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Abstract

We present a new Fornberg-like method for the numerical conformal mapping of multiply connected regions exterior to circles to
multiply connected regions exterior to smooth curves. The method is based on new, symmetric conditions for analytic extension of
functions given on circular boundaries. We also briefly discuss a similar method due to Wegmann and compare some computations
with both methods. Some examples of regions which exhibit crowding of the circles are also presented.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we present a new numerical method for conformally mapping unbounded multiply connected regions
exterior to n nonoverlapping disks to unbounded regions exterior to n nonoverlapping Jordan curves (n�2). The method
was derived and studied in [1] and is essentially a “symmetrized” version of the method in [7]. The new setup makes the
derivation, analysis, and coding much more straightforward than [7], especially for regions of connectivity greater than
2. The method is similar to [28] and we include some numerical comparisons. In addition, we discuss some examples
where the geometry of the target region causes the circles in the computational region to nearly touch—an example of
the so-called crowding phenomenon for multiply connected regions.

The new method uses the same Newton-like approach as the methods [7,28]. Each Newton iteration computes updates
to the current approximations of the boundary correspondences and centers and radii of the circles. We show below that
the inner linear system of equations at each Newton step is a discretization of the identity plus a compact operator and
so the conjugate gradient method can be applied efficiently. For Fornberg-like methods, in general, using discretization
by N-point trigonometric interpolation and FFTs leads to computational costs of O(N log N) for the simply and doubly
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connected maps and O(N2) for the multiply connected maps. The fact that the inner linear systems for Fornberg-like
methods are second kind (identity plus compact) integral operators was first recognized by Widlund [31] and Wegmann
[25] for the simply connected case [9], and by [6,8] for the ellipse and doubly connected case. This attractive feature
is hereby carried over to the multiply connected case. In this sense, the current work represents the culmination of
research by the second author and his colleagues and students (see [5–8]) to extend Fornberg’s original method [9] to
increasingly complex geometries.

The interested reader is referred to [11,14,30] for introductions to the numerical methods for conformal mapping.
Most methods for numerical conformal mapping compute the conformal moduli and the boundary correspondences
between the canonical and target domains. Canonical domains whose boundaries are circles are popular alternatives,
since the fast Fourier transform (FFT) can be applied. There are two approaches to deriving such methods. These
two approaches have developed in parallel and use essentially the same linearization. One approach, due mainly to
Wegmann, solves the inner linear systems for the Newton updates of the boundary correspondences and moduli as
Riemann–Hilbert (RH) boundary value problems for the circular domains. The other approach, first proposed by
Fornberg [9] for the simply connected case and extended by DeLillo et al., derives the inner linear systems from
conditions on the Fourier (Laurent) coefficients which guarantee analytic extension of functions on the boundaries into
the computational domain; see [2] for an overview. Both approaches have been developed for the following canonical
domains: the unit disk [9,24,8], the annulus [8,18,26], the ellipse [5,6,27,15] and multiply connected circular domains
[1,7,15,28,29].

Other methods for the multiply connected case have been developed. In [23], Wang has implemented the Koebe
method [13,14] for the circle maps using both the exterior simply connected methods of Wegmann and of Fornberg [8]
to successively map the exterior of each boundary component to the exterior of a disk. Prosnak has developed a linearly
convergent projection method for this mapping problem; see [16,22,30]. The book [21] gives many applications of
this method to problems in fluid dynamics. The reader can find more references for the multiply connected case in
[7,28,30].

The remainder of this paper is organized as follows: we state the circle map problem in Section 2. In Section 3, we
derive the analyticity conditions. After giving the linearization adopted in Section 4, we formulate the discrete problem
as a linear system in Section 5. In Section 6, we provide an analysis of the inner linear system, showing that it is
the discretization of a second kind operator. Wegmann’s method for the circle map is outlined in Section 7 and some
numerical examples comparing both methods are given in Section 8. In Section 9, we give a brief discussion of the
crowding for the circle map and present some illustrative examples and estimates.

2. The circle map problem

We are seeking a conformal map f from the complement, D, of n closed nonintersecting disks, Dk , onto a region
� which is exterior to n nonintersecting smooth Jordan curves, �k, 1�k�n. Fig. 1 shows both the computational
circle domain and the target domain. The following theorem, stated for the f −1 in [14], establishes the existence and
uniqueness of the circle map under suitable normalization conditions.

Theorem 2.1. Let � be a region of connectivity n�2 in the extended complex plane such that ∞ ∈ �. Then there
exists a unique circular region D of connectivity n and a unique one-to-one analytic function f in D satisfying

f (z) = z + O(1/z) for z ≈ ∞, (1)

such that f (D) = �.

