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Introduction Some background
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Introduction Some background

General references

[1.] D. Gaier, Konstruktive Methoden der konformen Abbildung,
Springer, 1964.
[2.] P. Henrici, Applied and Computational Complex Analysis, Vol. 3,
Wiley, 1986.
[3.] R.Wegmann, Methods for Numerical Conformal Mapping, survey
article in Handbook of Complex Analysis: Geometric Function Theory,
Vol. 2, R. Kühnau, ed., Elsevier, 2005, pp. 351–477. Includes
presentation of Wegmann’s Newton-like methods—similar to ours, but
Newton updates are found as solutions to linear Riemann-Hilbert
problems on circle domains.
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Introduction Some background

Conformal map w = f (z) from disk to target domain
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Figure: Fornberg (Fourier series) map from unit disk to interior of an inverted
ellipse using 64 Fourier points. f ′(z) 6= 0, so locally f (a + h) ≈ f (a) + f ′(a)h
and f maps a small circle near z = a to a circle near f (a) magnified by |f ′(a)|
and rotated by arg f ′(a). Therefore curves intersecting at angle θ at a will be
mapped to curves intersecting at angle θ at f (a) and the map is
angle-preserving or conformal. Existence and uniquesness given by
Riemann Mapping Theorem with f (0) and f (1) fixed.
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Introduction Some background

Boundary correspondence

The boundary Γ of Ω is parametrized by S (e.g., arclength or polar
angle), Γ : γ(S),0 ≤ S ≤ L, γ(0) = γ(L). If S = S(θ) or its inverse
θ(S) = arg f−1(γ(S)) is known, then the map is known for z ∈ D or
w ∈ Ω by the Cauchy Integral Formula,

f (z) =
1

2πi

∫
|ζ|=1

γ(S(θ))

ζ − z
dζ(θ)

or

f−1(w) =
1

2πi

∫
Γ

eiθ(S)

γ(S)− w
dγ(S).
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Introduction Some background

Two classes of methods

1. Find S = S(θ) such that f (eiθ) = γ(S(θ)). We will discuss this
case. These methods solve a nonlinear integral equation for S(θ)
by linearly convergent methods of successive approximation
(Picard-like iteration) such as Theodorsen’s method, or
quadratically convergent Newton-like methods such as Fornberg’s
or Wegmann’s methods. Cost: O(N log N) with FFTs.

2. Find θ = θ(S) such that f−1(γ(S)) = eiθ(S). These methods solve
linear integral equations arising from potential theory for θ(S) or
θ′(S). Cost: O(N2) operation counts, but can handle more highly
distorted regions.
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Introduction Some background

Two methods for solving nonlinear equations F (X ) = 0

1. Successive approximation (Picard), if F (X ) = X −G(X ),

Xn+1 = G(Xn), Xn+1 → Xsoln, converges if|G′(Xsoln)| < 1.

Less work per step, but convergence is linear.
2. Newton’s method, solves linear equation at each step

Xn+1 = Xn − F ′(Xn)−1F (Xn).

More work per step, but convergence is quadratic.
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Introduction Some background

Taylor series = Fourier series
For |z| < |ζ| = 1, ζ = eiθ,dζ = ieiθdθ

f (z) =
1

2πi

∫
|ζ|=1

γ(S(θ))

ζ − z
dζ

=
1

2πi

∫
|ζ|=1

γ(S(θ))

(
1 +

z
ζ

+

(
z
ζ

)2

+ · · ·

)
dζ
ζ

=
1

2π

∫ 2π

0
γ(S(θ))(1 + ze−iθ + z2e−2iθ + · · · )dθ

=
∞∑

k=0

(
1

2π

∫ 2π

0
γ(S(θ))e−ikθdθ

)
zk

=
∞∑

k=0

akzk ,

Taylor coeff. = Fourier coeff. ak := 1
2π

∫ 2π
0 γ(S(θ))e−ikθdθ.
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Introduction Some background

Applications:

Transplant boundary value problem for Laplace equation from
complicated domain to circle domain or model domain and solve using
(fast) Fourier/Laurent series or elementary methods.
(BVP for biharmonic equation can also be solved by transplanting the
analytic functions of the Goursat representation.)

Advantages: fast methods and spectral accuracy for analytic data and
boundaries.

Disdavantages: Crowding phenomenon–mapping problem can be
severely ill-conditioned for distorted domains, e.g., an L× 1 elongated
domain has derivatives of order exp(cL).
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Introduction Some background

Invariance of Laplacian under w = f (z), conformal

∆zU = |f ′(z)|2∆wU,

Therefore, since f ′(z) 6= 0, ∆zU = 0 iff ∆wU = 0.
(Note that for the biharmonic equation, ∆2

wU = 0, we have

∆2
wU = |f ′(z)|−2∆z

(
|f ′(z)|−2∆zU

)
= 0,

or
∆z

(
|f ′(z)|−2∆zU

)
= 0.

Therefore, the biharmonic equation does not transplant conformally.
However, U = U(w) biharmonic can be written as

U = Re{wφ(w) + ξ(w)} = Re{f (z)φ(f (z)) + ξ(f (z))},

where φ and ξ are the analytic Goursat functions which transplant
analytically.)
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Introduction Numerical preview and gallery

 1

 2

 3

 4

 5

 6

 7

 8

Figure: Fornberg map from exterior of unt disk to exterior of spline
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Introduction Numerical preview and gallery

Simply-connected case: crowding=large
distortions=Ill-conditioning

Figure: Fornberg (Fourier series) map from unit disk to interior of ellipse
using 1024 Fourier points.
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Introduction Numerical preview and gallery

Map from annulus–D. and Pfaltzgraff (1998)
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Figure: Doubly connected Fornberg maps annulus ρ < |z| < 1 to domain
between two ellipses α = .3, .6 with N = 64. Normalization fixes one
boundary point f (1) to fix rotation of annulus. The inner and outer boundary
correspondences S = S1(θ) and S = S2(θ) along with the unique
ρ(=1/conformal modulus) must be computed numerically.
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Introduction Numerical preview and gallery

