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Abstract. The method of Muskhelishvili for solving the biharmonic equation using conformal
mapping is investigated. In [R. H. Chan, T. K. DeLillo, and M. A. Horn, SIAM J. Sci. Comput.,
18 (1997), pp. 1571–1582] it was shown, using the Hankel structure, that the linear system in [N. I.
Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Gronin-
gen, the Netherlands] is the discretization of the identity plus a compact operator, and therefore the
conjugate gradient method will converge superlinearly. Estimates are given here of the superlinear
convergence in the cases when the boundary curve is analytic or in a Hölder class.
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1. Introduction. In [CDH] a method for the solution of boundary value prob-
lems for the biharmonic equation using conformal mapping was investigated. The
method is an implementation of the classical method of Muskhelishvili [Musk]. In
[CDH] it was shown, using the Hankel structure, that the linear system in [Musk] is
the discretization of the identity plus a compact operator. In this case, q-superlinear
convergence of the conjugate gradient method, where the speed of convergence de-
pends on the right-hand side, has been proven in [Dan]. In the present paper, esti-
mates are given for the decay rates of the eigenvalues of the compact operators when
the boundary curve is analytic or in a Hölder class. These estimates are used to
give detailed bounds for the r-superlinear convergence which do not depend on the
right-hand side.

The paper is organized as follows. Section 2 describes the original method for
simply connected regions. The representation of the biharmonic function and the
boundary conditions in terms of the analytic Goursat functions is given. Transplanting
the boundary conditions to the unit disk with a conformal map then leads to a linear
system for the Taylor coefficients of the Goursat functions on the disk. In section 3,
some results from conformal mapping are used to show that the linear system can be
formulated in terms of a compact operator with a Hankel structure. In section 4, the
superlinear convergence rates of the conjugate gradient method applied to the linear
system are established.

2. The biharmonic equation. As in [CDH], we will follow the presentation
in [KK] and [Musk]. We wish to find a function u = u(η, µ) which satisfies the
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biharmonic equation,

∆2u = 0,

for ζ = η + iµ ∈ Ω where Ω is a region with a smooth boundary Γ and u satisfies the
boundary conditions

uη = G1 and uµ = G2

on Γ. This boundary value problem arises, for instance, in plane stress problems
where u is the so-called Airy stress function. u can be represented as

u(ζ) = Re(ζφ(ζ) + χ(ζ)),

where φ(ζ) and χ(ζ) are analytic functions in Ω known as the Goursat functions.
Letting G = G1 + iG2, the boundary conditions become

(1) φ(ζ) + ζφ′(ζ) + ψ(ζ) = G(ζ), ζ ∈ Γ,

where ψ(ζ) = χ′(ζ). The problem is to find φ and ψ satisfying (1).
Let ζ = f(z) be the conformal map from the unit disk to Ω, fixing f(0) = 0 ∈

Ω. Then with d(z) := f(z)/f ′(z), φ(z) := φ(f(z)), ψ(z) := ψ(f(z)), and G(z) :=
G(f(z)), equation (1) transplants to the unit disk as

(2) φ(z) + d(z)φ′(z) + ψ(z) = G(z), |z| = 1.

Let

φ(z) =
∞∑
k=1

akz
k and ψ(z) =

∞∑
k=0

bkz
k.

The problem is now to find the ak’s and the bk’s.
For |z| = 1, define the Fourier series

d(z) := f(z)/f ′(z) =
∞∑

k=−∞
hkz

k, G(z) =
∞∑

k=−∞
Akz

k.

Substituting into (2) gives a linear system of equations for the ak’s and bk’s,

(3) aj +
∞∑
k=1

kakhk+j−1 = Aj , j = 1, 2, 3, . . . ,

(4) bj +
∞∑
k=1

kakhk−j−1 = A−j , j = 0, 1, 2, . . . .

If (3) is solved for the ak’s, then the bk’s can be easily computed from (4). These
systems are derived in [Musk] and [KK] and solved for some simple examples. In
[CDH], (3) was truncated after n terms and solved efficiently using the conjugate
gradient method. The matrix-vector multiplications can be done in O(N logN) using
fast Fourier transforms (FFTs).