The boundaries of the circular disks Dk are the circles Ck with centers zk and radii �k and are parametrized by
ck(�) := zk + �kei�. The boundary of D is thus C = C1 + · · · + Cn. The boundary of � is � = �1 + · · · + �n, where
the boundaries �k are parametrized by S, e.g., arclength, �k : �k = �k(S). For smooth �k , f extends smoothly to the
boundary f (Ck) = �k . The values of f on C will determine f everywhere. The circle map problem is, thus, to find the
boundary correspondences S = Sk(�) and the conformal moduli zk, �k such that

f (zk + �kei�) = �k(Sk(�)), 1�k�n, (2)
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f

Fig. 1. Computational and target domains.

where f is analytic and has the normalization f (z) = z + O(1/z), z ≈ ∞. The map f then has the form

f (z) = z +
n∑

k=1

∞∑
j=1

ak,−j

(
�k

z − zk

)j

, (3)

where, for any integer j , ak,j := (1/2�)
∫ 2�

0 f (zk + �kei�)e−ij� d� are the Fourier coefficients of the restriction of f to
the boundary Ck .

3. Symmetrized analyticity conditions

We will follow closely the proof of Theorem 14.3b in [14] and Section 24 in [19] for establishing necessary and
sufficient conditions for the analytic extension of a function in Lip(C) to the exterior of a simply connected domain.

Theorem 3.1. A function h ∈ Lip(C), extends analytically to a function g in D ∪ {∞} with g(∞) = 0 if and only if
for any z ∈ D

c

1

2�i

∫
C

h(�)

� − z
d� = 0. (4)

Proof. We give a brief sketch of the proof. Define

g+(�) := lim
z→�
z∈D

g(z) and g−(�) := lim
z→�
z∈D

c

g(z).

(⇒): If g is analytic in D ∪{∞} (g(∞)=0) with g+(�)=h(�), then for z ∈ D
c
, the function h(�)/(�−z) is analytic

for � ∈ D and continuous for � ∈ C. Therefore, we have

1

2�i

∫
C

h(�)

� − z
d� = 1

2�i

∫
C

g(�)

� − z
d� = 0.

(⇐): Let

g(z) := 1

2�i

∫
C

h(�)

� − z
d�, z /∈ C
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and assume g(z) = 0 for z ∈ D
c
. Then g−(�) = 0. By the Sokhotskyi formula [14, Theorem 14.1c] applied to the

multiply connected domain D; see e.g. [19], we have

h(�) = g+(�) − g−(�) = g+(�), � ∈ C.

Therefore, h(�) extends analytically to g(z), z ∈ D ∪ {∞}. (Note that this definition of g(z) gives g(∞) = 0.) �

Now we are ready to state our main theorem which gives the necessary and sufficient conditions for analytic extension
of the conformal map from the boundary into the domain in terms of the Fourier coefficients ak,j . The conditions are
a simpler, symmetrized version of the conditions used in [7]. We will need the binomial series

1

(1 − 	)k
=

∞∑
j=0

Bk,j	
j , |	| < 1,

where the binomial coefficients Bk,j are given by

Bk,j = k(k + 1) · · · (k + j − 1)

j ! , k�1, j �1, Bk,0 = 1.

Theorem 3.2. Let D be the region exterior to the circles Ck : zk + �kei�, 1�k�n. Suppose f ∈ Lip(C) has the
Fourier series representation

f (zk + �kei�) =
∞∑

j=−∞
ak,j eij�, 1�k�n.

Then f extends analytically into D with f (z) = z + O(1/z) for z ≈ ∞ if and only if

(i) for all centers zk

1

2�i

∫
C

f (�) − �

(� − zk)
j

d� = 0, j �1; (5)

(ii) or equivalently,

ak,j −
(

�k

zl − zk

)j ∑
l 
=k

∞∑

=0

Bj+1,


(
�l

zk − zl

)
+1

al,−
−1 = rk,j , j �0, (6)

where rk,0 = zk, rk,1 = �k and rk,j = 0 for j �2.

Proof. To show the equivalence of condition (i), let z ∈ D
c
. Then z ∈ Dk for some k and therefore |(z−zk)/(�−zk)| < 1

for � ∈ C. From Theorem 3.1, a necessary and sufficient condition for analytic extension of h(�) = f (�) − � is

0 = 1

2�i

∫
C

h(�)

� − z
d� = 1

2�i

∫
C

h(�)

(� − zk)(1 − ((z − zk)/(� − zk)))
d�

=
∞∑

j=0

(z − zk)
j 1

2�i

∫
C

h(�)

(� − zk)
j+1 d�.

Since z was arbitrary in D
c
, we must have

1

2�i

∫
C

f (�) − �

(� − zk)
j+1 d� = 0, j �0.
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For the equivalence of condition (ii), we will apply condition (i) to g(z) = f (z) − z = O(1/z) for z ≈ ∞. Then for
j �0

0 = 1

2�i

∫
C

g(�)

(� − zk)
j+1 d�

= 1

2�i

∫
C

f (�)

(� − zk)
j+1 d� − 1

2�i

∫
C

�

(� − zk)
j+1 d�

= 1

2�i

∫
Ck

f (�) d�

(� − zk)
j+1 − 1

2�i

∫
Ck

� d�

(� − zk)
j+1 +

∑
l 
=k

1

2�i

∫
Cl

f (�) d�

(� − zk)
j+1 ,

since

1

2�i

∫
Cl

�

(� − zk)
j+1 d� = 0 for l 
= k, j �0.

