA with |A| = 1. As a result, the extended
functionf ′(z)/f(z) = Af ′(z)/Af(z) is invariant under even numbers of reflections and is
single-valued. (For the case of the multiply connected Schwarz-Christoffel map, below the
preSchwarzianf ′′(z)/f ′(z) is invariant under reflections, and we used this same “methodof
images” to construct a singularity function,S(z) = f ′′(z)/f ′(z), as an infinite sum satisfying
appropriate boundary conditions.) Here, our singularity function is

S(z) = f ′(z)/f(z) =
d

dz
log f(z) =

∑

ν

(
1

z − ρν(b)
− 1

z − ρν(a)

)

=
∑

ν

(
ρν(b) − ρν(a)

(z − ρν(a))(z − ρν(b))

)
.

Sincef(z) maps to radial slits,arg f(z) =constant, forz ∈ Ck. This boundary condition is
given in the following lemma.

LEMMA 3.2. Re{(z − ck)f
′(z)/f(z)} = 0, z ∈ Ck.

Proof. Forz ∈ Ck, we havez = ck + rke
iθ and sincef(z) maps to radial slits, we have

arg f(z) =const. Therefore,

0 =
∂

∂θ
arg f(z) =

∂

∂θ
Im log f(ck + rke

iθ) = Im irke
iθ f

′

f
= Re rke

iθ f
′

f
(ck + rke

iθ).

We show below thatS(z) satisfies this condition and that, indeed,f ′(z)/f(z) = S(z).
We now state our main theorem for radial slit maps.
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FIG. 3.1. Conformal mapw = f(z) from the unit disk withm = 2 circular holes (top) to a radial slit
half-plane withN = 2 (lower left) andN = 4 (lower right) reflections using Algorithm3.1. Note that increasing
N causes the slits to close.

THEOREM 3.3. Let Ω be an unboundedm + 1-connected radial slit upper half-plane
andD a conformally equivalent bounded circular domain,a, b ∈ C0. Further, supposeΩ
satisfies the separation property∆ < m−1/4, for m ≥ 1. ThenD is mapped conformally
ontoΩ byf with f(b) = 0 andf(a) = ∞ if and only if

f(z) = C

∞∏

j=0

ν∈σj(0)

z − ρν(b)

z − ρν(a)

for some constantC.
Proof. Once we establish thatSN (z) converges toS(z) and satisfies the boundary condi-

tion, we can show thatf(z) = C exp(
∫
S(z)dz). The proof follows closely the proof in [19].

In fact, by mapping the circle to the upper half-plane and extending the map and the image
slit half-plane to a full plane with2m radial slits by reflection across the real axis, we may
just use the proof in [19]. We omit the details.

The proof of convergence of theSN (z) also closely follows [19, Theorem 3.3]. We will
show that the sums truncated toN levels of reflection,

SN (z) =

N∑

j=0

ν∈σj(0)

(
1

z − ρν(b)
− 1

z − ρν(a)

)
,
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converge uniformly toS(z) for z ∈ Ω asN → ∞, provided the circles satisfy our separation
condition. (In the special case whenm+ 1 = 2, there is no restrictive separation hypothesis,
since then∆ < m−1/4 = 1 is equivalent to the fact that the two boundary components are
disjoint.)

We now prove the convergence ofSN (z) to S(z) for sufficiently well-separated circles.
For j = 0, 1, 2, . . . , we write

Aj (z) =
∑

ν∈σj(0)

(
1

z − bν
− 1

z − aν

)
=

∑

ν∈σj(0)

bν − aν
(z − aν)(z − bν)

and hence, in brief notation,

SN (z) =

N∑

j=0

Aj(z), S(z) := lim
N→∞

SN (z).

Let

δ = δΩ = inf
z∈Ω

{|z − aν |, |z − bν | : |ν| ≥ 0} .

Then, clearlyδ > 0 holds since theaν ’s and thebν ’s lie inside the circles for|ν| 6= 0.
We have the following result.
THEOREM 3.4. For connectivitym ≥ 1, SN (z) converges toS(z) uniformly onΩ

satisfying the estimate,

|S(z) − SN (z)| = O((∆2
√
m)N+1),

for regions satisfying the separation condition,

∆ <
1

m1/4
.

Proof. Note that the number of terms in theAj(z) sum isO(mj). This exponential
increase in the number of terms is the principal difficulty inestablishing convergence. Recall
that rν is the radius of circleCν . We boundAj(z) for z ∈ Ω by using the inequality
|aν − bν | < 2rν . First, note that

(3.1) |Aj(z)| ≤
∑

ν∈σj(0)

|aν − bν |
|z − aν ||z − bν |

≤ 2

δ2

∑

ν∈σj(0)

rν ,

whereδ = δΩ. (In practice, the sum of therν ’s above at thej = N th level gives a good esti-
mate of the truncation error. We will give an example of this below for a Schwarz-Christoffel
map.) In order to prove convergence, we estimate the rate of decrease of therν ’s using
Lemma2.3and the Cauchy-Schwarz inequality,

∑

ν∈σj(0)

rν ≤



∑

ν∈σj(0)

r2ν




1/2

∑

ν∈σj(0)

1




1/2

=



∑

ν∈σj(0)

r2ν




1/2

mj/2

≤ ∆2j

(
m∑

i=0

r2i

)1/2

mj/2 ≤ C∆2jmj/2.
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Therefore, the series converges if∆2
√
m < 1.

The proof thatf(z) defined by the (convergent) infinite product formula satisfies the
boundary conditions in Lemma3.2 is nearly identical to [19, Theorem 3.4]. Again, we will
use the formula

(3.2) Re

{
w

w − 1
+

w∗

w∗ − 1

}
= 1,

wherew andw∗ = 1/w are symmetric points with respect to the unit circle. Then the
following theorem gives the result. We prove the theorem fora, b ∈ Ci for arbitraryi, but we
can assumei = 0 andCi = C0 is the unit circle, without loss of generality.

THEOREM 3.5. If ∆ < m−1/4, then forz ∈ Ck ,

Re {(z − ck)SN (z)} = O((∆2√m)N )

and

Re {(z − ck)S(z)} = 0.

Proof. The idea of the proof is, forz ∈ Cp, p 6= i, to use properties of the reflections,
bpν = ρp(bν), to group terms inSN(z) related by reflectionρp throughCp with z ∈ Cp as
follows:

SN (z) =

(
1

z − b
+

1

z − bp

)
−
(

1

z − a
+

1

z − ap

)
+ · · ·

+

(
1

z − bν
+

1

z − bpν

)
−
(

1

z − aν
+

1

z − apν

)
+ · · · .

Then, multiplying byz − cp and denotingai := a, bi := b, we have in more detail,

(z − cp)SN (z) =
(z − cp)/(bi − cp)

(z − cp)/(bi − cp) − 1
+

(z − cp)/(bpi − cp)

(z − cp)/(bpi − cp) − 1

− (z − cp)/(ai − cp)

(z − cp)/(ai − cp) − 1
+

(z − cp)/(api − cp)

(z − cp)/(api − cp) − 1

+

N−1∑

j=2

∑

ν∈σj(i),
νi,ν1 6=p

(
(z − cp)/(bνi − cp)

(z − cp)/(bνi − cp) − 1
+

(z − cp)/(ρp(bνi) − cp)

(z − cp)/(ρp(bνi) − cp) − 1

)

−
N−1∑

j=2

∑

ν∈σj(i)
νi,ν1 6=p

(
(z − cp)/(aνi − cp)

(z − cp)/(aνi − cp) − 1
+

(z − cp)/(ρp(aνi) − cp)

(z − cp)/(ρp(aνi) − cp) − 1

)

+ (z − cp)

m∑

j=1,
j 6=p

∑

jν∈σN (i)

(
bjν − ajν

(z − ajν)(z − bjν)

)
.(3.3)

We take the real part of the above expression and, using, for instance,
w = (z − cp)/(aνi − cp) and noting thatw∗ = (z − cp)/(ρp(aνi) − cp), (3.2) gives

Re

{
(z − cp)/(aνi − cp)

(z − cp)/(aνi − cp) − 1
+

(z − cp)/(ρp(aνi) − cp)

(z − cp)/(ρp(aνi) − cp) − 1

}
= Re

{
w

w − 1
+

w∗

w∗ − 1

}
= 1.
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Taking the real part of (3.3), we see that the first four lines sum to 0. The finalm terms, all
lying inside circlesCj , j 6= p, approximate the truncation error and are bounded by

∑

ν∈σn+1

r2ν ≤ ∆4N
m∑

i=0

r2i .