There is a moment condition to be satisfied by the data. After transplantation to
the disk, this condition can be stated as Re[

∫
|z|=1G(z)f ′(z)dz] = 0. Furthermore, φ
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and ψ are not unique. In short, one needs to specify a0 = φ(0) = 0 and Im(a1/f
′(0)) =

0, which will be incorporated into the derivations.
It should be noted that if our boundary data corresponds to G = 0 then the only

possible (nonzero) choice for φ is φ(z) = Cif(z), for some nonzero C ∈ R. This implies
that the null space corresponding to the infinite system in (3) is one-dimensional,
and the eigenvector spanning this space is given by ak = ick, k = 1, 2, 3, . . . , where
f(z) =

∑∞
k=1 ckz

k.

3. Compact operators. As in [CDH], we take real and imaginary parts of
equation (3) to get

(5) αj +
∞∑
k=1

k(ηk+j−1αk + γk+j−1βk) = Bj , j = 1, 2, 3, . . . ,

(6) βj +
∞∑
k=1

k(γk+j−1αk − ηk+j−1βk) = Cj , j = 1, 2, 3, . . . ,

where we have used the notation ak = αk + iβk, hk = ηk + iγk, and Ak = Bk + iCk.
For visualization purposes, we combine equations (5) and (6) into a doubly infinite
matrix equation in which the two sums are combined into a block Hankel matrix
composed with a diagonal matrix. (A Hankel matrix is a matrix which is constant on
the antidiagonals.) In fact, (5) and (6) can be written as

(I∞ +Hr,∞D∞)α+Hi,∞D∞β = B,

(I∞ −Hr,∞D∞)β +Hi,∞D∞α = C,

so that

(7)
((

I∞ 0
0 I∞

)
+
(
Hr,∞ Hi,∞
Hi,∞ −Hr,∞

)(
D∞ 0

0 D∞

))(
α
β

)
=
(
B
C

)
,

where α = (α1, α2, . . .)T , β = (β1, β2, . . .)T , B = (B1, B2, . . .)T , C = (C1, C2, . . .)T ,
I∞ is the infinite identity matrix, D∞ = diag(1, 2, . . .), Hr,∞ is an infinite Hankel
matrix generated by the ηk, and Hi,∞ is an infinite Hankel matrix generated by the
γk.

Now suppose (α, β) represents a solution to (5),(6). Define

x =
(
D

1/2
∞ α

D
1/2
∞ β

)
, r =

(
D

1/2
∞ B

D
1/2
∞ C

)
.

Then (7) can be written as

(8) (I∞ +M∞)x = r,

where M∞ is given by

M∞ =
(
Mr,∞ Mi,∞
Mi,∞ −Mr,∞

)
=
(
D

1/2
∞ Hr,∞D

1/2
∞ D

1/2
∞ Hi,∞D

1/2
∞

D
1/2
∞ Hi,∞D

1/2
∞ −D1/2

∞ Hr,∞D
1/2
∞

)
.

Note that M∞ is symmetric. We would now like to justify the formal manipulations
above and show that M∞ is a compact operator. This will require the following
definitions and lemmas; see, e.g., [Po].
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DEFINITION 1. For l ≥ 1 and 0 < α ≤ 1, γ ∈ Cl,α[0, 2π] if γ is l-times
differentiable for 0 ≤ s ≤ 2π and

|γ(l)(s1)− γ(l)(s2)| ≤ C|s1 − s2|α.

DEFINITION 2. The Jordan curve Γ is of class Cl,α if it has a parameterization
Γ : γ(s), 0 ≤ s ≤ 2π, such that γ ∈ Cl,α[0, 2π] and γ′(s) 6= 0.

Next, we state a few well-known results about Fourier coefficients and conformal
maps.

THEOREM 1. Let f be periodic with Fourier series f(eiθ) =
∑∞
n=1 cne

inθ. Then
(i) f is analytic implies that there is an R, 0 < R < 1, such that

|cn| = O(R|n|);

(ii) f ∈ Cl,α[0, 2π] implies

|cn| = O(n−l−α), l ≥ 1, 0 < α ≤ 1.

WARSCHAWSKI’S THEOREM. Let f map the disk D conformally onto the inner
domain of the Jordan curve Γ of class Cl,α, where l ≥ 1 and 0 < α < 1. Then f (l)

has a continuous extension to D and

|f (l)(z1)− f (l)(z2)| ≤ C|z1 − z2|α, z1, z2 ∈ D.

Note that in general one cannot take α = 1 in the above theorem.
LEMMA 1. Let f be a conformal map from the unit disk to the region Ω with

boundary Γ. Assume

f(eiθ)/f ′(eiθ) =
∞∑

n=−∞
hne

inθ.