Interior mult. conn. case–Kropf’s MS thesis (2009)
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Figure: Outer circle is unit circle. Map normalization fixes f (0) and f (1).
m = 4 boundary correspondences and centers and radii of inner circles
(unique “conformal moduli”) must be computed.
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Introduction Numerical preview and gallery
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A target region with m = 7.
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Introduction Numerical preview and gallery

Numerical Example
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A target region (on the right) with an outer spline boundary which
is parametrized by arclength.
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Introduction Numerical preview and gallery

Numerical Example
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Annulus with circular holes as a computational domain.
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Introduction Numerical preview and gallery

Exterior mult. conn. case–Benchama’s PhD thesis
(2003)
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Figure: Fornberg map to the exterior of five curves.
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Figure: Infinite product map from circle domain to radial slit disk.
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Figure: An orthogonal grid using level lines of map to radial slit disk.
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Fourier series methods Theodorsen’s method (1931)

Conjugate harmonic functions on the disk
Cauchy-Riemann equations in polar coordinates

∂u
∂r

=
1
r
∂v
∂θ
,

∂v
∂r

= −1
r
∂u
∂θ
.

For u(r , θ) = rn cos(nθ),n = . . . ,−2,−1,0,1,2, . . . ,
the harmonic function conjugate to u in the disk is

v(r , θ) = rn sin(nθ) + c, c constant.

This gives

u + iv = rn(cos(nθ) + i sin(nθ)) + ic
= rneinθ + ic = (reiθ)n + ic = zn + ic = f (z),

analytic in z = reiθ.
Similarly, if u(r , θ) = rn sin(nθ), then v(r , θ) = −rn cos(nθ) + c.

Tom DeLillo (Wichita State U Math Dept) Numerical Conformal Mapping tutorial 2014 25 / 105



Fourier series methods Theodorsen’s method (1931)

Solution of Dirichlet problem on disk

Find u = u(r , θ) s.t. ∆u = 0 for 0 ≤ r ≤ 1 given (Fourier series for) real
boundary data, h,

u(1, θ) = h(θ) = a0 +
∞∑

n=1

an cos nθ + bn sin nθ.

The solution is immediate,

u(r , θ) = a0 +
∞∑

n=1

anrn cos nθ + bnrn sin nθ.

For the Dirichlet problem in Ω, we are given boundary values u = b(S)
on Γ and transplant to disk, u(1, θ) = h(θ) = b(S(θ)).
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Fourier series methods Theodorsen’s method (1931)

Computing the conjugate periodic functions
Define the conjugation operator K relating conjugate periodic
functions, φ(θ) = u(1, θ) and ψ(θ) = v(1, θ)− b0,

φ(θ) = a0 +
∞∑

n=1

an cos nθ + bn sin nθ →

ψ(θ) = Kφ(θ) :=
∞∑

n=1

an sin nθ − bn cos nθ.

Therefore, K factors as K = F−1K̂ F ,
where F and F−1 are the Fourier transform and it’s inverse and

K̂ =


an → −bn
a0 → 0
bn → an.
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Fourier series methods Theodorsen’s method (1931)

MATLAB code for conjugation
Note: for complex h(θ) =

∑∞
n=−∞ aneinθ, since K is linear,

Kh(θ) =
∑−1

n=−∞ ianeinθ +
∑∞

n=1−ianeinθ.

Discretize with N-point trig. interp. and use fft

function Kh = conjug(h) % periodic h sampled at n equidistant pts.
n = length(h);
n1 = n/2;
a = fft(h);
a(1) = 0;
a(n1 + 1) = 0;
k = 2:n1;
a(k) = - i*a(k);
a(n1 + k) = i*a(n1 + k);
Kh = ifft(a);
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Fourier series methods Theodorsen’s method (1931)

Theodorsen’s method

Requires that the boundary Γ be starlike with respect to the origin, i.e.,

Γ : γ(φ) = ρ(φ)eiφ,0 < ρ(φ),0 ≤ φ ≤ 2π.

The method finds the boundary correspondence φ = φ(θ) by
successive conjugation.
Start with auxiliary function h(z) := log f (z)/z.
Use map normalization f (0) = 0 and f ′(0) > 0.
Note that h(0) = log f ′(0) is real and h(z) is analytic in |z| < 1.
Next, note that since f (eiθ) = ρ(φ(θ))eiφ(θ), we have

h(eiθ) = log
ρ(φ(θ))eiφ(θ)

eiθ = log ρ(φ(θ)) + i(φ(θ)− θ)

( = u(1, θ) + iv(1, θ) above.)
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Fourier series methods Theodorsen’s method (1931)

Theodorsen iteration

Apply conjugation operator K to the real and imaginary parts of

h(eiθ) = log ρ(φ(θ)) + i(φ(θ)− θ)

Since Imh(0) = b0 = 0, we have Theordorsen’s equation,

φ(θ)− θ = K [log ρ(φ(θ))]. (1)

(−K for the exterior case.) Fixing φ(0) with 0 ≥ φ(0) < 2π for
uniqueness, solve the iteration,

φ(0)(θ) = θ (initial guess)

φ(n+1)(θ)− θ = K [log ρ(φ(n)(θ))].

Under suitable conditions on Γ, φ(n)(θ)→ φ(exact)(θ),n→∞.
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Fourier series methods Theodorsen’s method (1931)

K as singular integral operator

Kh(θ) =
1

2π
PV

∫ 2π

0
h(τ) cot

(
θ − τ

2

)
dτ,

where PV is the Cauchy Principal Value of the integral and h(θ) is
2π-periodic. (Such singular integral operators are not compact, as we
will see.) Define δ(θ) := φ(θ)− θ. Then δ(θ) is 2π-periodic, (whereas,
φ(θ), of course, is not). Therefore, we actually have Theodorsen’s
integral equation for δ = δ(θ),

δ(θ) =
1

2π
PV

∫ 2π

0
log(ρ(τ + δ(τ)) cot

(
θ − τ

2

)
dτ

Note that this is a nonlinear integral equation for δ(θ) with the
nonlinearity entering through the “curve information” log(ρ(τ + δ(τ)),
since K itself is a linear operator.
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Fourier series methods Theodorsen’s method (1931)

A useful estimate
Lemma
‖K‖2 = 1.