This gives

Re {(z − cp)SN (z)} = O(
√
m(∆2NmN/2).

Next we prove the boundary condition forz = ci + rie
iθ ∈ Ci. (In our casei = 0 and

Ci = C0 is the unit circle,ri = 1, ci = 0. However, this is not necessary in general.) Using
z = ci + rie

iθ, a = ai = ci + rie
iθa ∈ Ci, andb = bi = ci + rie

iθb ∈ Ci, we have

(z − ci)SN (z) =

(z − ci)

[
1

z − bi
− 1

z − ai
+ · · · +

(
1

z − bνi
+

1

z − biνi

)
−
(

1

z − aνi
+

1

z − aiνi

)
+ · · ·

]

=
z − ci
z − bi

− z − ci
z − ai

+ · · · +
(

(z − ci)/(bνi − ci)

(z − ci)/(bνi − ci) − 1
+

(z − ci)/(biνi − ci)

(z − ci)/(biνi − ci) − 1

)

−
(

(z − ci)/(aνi − ci)

(z − ai)/(aνi − ci) − 1
+

(z − ci)/(aiνi − ci)

(z − ci)/(aiνi − ci) − 1

)
+ · · · .

Taking the real parts, we get our boundary condition,

Re {(z − ci)SN (z)} = Re

{
eiθ

eiθ − eiθb

}
− Re

{
eiθ

eiθ − eiθa

}
+ (1 − 1) + (1 − 1) + · · ·

= Re

{
ei(θ−θb)/2

ei(θ−θb)/2 − e−i(θ−θb)/2

}
− Re

{
ei(θ−θa)/2

ei(θ−θa)/2 − e−i(θ−θa)/2

}

= Re

{
1

2
− i

2
cot

θ − θb
2

}
− Re

{
1

2
− i

2
cot

θ − θa
2

}

=
1

2
− 1

2
= 0.

REMARK 3.6. The case of the map from the unbounded circle domain containing∞
to the unbounded radial slit domain, with b in the domain andf(b) = 0, was treated
in [19]; see Figure5.5 (left). The formula is nearly identical to the bounded case above,
except thatf(a) = ∞ is replaced byf(∞) = ∞, and hence, for any reflection of a center
ρνk(∞) = ρν(ck) = sνk, we havef(sνk) = ∞. The infinite product formula is then

f(z) = (z − b)

m∏

k=1

∞∏

j=0

ν∈σj(k)

z − ρν(bk)

z − ρν(ck)
.

3.2. The Schottky-Klein prime function. Crowdy [8, 9] expresses his formula in terms
of Moebius mapsθj(z) which generate theSchottky groupassociated with the bounded, cir-
cular domains. Here, we relate his maps to our reflections, asin [17]. Crowdy defines the
maps,

φj(z) := cj +
r2j

z − cj
and θj(z) := φj(1/z) = φj(1/z) = cj +

r2j
1/z − cj

.
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In terms of our reflectionsρj , j 6= 0, it’s easy to see thatφj(z) = ρj(z) = ρCj
(z) and

θj(z) = φj(1/z) = ρj(ρ0(z)), whereρ0(z) = 1/z = reflection through the unit circleC0.
Note thatθ−1

j = ρ0ρj.

The full Schottky groupΘ consists of all products of theθi’s andθ−1
i ’s where

θi(z) =
aiz + bi
ciz + di

and θ−1
i (z) =

diz − bi
−ciz + ai

with aidi − bici = 1.

Therefore,Θ is the Moebius group generated by all compositions of the basic θj = ρjρ0

and their inverses. Theθi(zk,j) generate exactly the reflections,zk,νj , of the preverticeszk,j
used in the formulas in Section4. For instance, using our reflection notation and the fact that
ρ2
j = id (the group of reflections is a “free” group), we have

zk,102320 = ρ1ρ0ρ2ρ3ρ2(zk,0) = ρ1ρ0ρ2ρ0ρ0ρ3ρ2ρ0(zk,0) = θ1θ2θ
−1
3 θ2(zk,0).

TheSchottky-Klein (SK) prime functionsused by Crowdy are

(3.4) ω(z, γ) := (z − γ)ω′(z, γ) = (z − γ)
∏

θi∈Θ′′

(θi(z) − γ)(θi(γ) − z)

(θi(z) − z)(θi(γ) − γ)
,

whereθi ∈ Θ′′ involve all compositions of the “forward” mapsθj = ρjρ0 giving “half”
of the Schottky groupΘ, andΘ′′ does not include anyθ−1

i or the identity map,id; see [2,
Chapter 12]. The relation between the slit maps and the Schottky-Klein prime functions
from [17] is given by the following theorem, which explicitly statesthe relation of the ratios
of the SK prime functions to radial slit maps. The theorem gives an alternate representation
of ratios of Schottky-Klein prime functions using the full Schottky groupΘ.

THEOREM 3.7. ] If ∆ < m−1/4, then the infinite products converge and

ω(z, a)

ω(z, b)
= C(a, b)

∏

θi∈Θ

z − θi(a)

z − θi(b)
,

whereC(a, b) is a ratio of integration constants. Therefore, fora, b ∈ Ci,

ω(z, a)

ω(z, b)
= C

∏

ν

z − ρν(a)

z − ρν(b)

is aslit mapto a half-plane with radial slits, and so

arg
ω(z, a)

ω(z, b)
= constant

for z ∈ Cj , j = 0, . . . ,m.
Proof. A proof of this of is given in [17], based on a calculation in [4, 5]. Here, we give

a shorter, alternate proof suggested by a referee of [17, Remark 2]. The idea is to shift the
Moebius transformations,θi, from z to γ in (3.4), so that the infinite product can be taken
over the entire Schottky group,Θ. This is accomplished using the calculations,

γ − θi(z) = γ − aiz + bi
ciz + di

=
ciγz + diγ − aiz − bi

ciz + di

=

(
ciγ − ai
ciz + di

)(
z − diγ − bi

−ciγ + ai

)

=

(
ciγ − ai
ciz + di

)
(z − θ−1

i (γ))
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and

z − θi(z) =

(
ciz − ai
ciz + di

)
(z − θ−1

i (z))

=

(
ciz − ai
ciz + di

)(
z +

diz − bi
ciz − ai

)

=

(
ci

ciz + di

)
(z −Ai)(z −Bi),

whereAi, Bi are distinct fixed points ofθi, Ai = θi(Ai), Bi = θi(Bi). Substituting these
results intoω in (3.4), gives

ω(z, γ) = (z − γ)
∏

θj∈Θ′′

(z − θj(γ))(γ − θj(z))

(z − θj(z)(γ − θj(γ))

= (z − γ)
∏

θj∈Θ′′

(cjγ − aj)(z − θj(γ))(z − θ−1
j (γ))

cj(z −Aj)(z −Bj)(γ − θj(γ))

= K(γ)
∏

θj∈Θ′′

1

(z −Aj)(z −Bj)

∏

θj∈Θ

(z − θj(γ)),

where

K(γ) :=
∏

θj∈Θ′′

(cjγ − aj)

cj(γ − θj(γ))
,

giving finally

ω(z, a)

ω(z, b)
=
K(a)

K(b)

∏

θj∈Θ

z − θj(a)

z − θj(b)
.