Then
(i) Γ is analytic implies that there is an r, 0 < r < 1, such that

|hn| = O(r|n|);

(ii) for l ≥ 2 and 0 < α < 1, Γ ∈ Cl+1,α implies

|hn| = O(n−l−α).

Proof. The proof of (i) can be found in [CDH].
By Warschawski’s Theorem, Γ is of class Cl+1,α implies f(eiθ) ∈ Cl+1,α[0, 2π]

and f ′(eiθ) ∈ Cl,α[0, 2π]. Note that, since f(z) is conformal and smooth for |z| ≤
1, f ′(z) 6= 0 for |z| ≤ 1. The proof of (ii) then follows from Theorem 1, since f/f ′ ∈
Cl,α[0, 2π] for l ≥ 2, 0 < α < 1.

THEOREM 2. If Γ is analytic or of class Cl+1,α, l ≥ 2, 0 < α < 1, then
Mr,∞ : l1 → l1 and Mi,∞ : l1 → l1 are compact operators where for y ∈ l1,

Mr,∞y =
∞∑
k=1

√
kjηk+j−1yk, j = 1, 2, . . . ,

Mi,∞y =
∞∑
k=1

√
kjγk+j−1yk, j = 1, 2, . . . .
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Proof. We will prove the theorem for Mr,∞. The case for Mi,∞ follows similarly.
Define the finite rank operators {Mr,n} = {D1/2

n Hr,nD
1/2
n } by

Mr,ny =
n∑
k=1

√
kjηk+j−1yk, j = 1, 2, . . . , n,

for all y = (y1, y2, . . .) ∈ l1. The goal is to show that Mr,∞ can be approximated
uniformly by these finite rank operators. (Then, e.g., a version of Theorem 4.4c [Con,
p. 41] for Banach spaces shows that Mr,∞ is itself compact.) If A = (akj) is an
infinite matrix, then the induced l1 operator norm is given by

||A||l1 = sup
j

∞∑
k=1

|akj |;

see, e.g., [Con, p. 171, prob. 8].
The case when Γ is analytic is given in [CDH], so assume Γ is of class Cl+1,α. Let

mk,j denote the (k, j)th component of Mr,n. Then clearly, mk,j =
√
kjRe(hk+j−1).

From Lemma 1 we obtain the following estimate. For any j ≥ 1,
∞∑
k=1

|mk,j | ≤ C
∞∑
k=1

√
kj

(k + j − 1)l+α

≤ C
√
j
∞∑
k=0

1
(k + j)l−1/2+α

≤ C
√
j
{ 1
jl−1/2+α +

∫ ∞
0

dx

(x+ j)l−1/2+α

}
≤ C 1

jl−2+α ,

where C is a constant that depends only on the conformal map. Consequently,

||Mr,∞ −Mr,n||l1 = sup
{ ∞∑
k=1

|mk,n+1|,
∞∑
k=1

|mk,n+2|, . . .
}

≤ C sup
{ 1

(n+ 1)l−2+α ,
1

(n+ 2)l−2+α , . . .
}

= C
1

(n+ 1)l−2+α .

The result follows.
COROLLARY 1. Under the notation and assumptions of Theorem 1, M∞ is com-

pact on l1 × l1, where for x = (x1, x2) ∈ l1 × l1,

M∞

(
x1

x2

)
=


∞∑
k=1

√
kjηk+j−1x

1
k +

∞∑
k=1

√
kjγk+j−1x

2
k

∞∑
k=1

√
kjηk+j−1x

1
k −

∞∑
k=1

√
kjγk+j−1x

2
k

 .

The norm on l1 × l1 is given by ||x||l1×l1 = ||x1||l1 + ||x2||l1 .
Proof. From the notation of the problem, it is easily verified that

||M∞ −Mn||l1×l1 ≤ 2(||Mr,∞ −Mr,n||l1 + ||Mi,∞ −Mi,n||l1).

The result follows as in Theorem 2.
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Though Corollary 1 shows that M∞ is compact, a precise estimate on the eigen-
values of M∞ is needed to obtain superlinear convergence rates for error vectors of
the conjugate gradient method. This leads us to the next section.