Proof.

u(θ) ∼ a0 +
∞∑

n=1

an cos nθ + bn sin nθ,

‖u‖22 = |a0|2 +
∞∑

n=1

|an|2 + |bn|2, and

‖Ku‖22 =
∞∑

n=1

|an|2 + |bn|2.

Therefore, ‖Ku‖2 ≤ ‖u‖2 and if a0 = 0, then ‖Ku‖2 = ‖u‖2. Therefore
‖K‖2 = max‖u‖2=1 ‖Ku‖2 = 1.
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Fourier series methods Theodorsen’s method (1931)

Convergence of Theodorsen

Theorem

Let ε := supφ |
ρ′(φ)
ρ(θ |. If ε < 1, then limn→∞ ‖φ(θ)− φ(n)(θ)‖2 = 0.

Proof.
From the Theodorsen iteration, we see that

‖φ(θ)− φ(n+1)(θ)‖2 = ‖K [log ρ(φ(θ))− log ρ(φ(n)(θ))]‖2
≤ ‖ log ρ(φ(θ))− log ρ(φ(n)(θ))‖2

= ‖
∫ φ(θ)

φ(n)(θ)

ρ′(ϕ)

ρ(ϕ)
dϕ‖2

≤ ε‖φ(θ)− φ(n)(θ)‖2.
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Fourier series methods Theodorsen’s method (1931)

geometric condition for convergece of Theodorsen

ε < 1-condition means angle between radial line and normal to curve
< π/4, i.e., Γ is nearly circular.
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Fourier series methods Theodorsen’s method (1931)

MATLAB code for Theodorsen’s method

function f = theoint(n, region, itmax)
th = 2*pi*[0:n-1]/ n; phi = th; phil = phi;
disp(’Iteration no. Error between successive iterates’);
f = bdrytheo(region,phi);
for it = 1 : itmax
c = log(abs(f));
c = conjug(c);
phi = real(c) + th;
error=max(abs(phi-phil));
phil=phi;
fprintf(’
f = bdrytheo(region, phi);
end
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Fourier series methods Theodorsen’s method (1931)

Popular test case–the inverted ellipse

The map from the interior of the unit disk to the interior of the ellipse
x2 + α2y2 = 1 inverted in the unit circle with minor-to-major axis ratio
0 < α ≤ 1 is

w = f (z) =
2αz

1 + α− (1− α)z2 .

A starlike wrt 0 parametrization of the boundary is

Γ : γ(φ) = ρ(φ)eiφ,0 ≤ φ ≤ 2π where ρ(φ) =

√
1− (1− α2) sin2 φ.

Note: This map can be derived from the Joukowski map
f (z) = z + 1/z which maps exteriors of circles to exteriors of ellipses
by normalizing properly and rotating.
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Fourier series methods Theodorsen’s method (1931)
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Figure: A target region with an inverted ellipse with α = .6. The ε-condition is
satisfied and Theodorson converged.
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Fourier series methods Theodorsen’s method (1931)
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Figure: A target region with an inverted ellipse with α = .4. The ε-condition is
not satisfied and Theodorson failed.
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Fourier series methods Fornberg’s method for the disk (1980)

Conformal map w = f (z) from disk to target domain

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure: Fornberg (Fourier series) map from unit disk to interior of an inverted
ellipse using 64 Fourier points. Normalization fixes three real parameters:
f (0) fixed and f (1) fixed.
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Fourier series methods Fornberg’s method for the disk (1980)

Some useful linear operators
For h = h(θ),2π-periodic,

Jh(θ) :=
1

2π

∫ 2π

0
h(θ)dθ = c0

P+h(θ) :=
∞∑

k=1

ckeikθ

P−h(θ) :=
0∑

k=−∞
ckeikθ

Note that P2
± = P± are projection operators onto subspaces of

L2[0,2π] whose nonpositive/positive indexed Fourier coefficients 0.
Also note

P+h =
1
2

(I + iK − J)h,

P−h =
1
2

(I − iK + J)h.

Tom DeLillo (Wichita State U Math Dept) Numerical Conformal Mapping tutorial 2014 41 / 105



Fourier series methods Fornberg’s method for the disk (1980)

(Infinite) matrix form Fh :=



...
c−2
c−1
c0
c1
c2
...


=: c and Kh = F−1K̂ Fh

= F−1



. . .
i

i
0
−i
−i

. . .





...
c−2
c−1
c0
c1
c2
...


= F−1



...
ic−2
ic−1

0
−ic1
−ic2

...


,
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Fourier series methods Fornberg’s method for the disk (1980)

Condition for analytic extension of boundary values
Theorem
A function h ∈ Lip(Γ) can be continued analytically into D+ (i.e.,
f (t) = h(t), t ∈ Γ) if and only if

f (z) :=
1

2πi

∫
Γ

h(t)
t − z

dt = 0, z ∈ D−,

or, equivalently, if

1
2πi

∫
Γ

tnh(t)dt = 0, n = 0,1,2, . . . .

Proof.
Sufficiency: Cauchy Integral Theorem.
Necessity: Sokhotskyi jump relations, f + − f− = h.
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Fourier series methods Fornberg’s method for the disk (1980)

Condition for unit D=disk

Theorem
A function f ∈ Lip(C) on the boundary C of the unit disk extends to an
analytic function in the interior of the disk with f (0) = 0 if and only if

P−f (eiθ) = 0. (2)

That is, negative indexed coefficients are 0.
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Fourier series methods Fornberg’s method for the disk (1980)

Linearization
Given the k th Newton iterate S = Sk (θ), find correction Uk (θ), real,
such that

f (eiθ) = γ(Sk (θ) + Uk (θ)) ≈ ξ(θ) + eiβ(θ)U(θ)

extends analytically to the interior of the unit disk with f (0) = 0, where
ξ(θ) = γ(S(k)(θ)), β(θ) = arg γ′(S(k)(θ)), and
U(θ) := |γ′(S(k)(θ)|U(k)(θ) extends analytically to the interior of the
unit disk with f (0) = 0. The analyticity condition

2P−f = (I − iK + J)f = 0

implies that
(I − iK + J)eiβ(θ)U(θ) = −2P−ξ(θ).