Next note that

1

2�i

∫
Ck

�

(� − zk)
d� = zk := yk,0,

1

2�i

∫
Ck

�

(� − zk)
2 d� = 1 := yk,1,

and

1

2�i

∫
Ck

�

(� − zk)
j+1 d� = 0 := yk,j , j �2.

The above conditions can therefore be written as

1

2�i

∫
Ck

f (�)

(� − zk)
j+1 d� +

∑
l 
=k

1

2�i

∫
Cl

f (�)

(� − zk)
j+1 d� = yk,j .

Substituting � = zk + �kei�, d� = i�kei� d�, with 0���2�, we have∫
Ck

f (�) d�

(� − zk)
j+1 =

∫ 2�

0

f (zk + �kei�)

(�kei�)j+1 i�kei� d� = 2�iak,j

�j
k

. (7)

Also, for l 
= k and � ∈ Cl , we have |(� − zl)/(zk − zl)| < 1 and therefore,∫
Cl

f (�)

(� − zk)
j+1 d� = i�l

∫ 2�

0

f (zl + �le
i�)ei� d�

(zl + �lei� − zk)
j+1

= i�l

∫ 2�

0

f (zl + �le
i�)ei� d�

(zl − zk)
j+1(1 − (�lei�/(zk − zl)))

j+1

= i�l

(zl − zk)
j+1

∞∑

=0

Bj+1,


(
�l

zk − zl

)
 ∫ 2�

0
f (zl + �le

i�)ei(
+1)� d�

= − 2�i

(zl − zk)
j

∞∑

=0

Bj+1,


(
�l

zk − zl

)
+1

al,−
−1. (8)

Combining the above, we obtain condition (ii). �
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In Section 5, we will discretize condition (ii) using N -point trigonometric interpolation and express the discrete
form of the conditions in matrix form Pa = r , where the a is an nN × 1 vector with the discrete ak,j ’s as components.
Combining these conditions with the linearizations in the next section will give us our inner linear system for the
Newton updates of the boundary correspondences and centers and radii of the circles.

4. Linearization

Here we show how to linearize (2) with respect to f, Sk(�), zk , and �k . We make an initial guess of Sk(�) and correct
it with the real, 2�-periodic function Uk(�). We use the following linearization for Uk(�):

�k(Sk(�) + Uk(�)) ≈ �k(�) + �′(Sk(�))Uk(�), 1�k�n, (9)

where �k(�) := �k(Sk(�)). The linearization for the corrections �zk and ��k to zk and �k is

(f + �f )(zk + �zk + (�k + ��k)e
i�) ≈ f (zk + �kei�) + f ′(zk + �kei�)(�zk + ��kei�). (10)

Equating the linear terms in (9) and (10) gives

(f + �f )(zk + �kei�) = �k(�) + �′(Sk(�))Uk(�) + �k(�)(��k + �zke−i�), (11)

where

�k(�) := −f ′(zk + �kei�)ei� = i�−1
k �′(Sk(�))S

′
k(�). (12)

These linearizations were first proposed in [18,7] and were rigorously justified in [28]. The conditions in Theorem
3.2 are applied to require that (11) are the boundary values of a function analytic in D. These conditions give linear
equations for Uk, �zk, ��k. The discrete form of these equations is given next.

5. Discretization and matrix formulation

We will discretize our equations using N -point trigonometric interpolation. Let �j := (j −1)2�/N, j =1, 2, . . . , N .
For 1�k�n and 1�j �N , we define the N-vectors and N × N matrices

F := [w−(j−1)(l−1)]1� l,j �N = FFT matrix where w = e−i2�/N ,

Ek := diagj (�
′(Sk(�j ))),

Ṡk := N

2�
[Sk(�j+1) − Sk(�j )],

Uk := [Uk(�j )],
�
k

:= [�k(Sk(�j ))],
�
k

:= i�−1
k EkṠk ,

f
k

:= [f (zk + �kei�j )],

ak := 1

N
Ff

k
,

z := [e−i�j ].
Let N = 2M . We now use ak,j to denote the discrete Fourier coefficients. By the N -periodicity of the discrete Fourier
coefficients ak,j = ak,j−N , we note that

ak = (ak,0, ak,1, . . . , ak,N−1)
T = (ak,0, ak,1, . . . , ak,M−1, ak,−M, . . . , ak,−2, ak,−1)

T.
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We truncate the sums in the analyticity equations to M terms and we limit the number of equations to M by considering
only 0�j �M − 1. With the ak,−j ’s as given above, the system of discrete equations is

ak,j −
∑
l 
=k

M−1∑

=0

(
�k

zl − zk

)j

Bj+1,


(
�l

zk − zl

)
+1

al,−
−1 = rk,j , (13)

where, rk,0 = zk, rk,1 = �k and rk,j = 0 for 2�j �M − 1. Eq. (13) can be written in matrix form as follows:

Pa = P1a1 + P2a2 + · · · + Pnan = r , (14)

where we write P = [P1 P2 . . . Pn] and the (nM × 1) vector

r :=

⎡⎢⎢⎣
r1
r2
...

rn

⎤⎥⎥⎦ ,

with each rk given by

rk := (zk, �k, 0, 0, . . . , 0)T ∈ CM×1.