4. Superlinear convergence rates. First, we will discretize the infinite sys-
tems above. As in [CDH], we do this by truncating (3) after n terms, replacing the
hk for k = 1, . . . , n by the values computed with the discrete Fourier transform, and
setting hk = 0 for k = n+ 1, . . . , N −1, where N = 2n. The decay of the hk’s given in
Lemma 1 will guarantee that the resulting finite system is only a small perturbation of
the infinite system. We denote by x(n) and r(n) the N -vectors formed by truncating
x and r and by Mn the N × N matrix formed by truncating M∞, etc. Then, for
instance,

Mn =
(
Mr,n Mi,n

Mi,n −Mr,n

)
,

where the (k, j)th entry of Mr,n and Mi,n are, respectively,
√
kjRe(hk+j−1) and√

kjIm(hk+j−1).
Our problem is then to solve the truncated version of (8), the N ×N system

(In +Mn)x(n) = r(n).

Recall that x(n) is subject to a uniqueness condition. Since f ′(0) > 0, the condi-
tion Im(a1/f

′(0)) = 0 implies x(n)
n+1 = 0.

Put A∞ = I∞ + M∞ and An = In + Mn. Then A∞ has a one-dimensional null
space with null vector

v = (−Im c1,−
√

2Im c2, . . . ,Re c1,
√

2Re c2, . . .)T .

Since M∞ is compact, An has numerical rank N − 1 for large N = 2n. Moreover,
the corresponding near-null vector is approximated by the truncated version of v; see
[An]. We will assume that A∞ is positive semidefinite. This will imply that An is
positive semidefinite for large n. (This is the case in our numerical examples.) But
then this implies that An is positive definite on v(n)⊥ and the conjugate gradient will
converge in this subspace if the initial guess x(n)

0 = 0 is chosen.
Our solution can be written in the form

y(n) = x(n) + δv(n),

where δ is to be determined from the uniqueness condition. Thus, the conjugate
gradient will be applied to find the x(n) in v(n)⊥. Our goal is to give a precise estimate
for the superlinear convergence of the method. Define the norm ‖x‖2A = xTAx and
the error vector at the qth step eq = x(n)−x(n)

q . We are now ready for the main result.
THEOREM 3. Assume A∞ is positive semidefinite with exactly one null vector v.

Then, for large n, the error vector eq at the qth step of the conjugate gradient method
applied to v(n)⊥ satisfies the following estimates.

(i) If Γ is analytic, there is an r, 0 < r < 1, such that

(9) ‖e4q‖An ≤ Cqrq
2‖e0‖An .

(ii) If Γ is of class Cl+1,α, l ≥ 2, 0 < α < 1, then

(10) ‖e4q‖An ≤
Cq

((q − 1)!)2(l−2+α) ‖e0‖An .

Here C is a constant that depends on the conformal map.
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Proof. The proof follows closely the proof of Theorem 3 in [Chan]. From the
standard error analysis of the conjugate gradient method, we have

(11) ‖eq‖An ≤ [ min
Pq

max
λ∈σ(An)

|Pq(λ)| ] ‖e0‖An ,

where the minimum is taken over polynomials of degree q with constant term 1 and
the maximum is taken over σ(An), the spectrum of An; see, for instance, [GVL].
Actually, we restrict An to v(n)⊥ as discussed above so that by [An], for large n,
σ(An) ⊂ (ε,∞) for some ε > 0 which is independent of n. In the following, we will
try to estimate the minimum in (11). We will prove (9) first.

Assume Γ is analytic. We write

(12) Mn = W (k)
n + U (k)

n ∀k ≥ 1,

where U (k)
n is the matrix obtained from keeping the number 1, 2, . . . , k and number

n+ 1, n+ 2, . . . , n+k columns and rows of Mn while replacing all other entries of Mn

by zeros. Clearly, rank (U (k)
n ) ≤ 4k. By Lemma 2 of [CDH], for all k ≥ 1, W (k)

n with
r = ρ2 satisfies

‖W (k)
n ‖1 ≤ sup

k+1≤j≤n

n∑
i=k+1

√
ij|hi+j−1| ≤ sup

k+1≤j≤n

n∑
i=k+1

cρi+j ≤ crk.

Note that W (k)
n is symmetric since Mn is symmetric. Moreover, for any symmetric

matrix we have ‖A‖2 ≤ ‖A‖1. It follows that

(13) ‖W (k)
n ‖2 ≤ crk ∀k ≥ 1.

Let us order the eigenvalues of Mn =: W (0)
n as

µ−0 ≤ µ−1/2 ≤ µ
−
1 ≤ µ−3/2 ≤ · · · ≤ µ

+
3/2 ≤ µ

+
1 ≤ µ+

1/2 ≤ µ
+
0 .