U real gives
(I + R)U = r

where R = Re(e−iβ(J − iK )eiβ) and r = −Re(e−iβ(I − iK + J)ξ).
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Fourier series methods Fornberg’s method for the disk (1980)

R is a compact operator (Widlund, Wegmann)

RU(θ) :=
1

2π

∫ 2π

0

sin
(
β(φ)− β(θ) + θ−φ

2

)
sin
(
θ−φ

2

) U(φ) dφ,

and for γ sufficiently smooth R in is a symmetric, compact operator on
L2.
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Fourier series methods Fornberg’s method for the disk (1980)

Discretization by N-pt. trig. interp.
With E = diagj(e

iβ(θj )), j = 0,1, · · · ,N − 1, discretization gives

(IN + RN)U = r .

where the matrix

IN + RN =
2
N

Re(EHF HPNFE)

(with PN := diag[1,0, . . . ,0,1, . . . ,1]) is symmetric and pos.(semi)def.
with eigenvalues well-grouped around 1 and conjugate gradient
converges superlinearly.
Matrix-vector multiplications costs O(N log N) with FFT.
The Newton update is given by

S(k+1) = S(k) + U(k),

with U0 = 0 set to fix a boundary point
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Fourier series methods Fornberg’s method for the disk (1980)

More details on the matrix-vector formulation

Here θk = 2πk/N, 0 ≤ k ≤ N − 1, so that

f = [f0, . . . , fN−1]T fj = f (eiθj ).

For w = e2πi/N , define the Fourier matrix F by

F := [w−kj ] 0 ≤ k , j ≤ N − 1.

For âk := k th discrete Fourier coefficients, their N-periodicity âk+N = âk
gives

1
N

Ff = a = [â0, . . . , âN/2, â−N/2+1, . . . , â−1]T .
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Fourier series methods Fornberg’s method for the disk (1980)

Our discrete analyticity conditions are

âk = 0, k = 0, . . . ,−N/2 + 1.

Define
E = diagj [e

iβ(θj )], 0 ≤ j ≤ N − 1

I1 = diag[1,0, . . . ,0] I2 = diag[0,1, . . . ,1]

and
C = [I1 I2]FE

where I1 and I2 are N/2× N/2 matrices. Then the inner Newton
system is

f = ξ + EU

and the discrete analyticity conditions are

CU = −[I1 I2]Fξ =: c.
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Fourier series methods Fornberg’s method for the disk (1980)

To set f (1) = γ(0) requires S0 = 0, and U0 = 0.
Define qT = [1,0, ...,0].
Then U0 = 0 is written as qT U = 0.
Put

D =

[
C√

NqT/2

]
, g =

[
c
0

]
.

A calculation gives

2
N

Re(DHD) =
2
N

Re(CHC) +
1
2

qqT

Finally, since U is real, we obtain

2
N

Re(DHD)U =
2
N

Re(DHg). (3)
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Fourier series methods Fornberg’s method for the disk (1980)

It is useful for visualizing our methods to write the matrices in block
form,

CHC = F HEH
[

I1
I2

]
[I1I2]FE = F HEH

[
I1 0
0 I2

]
FE

= F HEH



1
0

. . .
0

0
1

. . .
1


FE .
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Fourier series methods Fornberg-like method for the annulus (1998)

Outline

1 Introduction
Some background
Numerical preview and gallery

2 Fourier series methods
Theodorsen’s method (1931)

Conjugate harmonic functions
Discretization and successive conjugation

Fornberg’s method for the disk (1980)
Analyticity conditions
Linearization
Discretization by N-pt. trig. interp.

Fornberg-like method for the annulus (1998)
Multiply connected Fornberg (bounded case, 2009)

3 Remarks and extra details
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Fourier series methods Fornberg-like method for the annulus (1998)

Map from annulus–D. and Pfaltzgraff (1998)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure: Doubly connected Fornberg maps annulus ρ < |z| < 1 to domain
between two ellipses α = .3, .6 with N = 64. Normalization fixes one
boundary point f (1) to fix rotation of annulus. The inner and outer boundary
correspondences S = S1(θ) and S = S2(θ) along with the unique
ρ(=1/conformal modulus) must be computed numerically.
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Fourier series methods Fornberg-like method for the annulus (1998)

Analyticty conditions
Let C1 and C2 denote the outer and inner boundaries, respectively, of
the annulus ρ < |z| < 1, and put C = C1 − C2.

Theorem
A function h ∈ Lip(C) extends analytically to the annulus ρ < |z| < 1 if
and only if ∫

C1

h(z)zkdz =

∫
C2

h(z)zkdz, k ∈ Z.

If we let

h(eiθ) =
∞∑

k=−∞
akeikθ h(ρeiθ) =

∞∑
k=−∞

bkeikθ

then the above condition becomes ρkak = bk , k ∈ Z or (to prevent
overflow)

ρkak = bk ,a−k = ρkb−k , k = 0,1,2, . . . .
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Fourier series methods Fornberg-like method for the annulus (1998)

Mapping problem

Target region Ω bounded by two smooth curves Γ1 : γ1(S1) and
Γ2 : γ2(S2).

Problem: Find the boundary correspondences S1(θ) and S2(θ) and the
conformal modulus ρ such that f (z) is analytic in the annulus
ρ < |z| < 1 and f (eiθ) = γ1(S1(θ)) and f (ρeiθ) = γ2(S2(θ)).
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Fourier series methods Fornberg-like method for the annulus (1998)

Linearization for Newton-like method

At each Newton step we want to compute corrections U1(θ), U2(θ),
and δρ to S1(θ), S2(θ), and ρ. With Sj arclength,
βj(θ) := arg γ′j (Sj(θ)), ξj(θ) := γj(Sj(θ)), j = 1,2, ζ(θ) := f ′(ρeiθ)eiθ =

−ieiβ2(θ)dS2(θ)/dθ/ρ, as in [LM] we linearize about S1,S2, and ρ,

γj(Sj(θ) + Uj(θ)) ≈ γj(Sj(θ)) + γ′j (Sj(θ))Uj(θ)), j = 1,2,

f ((ρ+ δρ)eiθ) ≈ f (ρeiθ) + f ′(ρeiθ)δρeiθ

giving

f (eiθ) ≈ ξ1(θ) + eiβ1(θ)U1(θ)

f (ρeiθ) ≈ ξ2(θ) + eiβ2(θ)U2(θ)− ζ(θ)δρ.

