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1. Introduction 

The computation of two dimensional, inviscid flows past bodies which 
incorporate vortex sheets and regions of constant vorticity has been the 
object of extensive recent activity [1], [2], [3]. This problem takes its 
significance from the proposal of such flows as infinite Reynolds number 
limits of solutions of the Navier-Stokes equations and as approximations of 
separated flows [4], [5], [6], [7]. We propose here a method which is based 
on a variational principle for minimization of an energy functional. The 
problem dealt with will be the modification of the classical Riabouchinsky 
flow which was studied recently by Pullin [1] (and earlier by Childress [8] in 
a slender eddy approximation). For this problem the variational principle 
which we use is a generalization of the one introduced by Garabedian- 
Lewy-Schiffer [9], [10] for Riabouchinsky flows. The constant vorticity flow 
region leads to the addition of a term involving the torsional rigidity of the 
domain in which this rotational flow occurs. We show in an appendix that 
this variational principle can be reformulated as one for maximization of 
the total energy subject to constraints on the impulse, as well as the area of 
the vorticial region. This establishes a connection between this work and 
earlier work of Turkington on vortex patches. 

The main computation involved in evaluation of the functional which 
we consider is that of certain Dirichlet integrals over the external and 
interior regions. This is done by mapping these regions conformally onto 
the unit disk and using Fourier series (and the invariance of the Dirichlet 
integral under conformal mapping). We have chosen the Riabouchinsky 
problem to test our method in order to avoid the computational difficulties 
associated with cusped boundaries which occur in other recent work [3], 
[11]. The conformal mapping problems associated with cusped regions 
create serious computational difficulties; we hope to return to this in a 
future work. (Near a cusp the domain is "thin", a situation in which the 
construction of the conformal map from the disk to the domain is difficult 
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due to crowding phenomena.) The choice of this simpler problem allows us 
to focus attention on the variational principle. This method can be consid- 
ered as an alternative to the one used by Pullin [1], Moore, Saffman, and 
Tanveer [3] where a nonlinear integral equation is solved. The use of this 
variational principle is a slower method since each evaluation of the 
objective function requires the solution of two Dirichlet problems (using 
conformal mapping). Our justification for introducing this idea, is to 
provide an independent solution of an interesting and difficult problem. 

2. Formulation of the problem 

The problem which we consider is to find an irrotational flow past a pair 
of symmetrically placed arcs connected by a free streamline. The flow is 
symmetric about the x-axis, and the interior region, bounded by the x-axis, 
the obstacles and the free streamline, contains a rotational flow with 
constant vorticity. There is a constant jump in the squared magnitude of the 
velocities across the free streamline. This follows from Bernoulli's equation 
and continuity of the pressure [1]. The flow is also symmetric about the line 
midway between the obstacles. All this is depicted in Figure 1 below. 

If the vorticity is negative, then the flow in f~2 along F is in the same 
direction (left to right) as the flow in f~l along F; if the vorticity is positive, 
it is in the opposite direction. 

If stream functions are introduced in the exterior (region 1) and the 
interior (region 2) we obtain the following free boundary problem. (In what 
follows dimensionless variables have been introduced. We have normalized 
the velocity at infinity of the exterior flow and the distance between the 
obstacles and vertical line of symmetry to be one.) 

A~kl=0 inf~l 

ay 
~b~=y x2+y2+.., at oo (1) 

~,~ = 0 on df~l 

-A~,2 = ~o in f12, (2) 

$ 2 = 0  on0~2 ,  

~z 3 

Figure 1 
Flow is irrotational in ~ ,  uniform at infinity, rotational with vorticity ~o in f~2. There is a vortex sheet 
with strength 1 + a on F. 