Each Pk has the following block structure:

Pk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 P1,k

...
...

0 Pk−1,k

I 0
0 Pk+1,k

...
...

0 Pn,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where for l 
= k, the submatrices Pl,k are all of order M × M with entries (�k/(zl − zk))
jBj+1,
(�l/(zk − zl))


+1

properly arranged. (Details about the submatrices Pl,k can be found in [1].)
The linearization (11) can be written in matrix form

Nak = Ff
k
= F�

k
+ FEkUk + ��kF �

k
+ �zkF (z ∗ �

k
),

where ∗ denotes the Hadamard product.
For convenience, we present for the matrix formulation of our equations for connectivity n = 2. The generalization

to arbitrary n is straightforward. Using block matrix notation, the analyticity conditions can be written:

[P1 P2]
[

a1
a2

]
=
[

r1
r2

]
. (15)

Inserting the linearization conditions into (15) we obtain:

P1(FE1U1 + ��1F �
1
+ F(z ∗ �

1
))(Re �z1 + iIm �z1)

+ P2(FE2U2 + ��2F �
2
+ F(z ∗ �

2
))(Re �z2 + iIm �z2) = g, (16)

where

g := −[P1 P2]
[

F�
1

F�
2

]
+
[

r1
r2

]
. (17)

If we define the M-vectors

wk = PkF �
k
, wz

k
= PkF(z ∗ �

k
), k = 1, 2,
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the matrices

P = [P1 P2], W = [w1 w2 wz1 iwz1 wz2 iwz2]
as well as the (2N + 6) × 1 vector of unknowns

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1
U2
��1
��2

Re �z1
Im �z1
Re �z2
Im �z2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
then our system takes the form

DU := [P W ]
[

F 0 0
0 F 0
0 0 I

][
E1 0 0
0 E2 0
0 0 I

]
U = g. (18)

Taking the “normal” equations and using the fact that U is real gives us

2

N
Re(DH D)U = 2

N
Re(DH g), (19)

which we write as

AU = b,

where A := (2/N) Re(DH D) and b=(2/N) Re(DH g). Notice that A is symmetric and positive (semi)definite. We will
use the conjugate gradient method to solve this system for updating the boundary correspondences and the conformal
moduli. The Newton update for kth component, at the ith Newton step is

S
(i+1)
k (�) = S

(i)
k (�) + U

(i)
k (�),

�(i+1)
k = �(i)

k + ��(i)
k ,

z
(i+1)
k = z

(i)
k + �z

(i)
k . (20)

We now summarize the main parts of the algorithm:
• Input the boundary of each component.
• If the boundary is not given by an analytic formula, fit each component with a periodic spline of period T lk

parametrized by (chordal) arclength S, as in [7]. This step produces the coefficients of the spline.
• Initialize the boundary correspondence by

S
(0)
k (�j ) = (j − 1)T lk/N .

• Initialize �k and zk . The user can do this either by guess or by using a subroutine that finds the optimal values for
rk and zk such that the circle best fits the curve of component k.

• Set the maximum number of iterations (NWT) for the Newton process and for the conjugate gradient (CG) method.
• Start the Newton iteration. For 1� i�NWT, where i denotes the iteration number:

(1) use the boundary representation to interpolate the boundary at N points;
(2) form Ṡk, Ek, �k

, �
k
, f

k
, ak, b, W ;

(3) form the nonzeros blocks of the matrix P;
(4) solve AU = b by the conjugate gradient method (multiplication by A can be done efficiently by successively

applying each factor);
(5) update (20) at the mesh points � = �j .
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6. Analysis of the inner linear system

In this section, we will analyze the matrix A and show that the eigenvalues are well-grouped around 1, except for a
few outliers. We will assume that S is arclength, so that �′

k(S) = eik(S), where k is the argument of the unit tangent.
Again, we will only consider the case n = 2. Extension to general n is straightforward. We have

A = 2

N
Re(DH D) =

[
A11 A12 X1
A21 A22 X2
XT

1 XT
2 WH W

]
, (21)

where Aij := (2/N) Re(EH
i FH P H

i PjFEj ) and Xi := (2/N) Re(EH
i FH P H

i W). To explain the overall distribution
of the eigenvalues of A, it is sufficient to study those of the leading principal submatrix

Â =
[
A11 A12
A21 A22

]
.

By standard theorems in matrix theory, the eigenvalues of A and Â will interlace. Recall that

[P1 P2] =
[
I 0 0 P1,2
0 P2,1 I 0

]
.

Therefore,

[
P H

1
P H

2

]
[P1 P2] =

[
P H

1 P1 P H
1 P2

P H
2 P1 P H

2 P2

]
=
⎡⎢⎣

I 0 0 P1,2
0 P H

2,1P2,1 P H
2,1 0

0 P2,1 I 0
P H

1,2 0 0 P H
1,2P1,2

⎤⎥⎦ .