We find U1,U2, δρ to force these BVs to satisfy the analyticity
conditions for the annulus.
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Fourier series methods Fornberg-like method for the annulus (1998)

Discrete form of analyticity conditions

N−periodicity of discrete Fourier coefficients ak+N = ak , with N = 2n
gives

a = [a0,a1, . . . ,an,an+1, . . . ,aN−1]T = [a0,a1, . . . ,an,a−n+1, . . . ,a−1]T .

Define the N × N matrices P1 = diag[1, ρ, . . . , ρn−1,1, . . . ,1] and
P2 = −diag[1, . . . ,1,1, ρn−1, . . . , ρ]. Discrete form of our analyticity
conditions (with an = bn)

P1a + P2b = 0.
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Fourier series methods Fornberg-like method for the annulus (1998)

Linear equations
With Ej := diagl=0,...,N−1[eiβj (θl )], j = 1,2, our discrete linearizations
become

Na = Fξ1 + FE1U1

Nb = Fξ2 + FE2U2 − Fζδρ.

Substituting these linearizations into the discrete analyticity conditions
gives our linear system for U1, U2, and δρ,

[C w ]U = P1FE1U1 + P2FE2U2 − P2Fζδρ = −P1Fξ1 − P2Fξ2 =: c.

where C = [P1FE1 P2FE2] is a complex N × 2N matrix, w = −P2Fζ is
a complex N-vector, and

U =

 U1
U2
δρ

 .
This is a system of N complex equations in 2N + 1 real unknowns, U.
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Fourier series methods Fornberg-like method for the annulus (1998)

Normalization
To satisfy the normalization f (1) = γ1(0), we add the equation
qT U = U0 = δ := 0, where qT = [1,0, . . . ,0]T is a 2N + 1-vector. We
write

D =

[
C w√
N qT/2

]
, g :=

[
c
δ

]
.

and our system now becomes

DU = g,

a system of N complex equations and 1 real equation for the 2N + 1
real unknowns, U. Using the “normal equations” and U real, we have

2
N

Re(DHD)U = r :=
2
N

Re(DHg).

We solve this CG using FFTs.
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Fourier series methods Fornberg-like method for the annulus (1998)

System = identity + compact

The above 2N + 1× 2N + 1-matrix is

2
N

Re(DHD) =

 A11 A12 w1
AT

12 A22 w2
wH

1 wH
2 2wHw/N

+
1
2

qqT

where Aij = 2
N Re(EH

i F HPiPjFEj) and w i = 2
N Re(EH

i F HPiw), i , j = 1,2.
Note that the 2N × 2N matrix containing the analyticity conditions is

2
N

Re(CHC) =

[
A11 A12
AT

12 A22

]
.

We’ll see Aii = I+compact, Aij=compact, i 6= j and w j ’s are low rank.
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Fourier series methods Fornberg-like method for the annulus (1998)

Recall C = [P1FE1 P2FE2]. Then, since PT
i = Pi ,

CHC =

[
EH

1 F H 0
0 EH

2 F H

] [
P2

1 P1P2
P2P1 P2

2

] [
FE1 0

0 FE2

]
P2

1 = diag[1, ρ2, . . . , ρ2(n−1),1, . . . ,1],
P2

2 = diag[1, . . . ,1,1, ρ2(n−1), . . . , ρ2],
P1P2 = diag[1, ρ, . . . , ρn−1,1, ρn−1, . . . , ρ]
The “1” ’s on the diagonals lead to I + R (R compact) as in the disk
case.
The ρk ’s on the diagonals lead to convolutions with, e.g.,
l(θ) = ρ2eiθ/(1− ρ2eiθ) =

∑∞
k=1 ρ

2keikθ.
Therefore, the underlying operator is I + Compact , the eigenvalues
cluster around 1, and CG converges superlinearly.
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Fourier series methods Fornberg-like method for the annulus (1998)

Newton update

S(k+1)
1 = S(k)

1 + U(k)
1

S(k+1)
2 = S(k)

2 + U(k)
2

ρ(k+1) = ρ(k) + δρ(k).
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Outline

1 Introduction
Some background
Numerical preview and gallery

2 Fourier series methods
Theodorsen’s method (1931)

Conjugate harmonic functions
Discretization and successive conjugation

Fornberg’s method for the disk (1980)
Analyticity conditions
Linearization
Discretization by N-pt. trig. interp.

Fornberg-like method for the annulus (1998)
Multiply connected Fornberg (bounded case, 2009)

3 Remarks and extra details
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Interior mult. conn. case–Kropf’s MS thesis (2009)
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0

1
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3

Figure: Outer circle is unit circle. Map normalization fixes f (0) and f (1).
m = 4 boundary correspondences and centers and radii of inner circles
(unique “conformal moduli”) must be computed.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Computational and Target Domains

w=f(z)

w
0
=f(z

0
)z

0

w
0

D

C
1

D
1

D
2

C
2

D
3

C
3 Ω

Γ
1

Γ
2

Γ
3

The boundary of the computational domain D is
C = C1 − · · · − Cm,

I where m is the connectivity of D
I and C1 is the unit circle.