If a ∈ Ci andb ∈ Ci, by the observations at the beginning of this subsection, wecan replace
theθj(a)’s by the corresponding reflections,ρν , i.e.,θj(a) = ρν(a) andθj(b) = ρν(b). This
just yields our formula for the map to a radially slit half plane.

REMARK 3.8. Crowdy and Marshall [15] give a Laurent series method for evaluating
the prime function for general circle domains where the convergence condition above need
not hold. In Section5.3, we discuss a similar method for the map to a radial slit half plane.

REMARK 3.9. In [26, pp. 65–68], the annulus map is derived by taking successive
products of maps that gradually “straighten” the circles. Here, we “unwrap” that derivation
and show that, in the general multiply connected case, it just leads to our radial slit map,
above. We will illustrate this process on an annulus where the outer boundary is the the unit
circleC0 for the factors that take prevertexzk,0 to 0 and 1 to∞. We will denote the succesive
straightening factors bygk,ν0. The first factor is

gk,0(z) =
1 − z/zk,0

1 − z
=

z − zk,0
zk,0(z − 1)

.

We can ignore constant factors like thezk,0 in the denominator above, since they all be ab-
sorbed in a multiplicative constant in the end.gk,0(z) straightens out the 0 circle, but distorts



ETNA
Kent State University 

http://etna.math.kent.edu

CONFORMAL MAPS FOR MULTIPLY CONNECTED DOMAINS 207

FIG. 3.2. The mapw = f(z) with m + 1 = 3 andf(a) = 0 from the interior circle domain to the interior
circular slit (unit) disk using product formula withN = 4 levels of reflection. The modified (hydrodynamic) Green’s
function is given bylog |f(z)/f(z0)| for somez0 ∈ C0. Heref(C0) =outer circle. In Nehari’s notation [34],
R0(z; a) = f(z)/f(z0).

the other circles in the process. To cancel out this effect and straighten the image of circle 1
into a list, we multiply by

gk,10(z) = gk,0(ρ1(z)) = gk,0

(
c1 +

r21
z − c1

)

=


 c1 +

r2
1

z−c1
− zk,0

zk,0

(
c1 +

r2
1

z−c1
− 1
)


 =

r21
z−c1

− (zk,0 − c1)

zk,0

(
c1 +

r2
1

z−c1
− 1
)

=

(
zk,0 − c1
zk,0(1 − c1)

)


z −

(
c1 +

r21
zk,0

)

z −
(
c1 +

r2
1

1−c1

)



 =

(
zk,0 − c1
zk,0(1 − c1)

)(
z − ρ1(zk,0)

z − ρ1(1)

)
.

Continuing this process, we get a constant multiple of our slit map,

f(z) = C′gk,0(z)gk,10(z) · · · = C
(z − zk,0)(z − ρ1(zk,0)) · · ·

(z − 1)(z − ρ1(1)) · · · = C
∏

ν

z − ρν(zk,0)

z − ρν(1)
,

which is just the map in Theorem3.3with a = 1, b = zk,0, and the reflections taken over the
two concentric circular boundaries of the annulus. This example illustrates the fact that our
formulas are, in effect, just the “method of image” with successive reflections of zeros and
singularities applied to impose desired boundary behavior.

3.3. Circular slit map. These maps were derived in [19] for the unbounded case; see
Figure3.2for the bounded case and Figure5.5(right) for the unbounded case. The formulas
are identical. To get the bounded map, one just evaluates theformula forz in the bounded
circle domain interior to one of the circles. To get the unbounded map, one evaluates the
formula for z in the unbounded circle domain. The mapw = f(z) from the (un)bounded
circle domain to the conformally equivalent, (un)bounded circular slit domain with the slits
centered at the origin can be derived in a similar fashion to the radial slit map. Once again
f(a) = 0 andf(∞) = ∞ with f(z) ∼ z, z ≈ ∞. Again,ak = ρk(a) is the reflection ofa
across circleCk andck = sk = ρk(∞), the center of circleCk, is the reflection of∞ across
Ck. In thew-plane 0 and∞ just reflect back and forth to each other. Therefore, when we
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FIG. 3.3.Map to combined radial and circular slit domain.

extendf , we will havef(ak) = ∞ andf(ck) = 0. In this way, we see that all odd numbers
of reflections,aνok, |νo| = 2l + 1, of ak and all even numbers of reflections,sνek, |νe| = 2l,
of ck will be simple zeros,f(aνok) = f(sνek) = 0. Likewise, all odd numbers of reflections,
sνok, |νo| = 2l + 1, of ck and all even numbers of reflections,aνek, |νe| = 2l, of ak will be
simple poles,f(aνek) = f(sνok) = ∞. The infinite product forw = f(z) therefore has the
form,

f(z) = (z − a)

m∏

k=1

∞∏

j=0

νe,νo∈σj(k)

(z − ρνo
(ak))(z − ρνe

(ck))

(z − ρνe
(ak))(z − ρνo

(ck))
,

(where reflections back toa or ∞ are excluded from the product) withf(a) = 0, provided
them circles with centersck satisfy our standard separation criterion.

Following [19], we note that, if a circular slit in thew-plane is at radiusr1, thenw
reflects tor21/w. Reflection through another circular slit with radiusr2 will then takew to
(r2/r1)

2w, and so on. Therefore, an even number successive reflections through circular slits
will take w = f(z) to Aw = Af(z), for someA real. As a result, the extended function
f ′(z)/f(z) = Af ′(z)/Af(z) is invariant under even numbers of reflections and hence is
single-valued. Here, our singularity function is

S(z) = f ′(z)/f(z) =
d

dz
log f(z) =

1

z − a
+

m∑

k=1

∞∑

j=0

νe,νo∈σj(k)

(
1

z − ρνo
(ak)

− 1

z − ρνo
(ck)

)
+

(
1

z − ρνe
(ck)

− 1

z − ρνe
(ak)

)
,

Forz ∈ Ck, sincef(z) maps to circular slits, we havelog |f(z)| = Re log f(z) =const. Our
boundary conditions are given by the following lemma.

LEMMA 3.10.Im{(z − ck)f
′(z)/f(z)} = 0, z ∈ Ck.

3.4. Combined circular and radial slit map. Here we consider the mapw = f(z)
from the bounded circle domain to the interior a disk boundedby a mixture of radial and
circular slits withf(a) = 0. This map was also given in [19] for the unbounded case and
is identical to that case, except, again one evaluates the map in the interior ofC0 instead of
in the exterior; see Figure3.3. This map will lead to the Robin function, i.e., the Green’s
function for the mixed boundary value problem. The log of thefunction maps to a domain
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exterior to horizontal and vertical slits. Reflections through radial slits will keep0 and∞
fixed, whereas, reflections through circular slits will swap0 and∞ as in the circular slit map
above. Letρνe

denote a sequence of reflections with an even number of reflections through
circular slits and letρνo

denote a sequence with an odd number of reflections through circular
slits. Thenρνe

(a) andρνo
(∞) are simple zeros off(z) andρνe

(∞) andρνo
(a) are simple

poles. Therefore, we have

f(z) = (z − a)
∏

νe,νo

(z − ρνe
(a))(z − ρνo

(∞))

(z − ρνe
(∞))(z − ρνo

(a))
.