We can decompose P H
1 P1

P H
1 P1 =

[
I 0
0 P H

2,1

] [
I 0
0 P2,1

]
=
[
I 0
0 P H

2,1P2,1

]
= I+ + 	2, (22)

where

	2 =
[

0 0
0 P H

21P21

]
and I+ =

[
I 0
0 0

]
.

Next note that A11 = (2/N) Re(EH
1 FH P H

1 P1FE1) can be decomposed into two parts:

A11 = 2

N
Re(EH

1 FH I+FE1) + 2

N
Re(EH

1 FH 	2FE1) = A
(1)
11 + A

(2)
11 . (23)

The matrix A
(2)
11 := (2/N) Re(EH

1 FH 	2FE1) and the remaining matrices, A12 and A21, are discretizations of compact
operators, since they are the product of bounded operators and the integral operators with continuous kernels. The matrix
A

(1)
11 := (2/N) Re(EH

1 FH I+FE1) is the discretization of the I +R where I is the identity and R is a compact operator

as shown next. Following paper [8], one can see that A
(1)
11 is the discretization of

Re(e−i1(I + iK + J )ei1) = I + R,

where R = Re(e−i1(iK + J )ei1). Here K is the conjugation operator for the disk and Jh = (1/2�)
∫ 2�

0 h(�) d�. For
each function h in L2(0, 2�), the operator R can be written as a Fredholm integral operator

Rh(�) = 1

2�

∫ 2�

0
h(�)

sin(((� − �)/2) − (1(�) − 1(�)))

sin((� − �)/2)
d�.

For � sufficiently smooth, the operator R is a symmetric compact operator on L2; see [25, Section 4]. A22 can clearly
be analyzed in the same way. As a consequence, the eigenvalues cluster around 1. This feature carries over to the block
matrix A.
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Fig. 2. Grouping of the eigenvalues around 1 for two circles.
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eigenvalues of the matrix A: 2 splines, N = 32

Fig. 3. Grouping of the eigenvalues around 1 for splines.

We present two plots showing the grouping of eigenvalues around 1 for two different geometries with N = 32. The
first is Fig. 2 corresponding to a domain bounded by circles, so that f is the identity. We see a strong grouping around
1. Fig. 3 shows the grouping of the eigenvalues for a noncircular target domain bounded by cubic splines. The large
outlying eigenvalues are associated with the W blocks.

7. Wegmann’s method

In this section we briefly describe another method for conformal mapping of multiply connected regions using
Wegmann’s approach using RH problems (see [28,29]). In common with the Fornberg-like method, this method solves
the circle map problem, i.e., finding the centers zk and radii �k (1�k�n) and boundary correspondences Sk(�) such
that

f (zk + �ke−i�) := �k(Sk(�)), 1�k�n.
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(Note that, following [28], the parametrization is reversed.) Using the linearization

f (zk + �ke−i�) + �f (zk + �ke−i�) + f ′(zk + �ke−i�)(�zk + ��ke−i�) = �k(Sk(�)) + �′
k(Sk(�))Uk ,

where �′
k(Sk(�)) = rk(Sk(�))eik(Sk(�)).

At each Newton iteration, Wegmann’s method [24] requires the solution of two RH problems (24) and (25).
f, �f, f ′, Y and � are connected by f ′ = exp(Y ) and � = (f + �f )/ exp(Y ).

The algorithm for Wegmann’s method is as follows:

• Given initial guesses S
(0)
k , z

(0)
k , �(0)

k for the boundary correspondences, centers and radii.
• For each Newton iteration i = 0, 1, 2, . . .

(1) Compute vk(�) = k(Sk(�)) + � + �/2.
(2) Solve the RH problem

Re(iY + �k) = −vk . (24)

(3) Calculate Fk = exp(−wk − ik − i�k)�k .
(4) Solve the RH problem

Re(ei��(zk + �ke−i�) + akei� + �k) = Im Fk , (25)

for analytic �(z) = z + O(1/z) at ∞.
(5) Compute the updates

Uk(�) = −ewk

rk
(gk + Re Fk),

�zk = ak − res∞Y ,

��k = �k

where res∞Y is the residue of Y at ∞.
(6) Smooth Uk: for the interpolating trigonometric polynomial

Uk =
N/2−1∑

j=−N/2+1

âj eij� + âN/2 cos(N�/2),

set âj = 0 for |j |�N/4 + 1.
(7) Update the boundary correspondences, centers, and radii by

Si+1
k = Si

k + Uk ,

zi+1
k = zi

k + �zk ,

�i+1
k = �i

k + ��k .