The boundary of the target (“physical”) domain Ω is
Γ = Γ1 − · · · − Γm.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Boundary Parametrization

w=f(z)

w
0
=f(z

0
)z

0

w
0
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2

D
3
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Γ
1

Γ
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Γ
3

The target domain boundary will be parametrized, e.g., by
arclength,
i.e., Γ : γ1(S1)− γ2(S2)− · · · − γm(Sm).
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Computational Goal

w=f(z)

w
0
=f(z

0
)z

0

w
0

D

C
1

D
1

D
2

C
2

D
3

C
3 Ω

Γ
1

Γ
2

Γ
3

The goal is to compute the conformal map f : D → Ω.
To do this we must calculate

1 the centers cν and radii ρν of the circles Cν , 2 ≤ ν ≤ m, and
2 the boundary correspondences Sν(θ), where 0 ≤ θ ≤ 2π,

such that f (cν + ρνeiθ) = γν(Sν(θ)), 1 ≤ ν ≤ m.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

A Newton-like Method

The desired map will be computed using a Newton-like method:
1 Begin with an initial guess for the centers cν and radii ρν , and the

boundary correspondences Sν(θ).
2 Using linearized version of the circle map problem, find updates to

these values by solving a linear system.
3 Apply the updates.
4 Keep doing this until the updates found are below some specified

value.
5 Based on the result of the last Newton iteration, calculate the the

map.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Form of the Map

Theorem

The conformal map described above has the series representation

f (z) =
∞∑

j=0

a1,jz j +
m∑
ν=2

∞∑
j=1

aν,−j

(
ρν

z − cν

)j

,

where for 1 ≤ ν ≤ m and j > 0 the Fourier coefficients aν,j are defined

aν,j :=
1

2π

∫ 2π

0
f (cν + ρνeiθ)e−ijθ dθ.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Proof of the Form of the Map
(part 1)

Proof.
For a point z in D (with z not on the boundary) the Cauchy integral
formula gives

f (z) =
1

2πi

∫
C

f (ζ)

ζ − z
dζ

=
1

2πi

∫
C1

f (ζ)

ζ − z
dζ −

m∑
ν=2

1
2πi

∫
Cν

f (ζ)

ζ − z
dζ.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Proof of the Form of the Map
(part 2)

Proof.

Note that ζ = eiθ ⇒ dζ = ieiθ dθ, along with |z||ζ| < 1. Expanding the
Cauchy kernel around C1 gives

1
2πi

∫
C1

f (ζ)

ζ − z
dζ =

1
2πi

∫
C1

f (ζ)
1

1− z/ζ
dζ
ζ

=
1

2πi

∫
C1

f (ζ)
∞∑

j=0

(
z
ζ

)j dζ
ζ

=
∞∑

j=0

[
z j 1

2π

∫ 2π

0
f (eiθ)e−ijθ dθ

]
.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Proof of the Form of the Map
(part 3)

Proof.

Additionally ζ = cν + ρνeiθ ⇒ dζ = iρνeiθ dθ, and |ζ−cν |
|z−cν | < 1. So on

each Cν

1
2πi

∫
Cν

f (ζ)

ζ − cν − (z − cν)
dζ = − 1

2πi

∫
Cν

f (ζ)
1

z − cν

∞∑
j=0

(
ζ − cν
z − cν

)j

dζ

= − 1
2π

∫ 2π

0
f (cν + ρνeiθ)

1
z − cν

∞∑
j=0

(
ρνeiθ

z − cν

)j

ρνeiθ dθ

= −
∞∑

j=1

[(
ρν

z − cν

)j 1
2π

∫ 2π

0
f (cν + ρνeiθ)eijθ dθ

]
.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Analytic Continuation

Theorem

Let C be a positively oriented, Lipschitz continuous curve with D the
region bounded by C and D− the compliment of D ∪ C. A function
f ∈ Lip(C) can be continued analytically into D if and only if

1
2πi

∫
C

f (ζ)

ζ − z
dζ = 0, ∀z ∈ D−.

A version of this theorem is given by both Henrici and
Muskhelishvili.
It is used here as setup for the next theorem
where we introduce the conditions for analytic extention
(analyticity conditions).
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Analyticity Conditions

Theorem
A function f ∈ Lip(C) extends analytically into D if and only if for all
k ≥ 0

a1,−(k+1) −
m∑
ν=2

k∑
j=0

(
k
j

)
ρj+1
ν ck−j

ν aν,−(j+1) = 0

and
∞∑

j=0

Bk+1,jρ
k
` c j
`a1,k+j − a`,k

−
m∑
ν=2
ν 6=`

∞∑
j=0

ρk
`

(cν − c`)k+1 Bk+1,j
ρj+1
ν

(c` − cν)j aν,−(j+1) = 0.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Note on Analyticity Conditions
For the analyticity conditions we need to define some binomial
coefficients.

Definition
For k > 0 and x , y ∈ C,

(x + y)k =
k∑

j=0

(
k
j

)
xk−jy j where

(
k
j

)
:=

k !

j!(k − j)!
.

Definition
For k > 0 and |z| < 1,

1
(1− z)k =

∞∑
j=0

Bk ,jz j where Bk ,j :=
k(k + 1) · · · (k + j − 1)

j!
.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Note on Proof of Analyticity Conditions

The proof involves
1 applying the above analytic continuation Theorem for an arbitrary

point z in each D1, . . . ,Dm,
2 expanding the function in the appropriate Laurent series, and
3 setting the resulting series equal to 0.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Proof of Analyticity Conditions
(Outside C1)

Proof.
For z in D1 we have |z| > 1 and |ζ|/|z| < 1 for ζ on any C1, . . . ,Cm,
thus

1
2πi

∫
C

f (ζ)

ζ − z
dζ = − 1

2πi

∫
C

f (ζ)
1
z

∞∑
k=0

(
ζ

z

)k

dζ

= −
∞∑

k=0

z−k−1 1
2πi

∫
C

f (ζ)ζk dζ = 0.

The last integral on the RHS must be zero for all k ≥ 0.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Proof of Analyticity Conditions
(Outside C1)

Proof.

0 =
1

2πi

∫
C

f (ζ)ζk dζ =
1

2πi

∫
C1

f (ζ)ζk dζ −
m∑
ν=2

1
2πi

∫
Cν

f (ζ)ζk dζ

=
1

2π

∫ 2π

0
f (eiθ)ei(k+1)θ dθ

−
m∑
ν=2

k∑
j=0

(
k
j

)
ρj+1
ν ck−j

ν

1
2π

∫ 2π

0
f (cν + ρνeiθ)ei(j+1)θ dθ

= a1,−(k+1) −
m∑
ν=2

k∑
j=0

(
k
j

)
ρj+1
ν ck−j

ν aν,−(j+1).
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Proof of Analyticity Conditions
(Inside C`, 2 ≤ ` ≤ m)

Proof.
For z in one of D` we have |z − c`|/|ζ − c`| < 1 for ζ on any
C1, . . . ,Cm, and so

0 =
1

2πi

∫
C

f (ζ)

ζ − z
dζ =

1
2πi

∫
C

f (ζ)

ζ − c` − (z − c`)
dζ

=
1

2πi

∫
C

f (ζ)
1

ζ − c`

∞∑
k=0

(
z − c`
ζ − c`

)k

dζ

=
∞∑

k=0

(z − c`)k 1
2πi

∫
C

f (ζ)(ζ − c`)−k−1 dζ.