3.5. Green’s functions. It is interesting to note that Green’s functions for circle domains
for the Dirichlet, Neumann, and mixed cases [31, 32, 34, 35, 39] can be written explicitly in
terms of the slit maps. For instance, the Dirichlet Green’s function would have the form [34,
p. 357]

g(z, a) = −G(z, a) +

m∑

i=1

γiωi(z)

whereG(z, a) = Re{log f(z)} = log |f(z)| andf(z) is the map of the circle domain onto
the circular slit unit disk with theC0 mapped to the unit circle andf(a) = 0, so thatG(z, a)
has exactly one logarithmic singularity ata andG(z, a) = 0, z ∈ C0. Sincef(z) maps
the circles,Ci, i = 1, . . . ,m, to concentric arcs,G(z, a) = log |f(z)| = γi, constant, for
z ∈ Ci. (G(z, a) is the so-called modified or hydrodynamic Green’s function.) Theωi(z)’s
are theharmonic measuresof the Ci’s. That is,ωi(z) is harmonic in the circle domain
with ωi(z) = 1, z ∈ Ci andωi(z) = 0 for z ∈ Cj , j 6= i, j = 0, 1, . . . ,m. Therefore,
g(z, a)+log |z−a| is harmonic in the circle domain andg(z, a) = 0, z ∈ Ci, i = 0, 1, . . . ,m,
i.e.,g(z, a) is the (Dirichlet) Green’s function for the circle domain.

Nehari [34, Chap. VII, Sec. 3] shows how to construct the harmonic measures using
maps to canonical slit domains. We will outline this briefly here in order to show how these
functions can be explicitly constructed for circle domains. In Nehari’s notation [34], the map
to the circular slit unit disk taking thejth boundary to the unit circle is denoted byRj(z; a)
with R(a; a) = 0 and the normalizationR′(a; a) > 1. In [34, Chap. VII, Sec. 1], it is shown
that the map to a circular slit annulus, taking thejth boundary to the outer circle and thekth
boundary to the inner circle and the other boundaries to the slits, can be written as a ratio of
maps to circular slit disks,Sjk(z) := Rj(z; a)/Rk(z; a). For circle domains,Sjk(z) can,
therefore, be given explicitly using our infinite product formulas. A computed example is
shown in Figure3.4. Note thatSjk(z) 6= 0. Now let σj(z) := log |Sj0(z)|. Nehari shows
that constantsaji can be found, such that

ωi(z) =

m∑

j=1

ajiσj(z), i = 1, . . . ,m.

Theaji’s can be found as solutions to linear systems, but we will notdiscuss this here.
Similar expressions using the Schottky-Klein prime functions are given in [12, 13, 14].

In cases where reflections are not feasible, all of these mapscan be computed efficiently using
the least squares/Laurent series approach; see [15, 19, 36] and Section5.3. These functions
could potentially be combined with conformal maps of circledomains [3, 23] and Section5.1,
below, to provide Green’s functions for general multiply connected domains.
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FIG. 3.4. The mapw = f(z), f(z) 6= 0, from interior circle domain to interior circular slit ring domain
using product formulas withN = 5 levels of reflection. Heref(C0) = outer circle andf(C1) = inner circle. In
Nehari’s notationf(z) = S01(z) = R0(z; a)/R1(z; a).

4. Schwarz-Christoffel maps for multiply connected domains. In this section, we re-
view results for the Schwarz-Christoffel maps from circular domains to multiply connected
polygonal domains [17, 18, 21] and further clarify the relation of the formulation of
Crowdy [8, 9] to ours. We will concentrate on the bounded case [17] here, since the un-
bounded case [21] is similar. Our treatment attempts to unify three forms of these formulas:
(i) the original formulas in terms of infinite products involving reflections of the mapping
parameters as first derived by [20] for the annulus, [21] for the unbounded case, and [17] for
the bounded case, using the invariance of the preSchwarzian, S(z) = f ′′(z)/f ′(z), under
extension by Schwarz reflection, (ii) the formulas of [8, 9] for expressing the bounded and
unbounded cases in terms of (finite) products of Schottky-Klein prime functions,ω(z, a), and
(iii) a new form of the formulas for the bounded and unboundedcases expressed in terms of
(finite) products of maps from the circle domains to radial slit domains. The last form fits into
the framework of [26] wherein the derivative of the mapping function,f ′(z), is expressed as
a product,

(4.1) f ′(z) = A
∏

k

fk(z),

of factorsfk(z) that guarantee thatf ′ has piecewise constant argument for the given geome-
try. For instance, for the case of simply connected maps fromthe disk,fk(z) := (z − zk)

βk ,
−βkπ = the turning angle at prevertexzk, βk = αk − 1, and

∑
k βk = −2. In this case, the

mapping function is

f(z) = A

∫ z∏

k

(ζ − zk)
βkdζ +B,

where a normalization condition, such as fixing an interior point and one boundary point,
gives a unique map. (The numerical problem [25] in this case is to findA,B, zk’s by matching
side lengths of the polygon.) There are several variations in which other domains are used,
e.g., a rectangle or an infinite strip, [26, Chapter 4].

(i) The multiply connected Schwarz-Christoffel (MCSC) formulas can be written in
terms of reflections. We will only discuss the bounded case [17] here. The outer circle
C0 is the unit circle. Here,αk,iπ are the interior angles of the polygons at the corners,wk,i,
βk,iπ, k = 1, . . . ,Ki, i = 0, . . . ,m are the turning angles off ′, with βk,i = αk,i − 1 and
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∑K0

k=1 βk,0 = −2,
∑Ki

k=1 βk,i = 2, i = 1, . . . ,m, zk,i = ci + rie
iθk,i are the prevertices and

wk,i are the corners, withwk,i = f(zk,i). Also, zk,νi = ρν(zk,i) denotes reflections of the
kth prevertexzk,i on theith circle. The MCSC formula for in this case (i) is

(4.2) f ′ (z) = A

K0∏

k=1

∞∏

j=0

ν∈σj(0)

(z − zk,ν0)
βk,0

m∏

i=1

Ki∏

k=1

∞∏

j=0

ν∈σj(i)

(z − zk,νi)
βk,i .

The derivation [17] of the mapping formula for the bounded case is similar to thederiva-
tion for the unbounded case [21]. We repeat some of the details and main theorems here.
As in the slit map cases, we analytically continuef fromD by reflection across an arcγk,i
between preverticeszk,i, zk+1,i onCi. This extension,̃fk,i, has the form

f̃k,i(z) = ak,if(ci + r2i /(z − ci) + bk,i

for z in the reflected domain withak,i, bk,i determined by the line containing the edgef(γk,i)
joining wk,i andwk+1,i in the boundary of the polygon,Γi. This extendedf maps the re-
flected circle domain conformally onto the reflected polygonal domain. By repeated appli-
cation of the reflection process one obtains from the initialfunction inD a global (many-
valued) analytic function̂f defined onC∞\{zk,ν}. Any two values,f̂r (z) and f̂s (z) of f̂
at a pointz ∈ C \ {zk,ν} are related by an even number of reflections in lines and hence
f̂s(z) = cf̂r (z) + d for somec, d ∈ C. Therefore, thepreSchwarzianof f , f ′′(z)/f ′(z), is
invariant under affine mapsw 7−→ aw + b; that is,

(af(z) + b)′′

(af(z) + b)′
=
f ′′(z)

f ′(z)

is defined andsingle-valuedonC\{zk,ν}.
The preSchwarzian is determined by its singularities,zk,ν . By the usual argument

(f(z)− f(zk,i))
1/αk,i = (z − zk,i)hk,i (z) ,

wherehk,i (z) is analytic and nonvanishing nearzk,i. This gives the local expansion,

f ′′ (z)

f ′ (z)
=

βk,i
(z − zk,i)

+Hk,i (z) , βk,i = αk,i − 1,

whereHk,i (z) is analytic in a neighborhood ofzk,i. Thesingularity function, S (z), of the
global preSchwarzian is, in nonconvergent form,

S (z) =

∞∑

j=0

m∑

i=0

∑

ν∈σj(i)

Ki∑

k=1

βk,i
z − zk,νi

.