The RH problems (24) and (25) can be solved by the method of successive conjugation (see [28–30]) using the FFT
[25]. We start with the form of the map, which is called here �

�(z) =
n∑

k=1

hk(z) =
n∑

k=1

∞∑
m=1

bk,m(z − zk)
−m, (26)

where hk(z) := ∑∞
m=1 bk,m(z − zk)

−m is analytic in the exterior of Dk .
We describe briefly the method of successive conjugation as applied to our problem. Let l be a nonnegative integer

and �k be real functions. The general form of the RH problem is to solve

Re(eilt�(zk + �ke−i�) + ak,le
ilt + · · · + ak,1eit + ak,0) = �k, 1�k�n (27)
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for an analytic function � in D with �(∞) = 0, real numbers ak,0 and complex numbers ak,1, . . . , ak,l . To solve the
problem iteratively, given initial guesses h

(0)
k = 0, we can use a Gauss–Seidel-like method for Eq. (27)

Re(eilt h
(k+1)
k (zk + �ke−i�) + ak,le

ilt + · · · + ak,1eit + ak,0)

= �k − Re

(∑

<k

eilt h(k+1)

 (zk + �ke−i�)

)
− Re

(∑

>k

eilt h(k)

 (zk + �ke−i�)

)

=
∞∑

m=−∞
Ak,m eimt ,

where
∑∞

m=−∞ Ak,meimt is the Fourier series expansion of the RHS. It follows that

ak,0 = Ak,0, ak,j = 2Ak,j , j = 1, . . . , l, (28)

bk,m = 2�m
k Ak,m+l for m = 1, 2, . . . . (29)

The evaluation of � is of primary importance since, if it is not carefully arranged, it can lead to a very slow computation.
Below, we show how to evaluate � in (26). The matrices Pk,l arise naturally in this evaluation.

Using (29), we have

h
(z) = 2
∞∑

m=1

�m

 A
,m+l (z − z
)

−m.

For 
 = k,

hk(zk + �ke−i�) =
∞∑

m=1

2Ak,m+le
imt

which can be computed efficiently by the FFT.
For 
 
= k,

h
(zk + �ke−i�) = 2
∞∑

m=1

�m

 A
,m+l (zk + �ke−i� − z
)

−m

= 2
∞∑

m=1

∞∑
j=0

(
�


zk − z


)m( �k

z
 − zk

)j

A
,m+lBm,j e−ij�

=
∞∑

j=0

[(
�k

z
 − zk

)j ∞∑
m=0

Bj+1,m

(
�


zk − z


)m+1

(2A
,m+l+1)

]
e−ij�

:=
∞∑

j=0

a
k,

j e−ij�. (30)

Numerically, we truncate the above equation to M (here M := (N/2) − l − 1) terms to get

a
k,

j =

(
�k

z
 − zk

)j M−1∑
m=0

Bj+1,m

(
�


zk − z


)m+1

(2A
,m+l+1)

for j = 0, 1, . . . , M − 1, then⎡⎢⎢⎢⎣
a

k,

0

a
k,

1
...

a
k,

M−1

⎤⎥⎥⎥⎦= −Pk,


⎡⎢⎢⎣
2A
,M+l

2A
,M+l−1
...

2A
,l+1

⎤⎥⎥⎦ .



Author's personal copy

N. Benchama et al. / Journal of Computational and Applied Mathematics 209 (2007) 1 –21 13

We have already seen how to compute the matrices Pk,
. As to h
(zk + �ke−i�), it is clear from (30) that it can be
evaluated by the FFT.

8. Numerical examples

We now compare both methods on some numerical examples.

Example 1. We use the exact map f from [7], Section 6, modified to satisfy our normalization. f maps the exterior of
two circles with centers 0, (x1 + x2)/2 and radii 1, (x1 − x2)/2 onto an unbounded doubly connected region. The map
is a composition of elementary maps,

f (z) = f5(f4(f3(f2(f1(z))))).

The first map f1 is the fractional linear map

f1(z) = z − a

az − 1
,

where

a =
x1x2 + 1 +

√
(x2

1 − 1)(x2
2 − 1)

x1 + x2
, R =

x1x2 − 1 −
√

(x2
1 − 1)(x2

2 − 1)

x1 − x2
,

and 1 < x2 < x1.

f2(z) = z, f3(z) = z + 1/z, f4(z) = 

2 + 1
z,

where R?1 so that the region is not too extreme. The final map f5 is the fractional linear map

f5(z) = (C1z + C2)/(z + C3),

where

C1 = a4 − 2

a(a2 − 2)
, C2 = −3a22 + a2 − 4 − 32

a22 + a2 − 2 − 4 , C3 = − a2 + 2

a(2 + 1)
.

In this example we use x1 = 2, x2 = 3,  = 30. The tolerance for the residuals in the inner iteration is 1.0e − 15. The
initial guess for the boundary correspondence is given by Sk(�) = �. We let DF, DZ, and DR denote the maximum
numerical errors for the boundary components, centers, and radii, respectively. From Tables 1 and 2, Wegmann’s and
Fornberg’s methods attain similar discretization errors. The map is shown in Fig. 4.