Again the last integral on the RHS must be zero for all k ≥ 0.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Proof of Analyticity Conditions
(Inside C`, 2 ≤ ` ≤ m)

Proof.
Thus around C1

1
2πi

∫
C1

f (ζ)(ζ − c`)−k−1 dζ

=
1

2π

∫ 2π

0
f (eiθ)(eiθ − c`)−k−1eiθ dθ

=
∞∑

j=0

Bk+1,jc
j
`

1
2π

∫ 2π

0
f (eiθ)e−i(k+j)θ dθ.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Proof of Analyticity Conditions
(Inside C`, 2 ≤ ` ≤ m)

Proof.
To expand the previous integral we had to apply the binomial theorem.

When integrating around C1, |c`|/|eiθ| < 1 and so

(eiθ − c`)−k−1 =
1

ei(k+1)θ
· 1(

1− c`
eiθ

)k+1 =
1

ei(k+1)θ

∞∑
j=0

Bk+1,j

( c`
eiθ

)j
.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Proof of Analyticity Conditions
(Inside C`, 2 ≤ ` ≤ m)

Proof.
Around Cν , 2 ≤ (ν 6= `) ≤ m

1
2πi

∫
Cν

f (ζ)(ζ − c`)−k−1 dζ

=
1

2π

∫ 2π

0
f (cν + ρνeiθ)(ρνeiθ − (c` − cν))−k−1ρνeiθ dθ

=
1

(cν − c`)k+1

∞∑
j=0

Bk+1,j
ρj+1
ν

(c` − cν)j
1

2π

∫ 2π

0
f (cν + ρνeiθ)ei(j+1)θ dθ.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Proof of Analyticity Conditions
(Inside C`, 2 ≤ ` ≤ m)

Proof.
Again the binomial theorem was applied.

Since ρν/|c` − cν | < 1 around Cν for 2 ≤ (ν 6= `) ≤ m, we have

(ρνeiθ − (c` − cν))−k−1 =
1

(c` − cν)k+1(−1)k+1
(

1− ρνeiθ

c`−cν

)k+1

=
1

(cν − c`)k+1

∞∑
j=0

Bk+1,j

(
ρνeiθ

c` − cν

)j

.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Proof of Analyticity Conditions
(Inside C`, 2 ≤ ` ≤ m)

Proof.
And finally, around C`

1
2πi

∫
C`

f (ζ)(ζ − c`)−k−1 dζ

=
1

2π

∫ 2π

0
f (c` + ρ`eiθ)ρ−k−1

` e−i(k+1)θρ`eiθ dθ

=
1

2π

∫ 2π

0
f (c` + ρ`eiθ)ρ−k

` e−ikθ dθ.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Proof of Analyticity Conditions
(Inside C`, 2 ≤ ` ≤ m)

Proof.
Putting it together,

0 =
1

2πi

∫
C

f (ζ)(ζ − c`)−k−1 dζ

=
∞∑

j=0

Bk+1,jρ
k
` c j
`a1,k+j − a`,k

−
m∑
ν=2
ν 6=`

∞∑
j=0

ρk
`

(cν − c`)k+1 Bk+1,j
ρj+1
ν

(c` − cν)j aν,−(j+1).
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Map Normalization

The map is normalized by specifying three real conditions.
I One is given by specifying f (1) = γ1(0).
I The other two are given by fixing f (z0) = w0 for points z0 ∈ D and

w0 ∈ Ω. This is given by the form of the map previously calculated,
i.e.

w0 = f (z0) =
∞∑

k=0

a1,k zk
0 +

m∑
ν=2

∞∑
k=1

aν,−k

(
ρν

z0 − cν

)k

.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

A Newton-like Method

The desired map will be computed using a Newton-like iteration:
1 Begin with an initial guess for the centers cν and radii ρν , and the

boundary correspondences Sν(θ).
2 Using a discretized version of the analyticity conditions and

normalization conditions, and a linearized version of the circle map
problem, find updates to these values by solving a linear system.

3 Apply the updates.
4 Keep doing this until the updates found are below some specified

value.
5 Based on the result of the last Newton iteration, calculate the

Fourier coefficients to form the map.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Linearization
We now write f (cν + ρνeiθ) = γν(Sν(θ)) as a linear problem.

For an initial guess Sν(θ) and 2π periodic correction Uν(θ),

γν(Sν(θ) + Uν(θ)) ≈ γν(Sν(θ)) + γ′ν(Sν(θ))Uν(θ).

For an initial guess of cν and ρν with corrections δcν and δρν ,

(f + δf )(cν + δcν + (ρν + δρν)eiθ)

≈ (f + δf )(cν + ρνeiθ) + f ′(cν + ρνeiθ)(δcν + δρνeiθ).

Setting the RHS of these approximations equal gives

(f + δf )(cν + ρνeiθ) = γν(Sν(θ)) + γ′ν(Sν(θ))Uν(θ)

− f ′(cν + ρνeiθ)(δcν + δρνeiθ).