To give the correct form, we truncateS(z) and regroup terms as

SN (z) =

K0∑

k=1

βk,0
z − zk,0

+

N∑

j=0

m∑

i=1

∑

ν∈σj(i)

[
Ki∑

k=1

βk,i
z − zk,νi

+

K0∑

k=1

βk,0
z − zk,νi0

]
.

We then show thatSN (z) converges and we defineS(z) := limN→∞ SN (z). We also show
thatS(z) obeys the same boundary conditions as the preSchwarzian, asgiven by the following
lemma from [21].
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LEMMA 4.1. Re {(z − ci) f
′′ (z) /f ′ (z)}|z−ci|=ri

= −1, i = 0, 1, ...,m.
Proof. We repeat the proof for the reader’s convenience. The tangent angle,

ψ(θ) = arg{irieiθf ′(ci + rie
iθ)} = Im{log(irie

iθf ′(ci + rie
iθ))}, of the boundaryCi

is constant on each of the arcs between prevertices. Hence, for |z − ci| = ri, z 6= zk,i, we
haveψ′(θ) = Re {(z − ci)f

′′(z)/f ′(z) + 1} = 0.
Our main theorem for the bounded polygonal case is as follows.
THEOREM 4.2. Let Ω be an bounded m+1-connected polygonal region, andD a con-

formally equivalent circle domain. Further, supposeD satisfies the separation property
∆ < m−1/4 for m ≥ 1. ThenD is mapped conformally ontoΩ by a function of the form
Af (z) +B, where

f (z) =

∫ z m∏

i=0

Ki∏

k=1




∞∏

j=0

ν∈σj(i)

(ζ − zk,νi)




βk,i

dζ.

The turning parameters satisfy−1 < βk,i ≤ 1 and
∑m

k=1 βk,i = 2,
∑m
k=1 βk,0 = −2. The

separation parameter,∆, is given explicitly in terms of the radii and centers of the (exterior)
circular boundary components ofC0, C1, . . . , Cm.

The proof of convergence is given in the following theorem.
THEOREM 4.3. For connectivitym + 1 ≥ 2, SN (z) converges toS(z) uniformly on

closed setsG ⊂ H = Ω \ {zk,i} by the following estimate

|S(z) − SN (z)| = O((∆2√m)N+1)

for regions satisfying the separation condition

∆ <
1

m1/4
.

The next theorem, like the corresponding one for the unbounded case in [21], shows,
for generalm, thatS(z) satisfies the boundary condition, Lemma4.1, for f ′′(z)/f ′(z) for
well-separated domains.

THEOREM 4.4. If ∆ < m−1/4 then forz ∈ Ci, z 6= zk,i

Re {(z − ci)SN (z)} = −1 +O((∆2
√
m)N )

and

Re {(z − ci)S(z)} = −1.

(ii) Crowdy’s formula for the bounded case [8] is

(4.3) f ′(z) = ÃSc(z)

K0∏

k=1

[ω(z, zk,0)]
βk,0

m∏

i=1

Ki∏

k=1

[ω(z, zk,i)]
βk,i ,

whereω(z, a) are the SK prime functions (above) and

Sc(z) :=
ωz(z, α)ω(z, α−1) − ωz(z, α

−1)ω(z, α)
∏n
j=1 ω(z, γj1)ω(z, γj2)

.
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In [17], formula (4.3) is reduced to the infinite product formula (4.2) above.
(iii) The text [26, pp. 65–68] gives a “geometric” derivation off ′(z) for the annulus [21].

We now generalize this for arbitrary connectivitym: Pick one pointai, not a prevertex, on
each circleCi. Then we define the radial slit map to a half-plane as in Section3,

fk,i(z) :=
∏

ν

z − ρν(zk,i)

z − ρν(ai)
,

with fk,i(zk,i) = 0 andfk,i(ai) = ∞. Note, that the radial slit maps do not directly satisfy
the condition of Lemma4.1(their derivatives do), since they have constant argumentson the
circles,Ci. TheDT framework(4.1) for the bounded case is, thus,

f ′(z) = Afa(z)
m∏

i=0

Ki∏

k=1

fk,i(z)
βk,i ,

where

fa(z) = (z − a0)
−2

m∏

i=1

∞∏

j=0

ν∈σj(0)

(z − aνi0)
−2(z − aνi)

2

gives the correct boundary behavior. We have used
∑Ki

k=1 βk,i = 2, i = 1, . . . ,m and∑K0

k=1 βk,0 = −2 to collect theai terms infa(z). Properties offa(z) defined indepen-
dently of the infinite product representation, above, wouldbe needed to prove the theorem
below, in the general case, without the separation condition. A calculation shows thatfa(z)
has the correct boundary behavior. With these observations, we can link the three approaches
based on reflections, slit maps, and SK prime functions (≈ Crowdy) roughly as follows.

THEOREM 4.5. (DEP=DT≈Cr for bounded case) If the infinite products converge, then

f ′(z) = A

K0∏

k=1

∞∏

j=0

ν∈σj(0)

(z − zk,ν0)
βk,0

m∏

i=1

Ki∏

k=1

∞∏

j=0

ν∈σj(i)

(z − zk,νi)
βk,i

= Afa(z)

m∏

i=0

Ki∏

k=1

fk,i(z)
βk,i

= Ãfa(z)

m∏

i=0

Ki∏

k=1

(
ω(z, zk,i)

ω(z, ai)

)βk,i

.

Proof. This is an obvious consequence of the previous results.
Similar expressions can be given for the unbounded case. Theslit maps exist in all cases

independently of their infinite product expansion and can beevaluated efficiently with Laurent
series [19]. Crowdy and Marshall [15] have developed an efficient Laurent series expansion of
the SK functions for general domains which do not necessarily satisfy the separation criterion.
The last form in the theorem above is close to [8, 9] in the sense that the SK prime functions
are used. Note that additional parameters, theai’s, must be selected. In effect, they take
the place of the zerosγ1,2

j of the derivatives of the circular slit maps in the factorSc(z)
in Crowdy’s original formulation [8]. It is hoped that better understanding of these various
formulations will lead to efficient numerical methods for the general mapping problem in
cases when connectivity is too high or the circles are too close-to-touching to make use of
reflections feasible.
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5. Numerical and theoretical issues.In this section, we will discuss numerical as-
pects of the Schwarz-Christoffel map, including the solution to the parameter problem, ill-
conditioning due to crowding of the circles, and possible improvements to the reflection pro-
cedure using Laurent series and least squares techniques.

5.1. Numerics for Schwarz-Christoffel maps.We will briefly review here some recent
progress on the numerical computation of Schwarz-Christoffel maps for multiply connected
domains reported in [23]. We will give an example of the computations for a bounded domain;
see Figures5.1 and 5.2. Several examples of both bounded and unbounded domains are
computed in [23]. Preliminary work on this problem was done in [18] for the unbounded
case. A highly symmetric example for the bounded case was computed in [17].