Table 1
Discretization errors for Fornberg’s method, Example 1

N DF DZ DR

32 1.5e − 05 6.3e − 11 6.3e − 11
64 1.9e − 08 6.8e − 16 2.2e − 16

128 1.7e − 13 4.4e − 16 2.2e − 16
256 5.0e − 15 4.4e − 16 2.2e − 16

Tables 3 and 4 give the numerical errors for a poorer initial guess, z = [−0.1 + 0.1i; 2.6 + 0.2i], r = [0.8; 0.4], for
the centers and radii. Fornberg’s method is more sensitive to the initial guess than Wegmann’s method. Fig. 5 uses
the same initial guess. Smoothing by zeroing half of the Fourier coefficients, as suggested in [28], is useful for both
methods. Wegmann’s method exhibits convergence–divergence behavior in Fig. 5. Fornberg’s method may need more
Newton iterations to achieve the same accuracy in this case.
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Table 2
Discretization errors for Wegmann’s method, Example 1

N DF DZ DR

32 1.5e − 05 3.1e − 10 1.0e − 10
64 1.9e − 08 2.2e − 16 2.2e − 16

128 1.4e − 13 6.0e − 16 2.2e − 16
256 2.6e − 15 5.0e − 16 2.2e − 16

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

Fig. 4. Fornberg’s method with N = 128, Example 1.

Table 3
Discretization errors for Fornberg’s method, Example 1

N DF DZ DR

32 1.5e − 05 1.4e − 10 6.4e − 11
64 2.4e − 08 1.5e − 11 1.4e − 13

128 2.4e − 09 1.7e − 12 8.0e − 15
256 5.6e − 10 2.0e − 13 3.3e − 16

Table 4
Discretization errors for Wegmann’s method, Example 1

N DF DZ DR

32 1.5e − 05 3.1e − 10 1.0e − 10
64 1.9e − 08 4.7e − 16 2.2e − 16

128 1.4e − 13 5.6e − 16 2.8e − 16
256 1.5e − 15 4.5e − 16 2.2e − 16

Example 2. A region of connectivity 5 bounded by arctanh, cassini oval, ellipse, inverted ellipse and sports ground
curves. These boundaries are interpolated by periodic cubic splines parametrized by chordal arclength as described in
[7]. In this example, we use N =128. In Fig. 6, Fornberg’s method shows a better error decay than Wegmann’s method.
The conformal map is displayed in Fig. 7.
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Fig. 5. Comparison of successive iteration errors, Example 1.
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Wegmann method

Fornberg method

Fig. 6. Comparison of successive iteration errors, Example 2.

The inner iterations for Wegmann’s method converges linearly. The inner iterations for Fornberg’s method converges
superlinearly. The outer Newton iterations converge nearly quadratically for both methods. Both algorithms require
O(N2) work to do the matrix–vector multiplication.

9. Crowding for the circle map

The purpose of this section is to present some examples of the ill-conditioning, known as the crowding phenomenon,
for conformal maps of multiply connected regions. A great deal of research has been done in the last 20 years on
the crowding phenomenon, especially for the simply connected case; see [4] for references to some of the literature.
Difficult cases for conformal mapping from exterior regions bounded by circles occur (i) when arcs of a circle map to
the ends of elongated regions and (ii) when the circles are close to touching.
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Fig. 7. Fornberg’s method without smoothing, Example 2.
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Fig. 8. Map of circles to annulus to parallel slits.

In this section, we are concerned with case (ii) when the circles are close to touching. This case also causes difficulty
for the Koebe iteration [14,13,23] which uses simply connected maps to successively map the exterior of each boundary
curve to the exterior of a circle. The numerical observations and linear convergence results, given in [14] for the Koebe
map and in [29,7,1] for the inner linear systems in Newton-like methods, show that the convergence ratios for these
methods are at most the inverse of the smallest magnification factor (greater than 1) which will cause two circles to
touch. If any of the circles are already close to touching, this factor will be nearly 1 and the methods will converge
very slowly. This situation also causes difficulties for computing solutions to related problems in potential flow and
electrostatics, for instance, by the method of images [13], and requires special techniques [3].

We emphasize that the positions of the circles, though predetermined by the geometry, are not known in advance and
must be computed. Multiply connected geometries which map to close-to-touching circles were noted by Halsey [13].
In particular, Halsey, [13], Fig. 5, gives an example of a map from the exterior of three thin ellipses with parallel major
axes to the exterior of three nearly touching circles. In what follows we give two examples for which the maps and the
associated measures of crowding are known explicitly, and compare our “exact”results with those computed by using
our numerical method. Our two examples involve the mapping from two circles to two parallel and two collinear slits,
respectively. In both of these cases, the crowding is due to elongated or narrow sections in the regions between the slits.
In addition, we will compare the calculations for the slit regions to regions exterior to parallel and collinear ellipses
with minor-to-major axis ratios of .1. Similar computational results using the Koebe iteration and initial attempts to
derive crowding estimates are given in [23].
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Table 5
Estimates rest of r from (31) and computations rslit using the new mapping method for two parallel slits; comparison with two parallel ellipses with
N = 128

d rest = �2d2/2 rslit rslit/rest rell errorell

.15 .111 .072 .655 .071 9e − 4

.20 .197 .118 .601 .048 3e − 5

.30 .444 .228 .515 .136 8e − 5

.50 1.23 .499 .406 .367 2e − 4

0 0.5 1 1.5

0

0.5

1

Fig. 9. Fornberg map to parallel slits with d = 0.3.