Tom DeLillo (Wichita State U Math Dept) Numerical Conformal Mapping tutorial 2014 88 / 105



Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Linearization
More concisely

For convenience define
I ξν(θ) := γν(Sν(θ)),
I ην(θ) := γ′ν(Sν(θ)), and
I ζν(θ) := −f ′(cν + ρνeiθ)eiθ = iρ−1

ν ηνS′ν(θ).
The linearization conditions can then be written

I (f + δf )(eiθ) = ξ1(θ) + η1(θ)U1(θ)
I (f + δf )(cν + ρνeiθ) = ξν(θ) + ην(θ)Uν(θ) + ζν(θ)(δρν + δcνe−iθ)

for the updates around C1 and around Cν , 2 ≤ ν ≤ m,
respectively.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Newton Updates

After the linear system has been solved, the updates are applied
at each step (n) as follows:

I S(n)
ν (θ) = S(n−1)

ν (θ) + U(n−1)
ν (θ)

for 1 ≤ ν ≤ m, and
I c(n)

ν = c(n−1)
ν + δc(n−1)

ν

I ρ
(n)
ν = ρ

(n−1)
ν + δρ

(n−1)
ν

for 2 ≤ ν ≤ m.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

N Discrete Fourier Coefficients

Let N be an even number.
Let a1,k , . . . ,am,k now denote the discrete Fourier coefficients.
The N-periodicity of the discrete coefficients, with M = N/2, gives

aν := (aν,0,aν,1, . . . ,aν,N−1)T

= (aν,0, . . . ,aν,M−1,aν,−M , . . . ,aν,−1)T

for 1 ≤ ν ≤ m.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

N-point Discretization

Again with M = N/2 we discretize the analyticity and
normalization conditions by

I limiting both the analyticity and normalization conditions to M terms
in each sum expansion, and

I limiting the analyticity conditions to M equations.

This can be done by making k = 0, . . . ,M − 1 or k = 1, . . . ,M as
appropriate. The result is the discrete system of equations . . .
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Discrete System of Equations

a1,−(k+1) −
m∑
ν=2

k∑
j=0

(
k
j

)
ρj+1
ν ck−j

ν aν,−(j+1) = 0,

M−1∑
j=0

Bk+1,jρ
k
` c j
`a1,k+j − a`,k

−
m∑
ν=2
ν 6=`

M−1∑
j=0

ρk
`

(cν − c`)k+1 Bk+1,j
ρj+1
ν

(c` − cν)j aν,−(j+1) = 0,

M−1∑
j=0

a1,jz
j
0 +

m∑
ν=2

M∑
j=1

aν,−j

(
ρν

z0 − cν

)j

= w0.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Matrix Form
of the Analyticity and Normalization Conditions

The discrete system of equations can be written

Pa = P1a1 + · · ·+ Pmam = [P1 · · · Pm]

a1
...

am

 =


0
...
0

w0

 := r .
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Discrete Linearization Conditions

We need to define the vectors and vector functions
I θ := 2π

N (0,1, . . . ,N − 1)T ,
I ξ

ν
:= ξν(θ),

I and similarly for η
ν
, ζ

ν
, and Uν .

If F is the discrete Fourier transform matrix, Eν := diag(η
ν
),

q := e−iθ, and ∗ is the Hadamard product, then the linearization
conditions become

I Na1 = Fξ
1

+ FE1U1 and
I Naν = Fξ

ν
+ FEνUν + δρνFζ

ν
+ δcνF (q ∗ ζ

ν
).
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

New Linear System

For ease of exposition, assume m = 3 for the rest of this section.
Combining the discrete system of equations for the analyticity and
normalization conditions with the discretized linear conditions
gives

P1FE1U1

+ P2(FE2U2 + δρ2Fζ2 + (Re δc2 + iIm δc2)F (q ∗ ζ2))

+ P3(FE2U3 + δρ3Fζ3 + (Re δc3 + iIm δc3)F (q ∗ ζ3))

= Nr − P1Fξ1 − P2Fξ2 − P3Fξ3 := g̃.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

More Convenience Notation

Let wν := PνFζ
ν
,

wq
ν

:= PνF (q ∗ ζ
ν
),

W :=
[
w2 w3 wq

2
iwq

2
wq

3
iwq

3

]
,

and of course P :=
[
P1 P2 P3

]
.

Also define the real vector U :=[
UT

1 UT
2 UT

3 δρ2 δρ3 Re δc2 Im δc2 Re δc3 Im δc3

]T
.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

The Matrix D̃

Combining all of this we now have

D̃U :=
[
P1 P2 P3 W

] 
F 0 0 0
0 F 0 0
0 0 F 0
0 0 0 I




E1 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 I

U = g̃.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

The Matrix D
Through normalization

We add a row to this system to force U1(0) = 0 at every iteration.
This satisfies the normalization condition f (1) = γ1(0).
To do this define the vector vT := (1,0, . . . ,0), and then

D :=

[
D̃√
N

2 vT

]
and g :=

[
g̃
0

]
.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

The Matrix A

Taking the “normal equations” and using the fact U is real,

AU :=
2
N

Re (DHD)U =
2
N

Re (DHg) := b.

This system can now be solved efficiently using the conjugate
gradient method.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

The Matrix A Decomposed

Define
I Akj := (2/N)Re (EH

k F HPH
k PjFEj ) and

I Xk := (2/N)Re (EH
k F HPH

k W ).

Then A can be written

A =
2
N

Re (DHD) =


A11 A12 A13 X1
A21 A22 A23 X2
A31 A32 A33 X3
X T

1 X T
2 X T

3 W HW

+
1
2

vvT ,
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Eigenvalues of A

To understand the eigenvalues of A it suffices to examine the
submatrix

Â =

A11 A12 A13
A21 A22 A23
A31 A32 A33

 .
For the eigenvalues:

I The diagonal entries can be shown to be discretizations of the
identity plus a compact operator, and

I the off-diagonal entries can be shown to be discretizations of a
compact operator.

In effect Â is a low-rank perturbation of the identity, and the
eigenvalues cluster around 1.
This is the property which makes the conjugate gradient method
an efficient solver to use for this problem.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Eigenvalues of A Cluster Around 1

100 200 300 400 500 600 700 800 900
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Index (1:914)

E
ig

en
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e

This map had m = 7 and N = 128.
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Fourier series methods Multiply connected Fornberg (bounded case, 2009)

Eigenvalues of Â
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This map had connectivity m = 3 with N = 256.
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Remarks and extra details

Remarks and future work

The extensions of Fornberg’s original method are essentially
complete. I + compact inner systems carry over.
(The ellipse method was not presented here.)
The MATLAB codes need to be refined and integrated.
Further comparisons with Wegmann’s methods needs to be done
An initial version of the code needs to be publicly available.
Some additional features and improvements are needed:

I Add grids from slit maps for Green’s, Neumann, and Robin
functions.

I Removal of corners with power maps.
I Code optimization.
I Automation for initial guesses.
I Analytic explanation of the nullspace of the matrix A.
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