In order to compute of the MCSC maps for given polygonal boundaries, one must solve
the so-calledparameter problemof finding the prevertices and the centers and radii of the
circles. This is done by solving a nonlinear set of equationsthat guarantee that the side
lengths of the polygons and their locations are correct. Theexamples computed in [17, 18]
were particularly sensitive to initial guesses and small changes in the polygonal domains.
This was due to the use of constrained variables, theθk,i’s which must remain in order on
the circles. In [23], a transformation to unconstrained coordinates similar to [26, p. 25] is
used. The method proves to be extremely robust and rarely fails to converge. The selection
of integration paths between circles (required to positionthe circles so that the locations of
the polygons are correct) rarely causes problems, unless the paths pass between or very close
to singularities in the inside of the circles. This situation can generally be avoided by an
expedient choice of integration intervals. As in [18], a homotopy search method [1, Program
3] is used in [23] and found to be very effective compared to other solvers. Convergence is
almost always achieved even with a deliberately poor initial guess. Some additional code used
here, such as Gauss-Jacobi integration routines to handle the singularities in the Schwarz-
Christoffel integrals, is taken from SC Toolbox [25, 26], an existing MATLAB package for
computing Schwarz-Christoffel maps for various simply anddoubly connected geometries.

We will summarize some details for the bounded maps from [23]. The prevertices onCi
are parametrized byθk,i, wherezk,i = ci + rie

iθk,i for k = 1, . . . ,Ki, and constrained to lie
in order,

(5.1) θ1,i < θ2,i < . . . < θKi,i.

The unknownci’s, ri’s, andθk,i’s amount to a total ofK0 +K1 + · · · +Km + 3m+ 3 real
parameters. Since the circles determine the reflections, these are precisely the parameters
needed to determine the infinite product forf ′(z). We approximate the infinite product by a
finite product truncated afterN levels of reflection (N + 1 for the outer unit circle),

pb(z) =

K0∏

k=1

(z − zk,0)
βk,0

m∏

i=1

N∏

j=0
ν∈σj(i)

(
K0∏

k=1

(z − zk,νi0)
βk,0

Ki∏

k=1

(z − zk,νi)
βk,i

)
.

In the bounded case, the map can be normalized by fixing one boundary point,f(1) = w1,0,
and one interior point,f(z0) = w0. Letting

C =
w2,0 − w1,0∫ z2,0

z1,0
pb(z) dz

,

we have

f(z) = C

∫ z

z1,0

pb(ζ) dζ +D,
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with f(z1,0) = D = w1,0. We require thatc0 = 0 andr0 = 1, and fixingf(1) = w1,0 is
equivalent to settingθ1,0 = 0. This amounts to fixing four of the real parameters, so we have

K0 + · · · +Km + 3m− 1

unknowns parameters to determine.
The remaining parameters are determined from the geometry of the polygonal domain.

First, we have theside-length conditions,

|f(zk+1,i) − f(zk,i)| = |wk+1,i − wk,i|,

for i = 0, . . . ,m andk = 1, . . . ,Ki, where here and below

f(zk+1,i) − f(zk,i) = C

∫ zk+1,i

zk,i

pb(ζ) dζ

is calculated by numerical integration fromzk,i to zk+1,i using the Gauss-Jacobi weights.
These side-length conditions giveK0 + · · · + Km real equations, but the calculation ofC
removes one from this count. In addition, we leave off the calculation of the last two side-
lengths of the outer boundary polygon (i = 0), which can be done since the known turning
angles of the polygon allow the last vertex to be uniquely determined by the intersection
of lines drawn from the adjacent vertices; see [26, Fig. 3.1, p. 24]. The final side-length
conditions then add up toK0 + · · · +Km − 3 real equations. Thepositionsof Γ0 through
Γm with respect tow0 are fixed by requiring that

f(z1,i) − f(z0) = w1,i − w0

for i = 0, . . . ,m. These conditions give2m+ 2 real equations. The integration paths for our
example below withm = 3 are shown in Figure5.3(left) as the three straight line segments
connectingz0 andz1,0 = 1, z1,1, andz1,2. The circles and paths move during the iterations of
the solver and can be monitored. Finally, theorientationsof Γ1 throughΓm (the orientation
of Γ0 is determined by the calculation ofC) are given by them real equations,

arg(f(z2,i) − f(z1,i)) = arg(w2,i − w1,i)

for i = 0, . . . ,m. Therefore, the side-length, position, and orientation conditions give

K0 + · · · +Km + 3m− 1

real equations. This is exactly want is needed. Other selections of conditions are possible
and useful; for instance, the polygons and vertices can be numbered differently or different
integration paths between circles can be chosen. However, it is important that these equations
give a complete and independent set of conditions.

The constraints (5.1) on theθk,i’s are difficult to enforce. We therefore use a transforma-
tion to unconstrained variables similar to [26, p. 25]. Letφk,i := θk+1,i−θk,i, k = 1, . . . ,Ki.
Then the unconstrained variables are

(5.2) ψk,i := ln
φk+1,i

φ1,i
for k = 1, . . . ,Ki − 1.

Givenθ1,j , the transformation (5.2) can be inverted by

(5.3) θk,i = θ1,i + 2π
1 +

∑k−2
l=1 e

ψl,j

1 +
∑Ki−1

l=1 eψl,j
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FIG. 5.1. Schwarz-Christoffel map to a triply connected bounded polygonal domain with a Cartesian grid.
The map is normalized by fixing one boundary point and one interior point. Note that the upper inner circle maps to
the lower inner polygon.

for k = 2, . . . ,Ki. Our unconstrained parameters are, therefore,

θ1,i, ψ1,i, ψ2,i, . . . , ψKi−1,i,

for i = 0, . . . ,m. (Recall thatθ1,0 = 0). The parameters are placed in a real vectorX of
lengthn := K0 + · · · + Km + 3m − 1 and the nonlinear equations form ann × n system
F (X) = 0, whereF (X) is the objective function for our nonlinear solver.

The solution for a polygon withm = 3 is shown in the figures. Figure5.1shows the map
from the circle domain to the polygonal domain evaluated on aCartesian grid. Cartesian grids
are not necessarily the most natural grids for these maps. InFigure5.2, we plot a boundary-
fitted orthogonal grid mapped from a polar grid for the conformally equivalent radial slit disk
in Figure5.3(right). Clearly images of polar grids for mixed radial and circular slit disks and
annuli could also be used and might be appropriate for the associated boundary value prob-
lems. An indication of the accuracy of the mapping function is given in Figure5.4, where the
error‖XN−XN−1‖∞ between solutionsXN for successive levels of reflectionsN is plotted
againstN . The proof of convergence of the infinite product formulas for Schwarz-Christoffel
maps [17, 21] is similar to the proof above of convergence for the slit mapformulas. An
estimate similiar to (3.1) is used and we have found in [23] thatC

∑
|ν|=N rν gives a good

estimate of the errors. We illustrate this in Figure5.4. Also, we find in [23] that the sufficient
condition for convergence,∆ < (m−1)−1/4 for connectivitym, is not necessary in practice.
In such cases, (3.1) usually gives a good estimate of convergence, even though convergence
may be very slow.

Although reasonable levels of accuracy can be achieved for domains of low connectivity
or small∆ by evaluation of truncated infinite products, for the general case the reflections
will need to be replaced by much more efficient methods. One option is to approximate the
factors in one of the alternative formulations in Theorem4.5 using least squares based on
Laurent series, discussed below in Section5.3. Since series approximations of functions on
domains with very close-to-touching circles may be inaccurate, ultimately, some combination
of reflection and series methods, similar to that suggested in [7], will most likely be needed.
Some initial efforts are under development in [11].
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FIG. 5.2. Schwarz-Christoffel map to a triply connected bounded polygonal domain with a boundary-fitted
orthogonal grid from the radial slit disk map. The map is normalized by fixing one boundary point and one interior
point. Note that the upper inner circle maps to the lower inner polygon.
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FIG. 5.3. The integration paths (left) for the Schwarz-Chrstoffel map in Figure 5.2. The orthogonal
grid for Figure 5.2 is the inverse image of the polar grid under the infinite product map from the circle do-
main to the radial slit disk (right). The connectivity is3 here and the convergence criteria is satisfied since
∆ = 0.7941 < 2−1/4 = 0.8409.
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FIG. 5.4.The log of the error in the parameters vs. the level of reflectionsN for the example in Figure5.2fit
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FIG. 5.5.Maps from unbounded circle domain to radial and circular slit domains exhibiting crowding

5.2. Crowding. In the words of Rudolf Wegmann [38],
The behavior of conformal mapping depends on the local property of
smoothness—and the global property of shape.
On small scales a conformal mapping maps disks to disks, but on large
scales a disk can be mapped to any simply-connected bounded region, how-
ever elongated and distorted it may be. But it takes some effort for a map-
ping which has such a strong tendency to map disks to disks, tomap a disk
to an elongated region. The mapping suffers, lying on a Procrustean bed,
and the numerical conformal mapper must share the pains.