Example 1. Parallel slits and ellipses. For both of our examples, we will need the fractional linear transformation from
the exterior of two circles to an annulus; see Fig. 8. Consider the region exterior to two circles with radii 1 and centers
±i(1 + r) in the plane. This region can be mapped explicitly, to an annulus of inverse modulus R ≈ 1 − √

8r for small
r; see e.g., [12, p. 1279]. For small r the image of the axe-shaped region bounded by the circles and the dotted lines
in Fig. 8 will nearly cover the entire annulus. The annulus can be mapped periodically by log to a rectangle of aspect
ratio − log R/2� ≈ √

8r/2� with the image of the origin mapped to the center of the rectangle.
The map from the region exterior to the parallel slits [−1 + id, 1 + id], [−1 − id, 1 − id] in Fig. 8 to an annulus is

given in [17, Section 13.12] in terms of elliptic functions. For a small distance d the image of the rectangle between the
slits will almost fill the entire annulus. Equating the inverse moduli of these two annuli, we find 1 − √

8r ∼ 1 − 2�d.
This gives the exact asymptotic crowding formula

r ∼ �2d2/2, r, d → 0. (31)

The more elongated (or narrower) the channel between the slits, the closer the circles will be. (Note that the behavior
is not exponential in the aspect ratio d of the channel as one might expect from elongated simply connected maps [4].)

A comparison of these estimates rest with the value of rslit computed using our new numerical conformal mapping
method is given in Table 5. The circles are normalized to have radii equal to 1. Generally, the method requires smooth
boundaries. However, the method gives good overall results for maps to exteriors of slits, even though a close inspection
of the tips of the slits reveal inaccuracies. The map uses N = 128 Fourier points on each disk. Results for parallel
ellipses rell with centers separated by 2d are also listed in Table 5. The errors errorell are the maximum pointwise errors
in the boundary correspondences for the ellipses for N = 128 compared with the solution for N = 256. The errors in
the centers and radii are usually 10−7–10−9. The change in the errors with d is not very severe or consistent, indicating
that this form of crowding is not as great a problem as the case of elongated, simply connected regions. Figs. 9–11
display mappings of equally spaced Cartesian grid points in the circle domain in order to illustrate the distortions in
the conformal maps.
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Fig. 10. Fornberg map to parallel slit with d = 0.15.
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Fig. 11. Fornberg map to parallel ellipses with d = 0.15 showing distribution of mesh points (N = 128) on boundaries.

Example 2. Collinear slits and ellipses. Here we consider the region exterior of two collinear slits [−2 − d, −d],
[d, 2 + d] in Fig. 12. The exact map from an annulus of outer radius 1 and inner radius R < 1 to the exterior of two
slits [1, 1/k] and [−1/k, −1] is given in [17, Section 13.11], by w = sn((−2K/ log(R)) log(z/

√
R)). Multiplication

by d = 2k/(1 − k) maps to our region exterior to slits [d, 2 + d] and [−2 − d, −d]. From the properties of sn, we have
that K ∼ �/2 and K ′ ∼ log(4/k) ≈ log(8/d) as d → 0; see, e.g. [4, Section 3(i), p. 801]. Using the map from the
exterior disks to the annulus gives 2�/

√
8r ∼ −2�/ log R ∼ K ′/K and finally

r ∼ �4

8(log(d/8))2 or d ∼ 8e−�2/
√

8r (32)

as d → 0. Note that the crowding in this case is exponential in −1/
√

r.



Author's personal copy

N. Benchama et al. / Journal of Computational and Applied Mathematics 209 (2007) 1 –21 19

ir

xR 1
2+dd

Fig. 12. Map of circles to annulus to collinear slits.

Table 6
Estimates rest of r from 32 and computations rslit using the new mapping method for two collinear slits; comparison with two collinear ellipses with
N = 128

d rest = �4/8(log(d/8))2 rslit rslit/rest rell errorell

.025 .366 .407 1.11 .256 9e − 4

.05 .473 .517 1.09 .367 8e − 4

.1 .634 .693 1.09 .534 2e − 4

.2 .895 .982 1.09 .800 9e − 5
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1.5

Fig. 13. Fornberg map to collinear slits with d = 0.2.

A comparison of this estimate with the value of r computed using our new Fornberg-like map is given in Table 6.
The results are compared to collinear ellipses of minor-to-major axis ration .1 and length 2 with tips separated by 2d.

The errors are computed in the same way as the previous example with similar results. Mappings of equally spaced
grid points are given in Figs. 13–15.
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Fig. 14. Fornberg map to collinear slits with d = 0.1.

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

Fig. 15. Fornberg map to collinear ellipses with d = 0.1 showing distribution of mesh points (N = 64) on boundaries.
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