By applying the Cauchy interlace theorem [GVL] to (12) and using the bound of
‖W (k)

n ‖2 in (13), we see that

|µ±k | ≤ crbkc ∀bkc ≥ 1.

Thus if we order the eigenvalues of An = In +W
(0)
n as

0 < λ−0 ≤ λ−1/2 ≤ λ
−
1 ≤ λ−3/2 ≤ · · · ≤ λ

+
3/2 ≤ λ

+
1 ≤ λ+

1/2 ≤ λ
+
0 ,

then λ±k = 1 + µ±k for all k ≥ 0 with

(14) 1− crbkc ≤ λ−k ≤ λ
+
k ≤ 1 + crbkc ∀k ≥ 1.

Having obtained the bounds for λ±k , we can now construct the polynomial that
will give us a bound for (11). Our idea is to choose a P4q that annihilates the 2q
extreme pairs of eigenvalues. Thus consider

pk(x) =
(

1− x

λ+
k

)(
1− x

λ−k+1/2

)(
1− x

λ+
k+1/2

)(
1− x

λ−k

)
∀k ≥ 0.
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Between the roots λ±k , the maximum of |(1− x
λ−k

)(1− x
λ+
k

)| is attained at the average

x = 1
2 (λ+

k + λ−k ). Consequently,

max
x∈[λ−

k+1/2,λ
+
k+1/2]

|pk(x)| ≤ (λ+
k − λ

−
k )2

4λ+
k λ
−
k

(λ+
k+1/2 − λ

−
k+1/2)2

4λ+
k+1/2λ

−
k+1/2

≤ (λ+
k − λ

−
k )

4λ−k

(λ+
k+1/2 − λ

−
k+1/2)

4λ−k+1/2

≤ (λ+
k − λ

−
k )2

16(λ−0 )2
∀k ≥ 0.

But then by (14) we have

(15) max
x∈[λ−

k+1/2,λ
+
k+1/2]

|pk(x)| ≤ (λ+
k − λ

−
k )2

16(λ−0 )2
≤ Cr2k ∀k ≥ 1.

Hence the polynomial P4q = p0p1 · · · pq−1, which annihilates the 2q extreme pairs
of eigenvalues, satisfies

(16) |P4q(x)| ≤ Cqrq2

for all x = λ±k in the inner interval between λ−q−1/2 and λ+
q−1/2, where the remaining

eigenvalues are. Here C is a constant that depends only on f . It should be noted
that, due to the one-dimensional null space of the compact operator M∞, we must
have λ−0 uniformly bounded away from zero for large N [An, Thm. 4.8]. Thus, C is
uniformly bounded for large N . (9) now follows directly from (11) and (16).

The idea for the estimate (10) is essentially the same with only minor modifica-
tions. Assume Γ is of class Cl+1,α, where l ≥ 2, 0 < α < 1. W (k)

n satisfies

‖W (k)
n ‖1 ≤ sup

k+1≤j≤n

n∑
i=k+1

√
ij|hi+j−1|

≤ sup
k+1≤j≤n

n∑
i=k+1

c
√
ij

(i+ j − 1)l+α

≤ sup
k+1≤j≤n

(
√
j)
∫ ∞
k

cdx

(x+ j − 1)l−1/2+α

≤ c

kl−2+α .

Using the previous labeling convention, (14) becomes

1− c

bkcl−2+α ≤ λ
−
k ≤ λ

+
k ≤ 1 +

c

bkcl−2+α ∀k ≥ 1.

And so (15) becomes

max
x∈[λ−

k+1/2,λ
+
k+1/2]

|pk(x)| ≤ (λ+
k − λ

−
k )2

16(λ−0 )2
≤ C

k2(l−2+α) ∀k ≥ 1.
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Finally, we obtain the estimate

(17) |P4q(x)| ≤ Cq

((q − 1)!)2(l−2+α) .

The estimate (10) now follows directly from (11) and (17).
In case A∞ is not semidefinite we can solve the normal equations by the conjugate

gradient method. It is clear that (In + Mn)2 will then be positive definite on v(n)⊥.
Using the techniques in the proof of Theorem 3 one can establish a similar result for
the normal equations. This will not be done here. In [CDH], we solved the normal
equations. However, in all of our examples so far, we have found that In + Mn is
(nearly) positive semidefinite, so that it is sufficient to just solve (In+Mn)x(n) = r(n)

by conjugate gradient. The numerical results are similar to those reported in [CDH].
For a discussion of the numerical conformal mapping methods used, also see [CDH].
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