Difficult cases for computing the maps occur (i) when arcs of acircle map to the ends
of boundaries of elongated regions and (ii) when the circlesare close to touching. Some of
the first general estimates for (i), the so-calledcrowding phenomemonfor simply connected
domains, were given in [16, 24] based on Pflüger’s Theorem. In this section, we remark
on (ii). How close the circles are to touching, though predetermined by the geometry, is not
known in advance. Already in Halsey [29, Figure 5], an example was given of (ii) for the map
from the exterior of three circles to the exterior of three thin, closely-spaced, parallel ellipses.
Numerical examples are also given in [22]. As in the simply connected case, the crowding of
the circles is due to elongated or narrow sections in the region to be mapped. In [22] we use
an estimate [28, 37] of harmonic measureu(0) with respect to 0 of, e.g., a boundary arc at
the outer edge of a wedge shaped region withδ < ρ < R, θ = θ(ρ),

u(0) ≤ 8

π
exp

(
−π
∫ R

δ

dρ

ρθ(ρ)

)
,

and similar results to derive asymptotic estimates of the distancer between the conformally
equivalent circles as the distanced or angleθ between the boundaries go to 0. Our estimates,
though somewhat heuristic, are close to the exact asymptotic behavior for explicit maps
(see [3]) to parallel slits,r ∼ π2d2/2, and to collinear slits,d ∼ 8 exp(−π2/

√
8r). Such

estimates may be interpreted as the probability that a particle in Brownian motion [28, 33]
starting at 0 will exit the region through the given boundaryarc. For instance, the probability
that the particle will exit through them symmetric radial slits1 < ρ < R in Figure5.5(left) is
bounded by the harmonic measure(8m/π) exp(−m ln(R)/2) of the gaps in the conformally
equivalent circular arc domain, Figure5.5(right).

5.3. Laurent series/least squares methods.The use of Laurent series with coefficients
determined by a least squares fit to the boundary conditions was discussed in [19]. It was
demonstrated there that this method was an efficient alternative to the infinite product formu-
las for the map from the exterior of a circle domain to the exterior of a radial slit domain.
We will present this method here for the mapw = f(z) from the bounded circle domain to
the radial slit half plane discussed above in Section3.1and used in one of the factorizations
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in Theorem4.5. The formulation here is a slight variation of the approach in [19] in order
to allow a zero and a singularity on one of the boundaries,Ci. The conditions onf(z) from
Lemma3.2and Theorem3.3are, givena, b ∈ Ci, a 6= b, that

1. f(b) = 0 andf(a) = ∞ and
2. f(z) satisfies the boundary conditions,arg f(z) ≡ const. for z ∈ Cp, p = 0, 1, . . . ,m.

For computation of the map, we write

f(z) =
z − b

z − a
eg(z)

for someg(z) analytic in the (bounded) circle domain. We representg as the sum of the series
expansions,

g(z) =

∞∑

ℓ=1

α0,ℓz
ℓ +

m∑

p=1

∞∑

ℓ=1

αp,ℓr
ℓ
p

(z − cp)ℓ
.

Now consider

log(f(z)) = log(z − b) − log(z − a) + g(z).

Sincearg f(z) = Im (log f(z)), the boundary conditions forp 6= i are

Im (log f(z)) = arg
z − b

z − a
+ Im(g(z)) ≡ const.

or

Im g(z) = const.− arg
z − b

z − a
, for all z ∈ Cp.

Forp = i, we recall Lemma3.2and express the boundary condition as

Re

(
(z − ci)

f ′(z)

f(z)

)
= 0,

for z = ci + rie
iθ, where

f ′(z)

f(z)
=

d

dz
log f(z) =

1

z − b
− 1

z − a
+ g′(z).

Therefore, following the proof of Theorem3.5, we have

Re

(
(z − ci)

f ′(z)

f(z)

)
= Re

(
z − ci
z − b

− z − ci
z − a

+ (z − ci)g
′(z)

)
= 0,

and the boundary condition, usingz = ci + rie
iθ, a = ci + rie

iθa , andb = ci + rie
iθb , is

Re {(z − ci)g
′(z)} = Re

{
eiθ

eiθ − eiθa

}
− Re

{
eiθ

eiθ − eiθb

}
=

1

2
− 1

2
= 0.

Summarizing, the boundary conditions may stated as

(5.4) Im(g(z)) = const.− arg
z − b

z − a
, for all z ∈ Cp, p 6= i.
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and

(5.5) Re ((z − ci)g
′(z)) = 0, for all z ∈ Ci.

Our aim is to calculate the seriesg(z) truncated to(m + 1)L terms for someL by a
matrix-vector multiplicationAx wherex = [αp,ℓ] is a((m+ 1)L× 1) column vector of the
coefficients ofg andA is given by

A =
[
zℓ rℓp/(z − cp)

ℓ
]
M×(m+1)L

.

The factors ofrℓp prevent the production of large entries inA when|z−cp| < 1 andℓ is large,
which leads to severe ill-conditioning ofA. The coefficients will be found using a linear
system of equations given by the boundary conditions (5.4) and (5.5).

Discretize by takingM equally spaced pointsz around each circleCp, p = 0, 1, . . . ,m.
Define the matrices

Fp =
[
zℓ rℓp/(z − cp)

ℓ
]
M×(m+1)L

for z ∈ Cp, p 6= i,

and using

g′(z) =

L∑

ℓ=1

ℓα0,ℓz
ℓ−1 +

m∑

p=1

L∑

ℓ=1

−ℓαp,ℓrℓp
(z − cp)ℓ+1

,

define

G =
[
ℓ(z − ci)z

ℓ−1 − ℓ(z − ci)r
ℓ
p/(z − cp)

ℓ−1
]
M×(m+1)L

for z ∈ Ci.

With Fp = FRp
+ iFIp

, G = GR + iGI andx = xR + ixI , a simple calculation shows that

Im(g(z)) ≈ FIp
xR + FRp

xI on any Cp

and

Re ((z − ci)g
′(z)) ≈ GRxR −GIxI on Ci.

The values ofIm(f(z)) may not be known, but the difference ofIm(f(z)) for any pair
of points on a circleCp, p 6= i, is zero. Therefore, defining

P =




−1 1
−1 1

. . .
. . .
−1 1




(M−1)×M

,

for z ∈ Cp, we have

P
[
FIp

FRp

] [xR
xI

]
= −P

[
arg z−b

z−a

]
(M−1)×1

by the boundary condition (5.4). By the boundary condition (5.5), we also have

[
GR −GI

] [xR
xI

]
=
[
0
]
.
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For the sake of exposition supposei /∈ {0,m}. Define the coefficient matrices,

B1 =




FI1
...

FIi−1

GR
FIi+1

...
FIm




(m+1)M×(m+1)L

and B2 =




FR1

...
FRi−1

−GI
FRi+1

...
FRm




(m+1)M×(m+1)L

,

and the difference matrix,

E =




P
. ..

I
.. .

P




(m+1)(M−1)+1×(m+1)M

,

where the identity matrix occupies theith block-row. This gives the system

E
[
B1 B2

] [xR
xI

]
= −E




arg z−b
z−a
...
0
...

arg z−b
z−a



,

which can be solved efficiently with the MATLAB backslash operator. A computed example
with m = 2 radial slits andL = 16 terms in the series (similar to Figure3.1 using the
product formula) is shown in Figure5.6. A listing of the least squares code for the exterior
radial slits was included in [19]. A comparison of the efficiency and accuracy of the series
approach and the infinite product approach and the use of the series approximations for the
Schwarz-Christoffel computations will be undertaken in future work.
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ened the paper significantly.

REFERENCES

[1] E. L. ALLGOWER AND K. GEORG, Numerical Continuation Methods: An Introduction, Springer, New York,
1990.

[2] H. F. BAKER, Abelian Functions: Abel’s Theorem and the Allied Theory including the Theory of the Theta
Functions, Cambridge University Press, Cambridge, 1897, reissued 1995.

[3] N. BENCHAMA , T. DEL ILLO , T. HRYCAK , AND L. WANG, A simplified Fornberg-like method for confor-
mal mapping of multiply connected regions—Comparisons andcrowding, J. Comput. Appl. Math., 209
(2007), pp. 1–21.

[4] W. BURNSIDE, On functions determined from their discontinuities and a certain form of boundary condition,
Proc. London Math. Soc., 22 (1891), pp. 346–358.

[5] W. BURNSIDE, On a class of automorphic functions, Proc. London Math. Soc., 23 (1891), pp. 49–88.
[6] J. CASE, Breakthrough in conformal mapping, SIAM News, 41, 1 (Jan./Feb. 2008).
[7] H. CHENG AND L. GREENGARD, A method of images for the evaluation of electrostatic fieldsin systems of

closely spaced conducting cylinders,SIAM J. Appl. Math., 58 (1998), pp. 122–141.



ETNA
Kent State University 

http://etna.math.kent.edu

222 T. DELILLO AND E. KROPF

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

FIG. 5.6. Conformal mapw = f(z) from the unit disk withm = 2 circular holes to a radial slit half-plane
calculated with the least squares approach using Taylor/Laurent series of lengthL = 16 on each circle. This is an
alternative approach to the product formula used for the similar domain in Figure3.1.

[8] D. CROWDY, The Schwarz-Christoffel mapping to bounded multiply connected polygonal domains,Proc. R.
Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), pp. 2653–2678.

[9] D. CROWDY, Schwarz-Christoffel mapping to unbounded multiply connected polygonal regions, Math. Proc.
Camb. Phil. Soc., 142 (2007), pp. 319–339.

[10] D. CROWDY, Geometric function theory: a modern view of a classical subject, Nonlinearity 21 (2008),
pp. T205–T219.

[11] D. CROWDY, T. DEL ILLO , AND J. MARSHALL, work in progress on computing electrostatic fields exterior
to close-to-touching disks.

[12] D. CROWDY AND J. MARSHALL, Analytical formulae for the Kirchhoff-Routh path functionin multiply
connected domains, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005),pp. 2477–2501.

[13] D. CROWDY AND J. MARSHALL,Conformal mapping between canonical multiply connected domains, Com-
put. Methods Funct. Theory, 6 (2006), pp. 59–76.

[14] D. CROWDY AND J. MARSHALL, Green’s functions for Laplace’s equation in multiply connected domains,
IMA J. Appl. Math., 72 (2007), pp. 278–301.

[15] D. CROWDY AND J. MARSHALL, Computing the Schottky-Klein prime function on the Schottky double of
planar domains, Comput. Methods Funct. Theory, 7 (2007), pp. 293–308.

[16] T. K. DEL ILLO , The accuracy of numerical conformal mapping methods: a survey of examples and results,
SIAM J. Numer. Anal., 31 (1994), pp. 788–812.

[17] T. K. DEL ILLO , Schwarz-Christoffel mapping of bounded, multiply connected domains, Comput. Methods
Funct. Theory, 6, (2006), pp. 275–300.

[18] T. K. DEL ILLO , T. A. DRISCOLL, A. R. ELCRAT, AND J. A. PFALTZGRAFF, Computation of multiply
connected Schwarz-Christoffel maps for exterior domains, Comput. Methods Funct. Theory, 6 (2006),
pp. 301–315.

[19] T. K. DEL ILLO , T. A. DRISCOLL, A. R. ELCRAT, AND J. A. PFALTZGRAFF, Radial and circular slit maps
of unbounded multiply connected circle domains, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464
(2008), pp. 1719–1737.

[20] T. K. DEL ILLO , A. R. ELCRAT, AND J. A. PFALTZGRAFF, Schwarz-Christoffel mapping of the annulus,
SIAM Rev., 43 (2001), pp. 469–477.

[21] T. K. DEL ILLO , A. R. ELCRAT, AND J. A. PFALTZGRAFF, Schwarz-Christoffel mapping of multiply con-
nected domains,J. d’Analyse Math., 94 (2004), pp. 17–47.

[22] T. K. DEL ILLO , T. HRYCAK , AND L. WANG, Examples of the crowding phenomenon for conformal maps
of doubly connected regions,preprint.

[23] T. K. DEL ILLO AND E. H. KROPF, Numerical computation of the Schwarz-Christoffel transformation for
multiply connected domains, submitted for publication.

[24] T. K. DEL ILLO AND J. A. PFALTZGRAFF, Extremal distance, harmonic measure and numerical conformal
mapping,J. Comput. Appl. Math., 46 (1993), pp. 103–113.

[25] T. A. DRISCOLL, A MATLAB Toolbox for Schwarz-Christoffel mapping,ACM Trans. Math. Software, 22
(1996), pp. 168–186.
http://www.math.udel.edu/˜driscoll/software/SC/inde x.html

[26] T. A. DRISCOLL AND L. N. TREFETHEN, Schwarz-Christoffel Mapping, Cambridge University Press, Cam-
bridge, 2002.

[27] D. GAIER, Konstruktive Methoden der konformen Abbildung, Springer, Berlin, 1964.

http://www.math.udel.edu/~driscoll/software/SC/index.html


ETNA
Kent State University 

http://etna.math.kent.edu

CONFORMAL MAPS FOR MULTIPLY CONNECTED DOMAINS 223

[28] J. GARNETT AND D. MARSHALL, Harmonic Measure, Cambridge University Press, Cambridge, 2005.
[29] N. D. HALSEY,Potential flow analysis of multielement airfoils using conformal mapping,AIAA J., 17 (1979),

pp. 1281–1288.
[30] P. HENRICI, Applied and Computational Complex Analysis, Vol. III, John Wiley, New York, 1986.
[31] G. JULIA , Lecons sur la Representation Conforme des Aires Multiplement Connexes, Gauthier-Villars, Paris,

1934.
[32] P. KOEBE, Abhandlungen zur Theorie der konformen Abbildung. IV. Abbildung mehrfach zusam-

menhängender schlichter Bereiche auf Schlitzbereiche, Acta Math., 41 (1916), pp. 305–344.
[33] G. F. LAWLER, Conformally Invariant Processes in the Plane, American Mathematical Society, Providence,

RI, 2005.
[34] Z. NEHARI, Conformal Mapping, McGraw-Hill, New York, 1952.
[35] M. SCHIFFER,Some recent developments in the theory of conformal mapping, appendix to R. Courant,Dirich-

let’s Principal, Conformal Mapping, and Minimal Surfaces, Interscience, New York, 1950.
[36] L. N. TREFETHEN, Ten digit algorithms: Ten digits, five seconds, just one page, Report No. 05/13, Oxford

University Computing Laboratory, 2005.
[37] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.
[38] R. WEGMANN, Methods for numerical conformal mapping,in Handbook of Complex Analysis, Geometric
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